101
|
Urbatsch IL, Beaudet L, Carrier I, Gros P. Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites. Biochemistry 1998; 37:4592-602. [PMID: 9521779 DOI: 10.1021/bi9728001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vanadate trapping of nucleotide and site-directed mutagenesis were used to investigate the role of the two nucleotide-binding (NB) sites in the regulation of ATP hydrolysis by P-glycoprotein (mouse Mdr3). Mdr3, tagged with a hexahistidine tail, was overexpressed in the yeast Pichia pastoris and purified to about 90% homogeneity by Ni-affinity chromatography. This protocol yielded purified, reconstituted Mdr3 which exhibited high verapamil stimulation of ATPase activity with a Vmax of 4.2 micromol min-1 mg-1 and a KM of 0.7 mM, suggesting that Mdr3 purified from P. pastoris is highly functional. Point mutations were introduced into the core consensus sequence of the Walker A or B motifs in each of the two NB sites. The mutants K429R, K1072R (Walker A) and D551N, D1196N (Walker B) were functionally impaired and unable to confer cellular resistance to the fungicide FK506 in the yeast Saccharomyces cerevisiae. Single and double mutants (K429R/K1072R, D551N/D1196N) were expressed in P. pastoris, and the effect of these mutations on the ATPase activity of Mdr3 was characterized. Purified reconstituted Mdr3 mutants showed no detectable ATPase activity compared to proteoliposomes purified from negative controls (<5% of wild-type Mdr3). Vanadate readily induced trapping of 8-azido-nucleotide in the wild-type enzyme after a short 10 s incubation, and specific photolabeling of Mdr3 after UV irradiation. No such vanadate-induced trapping/photolabeling was observed in any of the mutants, even after a 60 min trapping period at 37 degrees C. Since vanadate trapping with 8-azido-ATP requires hydrolysis of the nucleotide, the data suggest that 8-azido-ATP hydrolysis is dramatically impaired in all of the mutant proteins (<0.3% activity). These results show that mutations in either NB site prevent single turnover and vanadate trapping of nucleotide in the nonmutant site. These results further suggest that the two NB sites cannot function independently as catalytic sites in the intact molecule. In addition, the N- or C-terminal NB sites appear functionally indistinguishable, and cooperative interactions absolutely required for ATP hydrolysis may originate from both sites.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/isolation & purification
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/isolation & purification
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/antagonists & inhibitors
- Adenosine Triphosphate/metabolism
- Affinity Labels/metabolism
- Azides/metabolism
- Base Sequence
- Binding Sites
- Enzyme Inhibitors/pharmacology
- Escherichia coli/metabolism
- Hydrolysis
- Lipid Metabolism
- Mutagenesis, Site-Directed
- Nucleotides/metabolism
- Pichia/metabolism
- Point Mutation
- Vanadates/pharmacology
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | | | | | |
Collapse
|
102
|
Bianco PR, Weinstock GM. Characterization of RecA1332 in vivo and in vitro. A role for alpha-helix E as a liaison between the subunit-subunit interface and the DNA and ATP binding domains of RecA protein. Genes Cells 1998; 3:79-97. [PMID: 9605403 DOI: 10.1046/j.1365-2443.1998.00168.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The RecA protein of Escherichia coli is essential for homologous recombination and induction of the SOS response. RecA has three cysteines located at positions 90, 116 and 129. Chemical modification of these residues abolishes ATP hydrolysis and repressor cleavage, and causes a reduction in the DNA strand exchange and DNA strand annealing activities. Several mutants at each of these positions were isolated and partially characterized. One of these, recA1332, replaces cysteine 129 with methionine. Although this is a relatively conservative mutation based on hydrophobicity, recA1332 was completely defective for DNA repair but the purified protein was active for ATPase in vitro. RESULTS In vivo, strains containing this mutant allele were shown to be defective when assayed for all RecA-dependent activities. In vitro, RecA1332 protein possessed DNA-dependent ATP hydrolysis activity that showed an increased sensitivity to inhibition by monovalent cations, and whose k(cat) was reduced 3- to 12-fold. In addition, RecA1332 was unable to use oligodeoxyribonulceotides as ssDNA cofactors in the ATPase reaction. RecA1332 showed altered binding to single- and double-stranded DNA and, although it was able to perform DNA strand exchange, it was slowed in its ability to both form joint molecule intermediates and to convert these species to product. CONCLUSIONS Our results are consistent with a defect in intermolecular interactions between RecA monomers. We propose that alpha-helix E (which includes C129M) is a liaison that connects the subunit-subunit interactions to DNA and ATP binding, thereby creating filament stability and cooperativity.
Collapse
Affiliation(s)
- P R Bianco
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
103
|
Zaitsev EN, Kowalczykowski SC. Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucleic Acids Res 1998; 26:650-4. [PMID: 9421529 PMCID: PMC147265 DOI: 10.1093/nar/26.2.650] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have developed a new assay to characterize the double-stranded DNA (dsDNA) binding properties of RecA protein. This assay is based on measurement of changes in the fluorescence of a 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complex upon RecA protein binding. The binding of RecA protein to a complex of DAPI and dsDNA results in displacement of the bound DAPI, producing a decrease in the observed fluorescence. DAPI displacement is dependent on both RecA protein and ATP; dATP and, to a lesser extent, UTP and dCTP also support the DAPI displacement reaction, but dGTP, GTP, dITP and TTP do not. Binding stoichiometry for the RecA protein-dsDNA complex measured by DAPI displacement is 3 bp per RecA protein monomer in the presence of ATP. These results, taken together with data for mutant RecA proteins, suggest that this DAPI displacement assay monitors formation of the high affinity DNA binding state of RecA protein. Since this state of RecA protein defines the form of the nucleoprotein filament that is active in DNA strand exchange, these findings raise the possibility that the RecA protein-dsDNA filament may possess a homologous pairing capacity.
Collapse
Affiliation(s)
- E N Zaitsev
- Division of Biological Sciences, Sections of Microbiology and Molecular and Cell Biology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
104
|
Shan Q, Cox MM. On the mechanism of RecA-mediated repair of double-strand breaks: no role for four-strand DNA pairing intermediates. Mol Cell 1998; 1:309-17. [PMID: 9659927 DOI: 10.1016/s1097-2765(00)80031-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RecA protein will bind to a gapped duplex DNA molecule and promote a DNA strand exchange with a second homologous linear duplex. A double-strand break in the second duplex is efficiently bypassed in the course of these reactions. We demonstrate that the bypass of double-strand breaks is not explained by a mechanism involving homologous interactions between two duplex DNA molecules, but instead requires the ATP-mediated generation of DNA torsional stress brought about by the action of RecA. The results suggest new pathways for the repair of double-strand breaks and underline the need for new paradigms to explain the alignment of homologous DNAs during genetic recombination.
Collapse
Affiliation(s)
- Q Shan
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
105
|
Abstract
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
106
|
Webb BL, Cox MM, Inman RB. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997; 91:347-56. [PMID: 9363943 DOI: 10.1016/s0092-8674(00)80418-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the first complex encountered. A very slow lengthening of RecA filaments observed in the presence of RecFR is virtually eliminated when RecF is replaced with an RecF mutant protein that does not hydrolyze ATP. These observations are incorporated into an expanded model for the functions of RecF, RecO, and RecR proteins in the early stages of postreplication DNA repair.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin at Madison, 53706, USA
| | | | | |
Collapse
|
107
|
MacFarland KJ, Shan Q, Inman RB, Cox MM. RecA as a motor protein. Testing models for the role of ATP hydrolysis in DNA strand exchange. J Biol Chem 1997; 272:17675-85. [PMID: 9211918 DOI: 10.1074/jbc.272.28.17675] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ATP hydrolysis (by RecA protein) fundamentally alters the properties of RecA protein-mediated DNA strand exchange reactions. ATP hydrolysis renders DNA strand exchange unidirectional, greatly increases the lengths of hybrid DNA created, permits the bypass of heterologous DNA insertions in one or both DNA substrates, and is absolutely required for exchange reactions involving four DNA strands. There are at least two viable models to explain how ATP hydrolysis is coupled to DNA strand exchange so as to bring about these effects. The first couples ATP hydrolysis to a redistribution of RecA monomers within a RecA filament. The second couples ATP hydrolysis to a facilitated rotation of the DNA substrates. The RecA monomer redistribution model makes the prediction that heterology bypass should not occur if the single-stranded DNA substrate is linear. The facilitated DNA rotation model predicts that RecA protein should promote the separation of paired DNA strands within a RecA filament if one of them is contiguous with a length of DNA being rotated about the filament exterior. Here, a facile bypass of heterologous insertions with linear DNA substrates is demonstrated, providing evidence against a role for RecA monomer redistribution in heterology bypass. In addition, we demonstrate that following a four-strand DNA exchange reaction, a distal segment of DNA hundreds of base pairs in length can be unwound in a nonreciprocal phase of the reaction, consistent with the direct coupling of an ATP hydrolytic motor to the proposed DNA rotation.
Collapse
Affiliation(s)
- K J MacFarland
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
108
|
Abstract
The role of ATP hydrolysis in RecA protein-mediated DNA strand exchange reactions remains controversial. Competing models suggest that ATP hydrolysis is coupled either to a simple redistribution of RecA monomers within a filament to repair filament discontinuities, or more directly to rotation of the DNA substrates to drive branch movement unidirectionally. Here, we test key predictions of the RecA redistribution idea. When ATP is hydrolyzed, DNA strand exchange is accompanied by a RecA exchange reaction, between free and bound RecA protomers in the interior of RecA filaments, that meets a central prediction of the model. The RecA protomer exchange is not required for, and does not occur during, the "search for homology" in which the single-stranded DNA within a RecA-ssDNA nucleoprotein filament is homologously aligned with the duplex DNA. Instead, the RecA exchange is triggered by the completion of strand exchange (a strand switch to generate a hybrid DNA product) in any given segment of the filament. In effect, formation of hybrid DNA leads to a change in filament conformation to one with properties approximating those of RecA filaments bound to double-stranded DNA. Addition of the RecA K72R mutant protein to a reaction with the wild type protein leads to the formation of mixed filaments and a poisoning of the DNA strand exchange reaction. Under some conditions, a facile RecA protomer exchange is observed, and significant ATP is hydrolyzed, even though DNA strand exchange is entirely blocked by the mutant protein. A redistribution of RecA protomers coupled to ATP hydrolysis is not sufficient in itself to explain how ATP hydrolysis facilitates DNA strand exchange. A RecA protomer exchange may nevertheless play an important role in the DNA strand exchange process.
Collapse
Affiliation(s)
- Q Shan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
109
|
Shan Q, Bork JM, Webb BL, Inman RB, Cox MM. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 1997; 265:519-40. [PMID: 9048946 DOI: 10.1006/jmbi.1996.0748] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RecA protein filaments formed on circular (ssDNA) in the presence of ssDNA binding protein (SSB) are generally stable as long as ATP is regenerated. On linear ssDNA, stable RecA filaments are believed to be formed by nucleation at random sites on the DNA followed by filament extension in the 5' to 3' direction. This view must now be enlarged as we demonstrate that RecA filaments formed on linear ssDNA are subject to a previously undetected end-dependent disassembly process. RecA protein slowly dissociates from one filament end and is replaced by SSB. The results are most consistent with disassembly from the filament end nearest the 5' end of the DNA. The bound SSB prevents re-formation of the RecA filaments, rendering the dissociation largely irreversible. The dissociation requires ATP hydrolysis. Disassembly is not observed when the pH is lowered to 6.3 or when dATP replaces ATP. Disassembly is not observed even with ATP when both the RecO and RecR proteins are present in the initial reaction mixture. When the RecO and RecR proteins are added after most of the RecA protein has already dissociated, RecA protein filaments re-form after a short lag. The newly formed filaments contain an amount of RecA protein and exhibit an ATP hydrolysis rate comparable to that observed when the RecO and RecR proteins are included in the initial reaction mixture. The RecO and RecR proteins thereby stabilize RecA filaments even at the 5' ends of ssDNA, a fact which should affect the recombination potential of 5' ends relative to 3' ends. The location and length of RecA filaments involved in recombinational DNA repair is dictated by both the assembly and disassembly processes, as well as by the presence or absence of a variety of other proteins that can modulate either process.
Collapse
Affiliation(s)
- Q Shan
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|
110
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
111
|
Sung P, Stratton SA. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 1996; 271:27983-6. [PMID: 8910403 DOI: 10.1074/jbc.271.45.27983] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae RAD51 gene is required for genetic recombination and recombinational repair of DNA strand breaks. Rad51 protein has a DNA-dependent ATPase activity, and it catalyzes ATP-dependent pairing and strand exchange between homologous DNA molecules. We show here that the rad51 Arg-191 protein, which is devoid of ATPase activity, mediates the pairing and strand exchange reaction upon binding ATP. In addition, the wild type Rad51 protein can catalyze pairing and strand exchange in the presence of the nonhydrolyzable ATP analogues adenylyl-imidodiphosphate and adenosine 5'-O-thiotriphosphate. Thus, homologous pairing and the unidirectional transfer of greater than 5 kilobases of DNA can occur efficiently without the need for nucleotide hydrolysis. Consistent with the results from the biochemical analyses, expression of the rad51 Arg-191 protein in a rad51 null mutant confers normal cellular resistance to the DNA damaging agent methylmethane sulfonate, suggesting that nucleotide binding by Rad51 is sufficient for biological function.
Collapse
Affiliation(s)
- P Sung
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA.
| | | |
Collapse
|
112
|
Baldridge GD, Fallon AM. Evidence for a DNA homologous pairing activity in nuclear extracts from mosquito cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:667-676. [PMID: 8995789 DOI: 10.1016/s0965-1748(96)00017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using a sensitive homologous pairing/DNA strand transfer assay, we detected formation of joint molecules in the presence of nuclear extract from cultured mosquito C7-10 cells in a reaction containing single stranded circular m13 DNA and a linear, double stranded DNA 5'-end-labeled on the strand complementary to a portion of the single-stranded substrate. Joint molecules were detected by the reduced electrophoretic mobility of labeled probe on agarose gels, which indicated that the 5'-end labeled strand of the linear duplex had formed a hybrid with the single-stranded substrate. Characterization of the activity detected initially in crude nuclear extracts provided a basis for a 5-fold enrichment of activity after a two-step KCl elution from heparin-Sepharose. Further purification by preparative electrophoresis yielded a band at approximately 35 kDa, which, when transferred to Immobilon P membrane, specifically bound the labeled, complementary strand probe. Optimal activity of the electroeluted enzyme required both magnesium and ATP and was sensitive to the ratio of single-stranded and double-stranded DNA substrate and to the amount of protein. This homologous pairing activity from mosquito cells is the first such activity to be described from an insect other than Drosophila melanogaster.
Collapse
Affiliation(s)
- G D Baldridge
- Department of Entomology, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
113
|
Rehrauer WM, Kowalczykowski SC. The DNA binding site(s) of the Escherichia coli RecA protein. J Biol Chem 1996; 271:11996-2002. [PMID: 8662640 DOI: 10.1074/jbc.271.20.11996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Photochemical cross-linking has been used to identify residues in the Escherichia coli RecA protein that are proximal to and may directly mediate binding of DNA. Ultraviolet irradiation promotes specific and efficient cross-linking of the RecA protein to poly(deoxythymidylic) acid. Cross-linked peptides remaining covalently attached to the polynucleotide following proteolytic digestion with trypsin correspond to amino acids 61-72, 178-183, and 233-243 of the RecA protein primary sequence. Their location and surface accessibility in the crystal structure, along with the behavior of various recA mutants, support the assignment of the cross-linked regions to the DNA binding site(s) of the RecA protein. Functional overlap of amino acids 61-72 with an element of the ATP binding site suggests a structural mechanism by which nucleotide cofactors allosterically affect the RecA nucleoprotein filament.
Collapse
Affiliation(s)
- W M Rehrauer
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
114
|
Bedale WA, Cox M. Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA protein-mediated DNA strand exchange. J Biol Chem 1996; 271:5725-32. [PMID: 8621438 DOI: 10.1074/jbc.271.10.5725] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RecA protein promotes a limited DNA strand exchange reaction, without ATP hydrolysis, that typically results in formation of short (1-2 kilobase pairs) regions of hybrid DNA. This nascent hybrid DNA is extended in a reaction that can be coupled to ATP hydrolysis. When ATP is hydrolyzed, the extension phase is progressive and its rate is 380 +/- 20 bp min-1 at 37 degrees C. A single RecA nucleoprotein filament can participate in multiple DNA strand exchange reactions concurrently (involving duplex DNA fragments that are homologous to different segments of the DNA within a nucleoprotein filament), with no effect on the observed rate of ATP hydrolysis. The ATP hydrolytic and hybrid DNA extension activities exhibit a dependence on temperature between 25 and 45 degrees C that is, within experimental error, identical. This provides new evidence that the two processes are coupled. Arrhenius activation energies derived from the work are 13.3 +/- 1.1 kcal mole-1 for DNA strand exchange, and 14.4 +/- 1.4 kcal mole-1 for ATP hydrolysis during strand exchange. The rate of branch movement in the extension phase (base pair min-1) is related to the kcat for ATP hydrolysis during strand exchange (min-1) by a factor equivalent to 18 bp throughout the temperature range examined. The 18-base pair factor conforms to a quantitative prediction derived from a model in which ATP hydrolysis is coupled to a facilitated rotation of the DNA substrates. RecA filaments possess an intrinsic capacity for DNA strand exchange, mediated by binding energy rather than ATP hydrolysis, that is augmented by an ATP-dependent molecular motor.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Bacteriophage phi X 174
- Calorimetry
- DNA, Circular/chemistry
- DNA, Circular/metabolism
- DNA, Circular/ultrastructure
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- DNA, Viral/ultrastructure
- Escherichia coli/enzymology
- Hydrolysis
- Kinetics
- Microscopy, Electron
- Models, Structural
- Rec A Recombinases/isolation & purification
- Rec A Recombinases/metabolism
Collapse
Affiliation(s)
- W A Bedale
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
115
|
Shan Q, Cox MM, Inman RB. DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J Biol Chem 1996; 271:5712-24. [PMID: 8621437 DOI: 10.1074/jbc.271.10.5712] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Replacement of lysine 72 in RecA protein with arginine produces a mutant protein that binds but does not hydrolyze ATP. The protein nevertheless promotes DNA strand exchange (Rehrauer, W. M., and Kowalczykowski, S. C. (1993) J. Biol. Chem. 268, 1292-1297). With RecA K72R protein, the formation of the hybrid DNA product of strand exchange is greatly affected by the concentration of Mg2+ in ways that reflect the concentration of a Mg.dATP complex. When Mg2+ is present at concentrations just sufficient to form the Mg.dATP complex, substantial generation of completed product hybrid DNAs over 7 kilobase pairs in length is observed (albeit slowly). Higher levels of Mg2+ are required for optimal uptake of substrate duplex DNA into the nucleoprotein filament, indicating that the formation of joint molecules is facilitated by Mg2+ levels that inhibit the subsequent migration of a DNA branch. We also show that the strand exchange reaction promoted by RecA K72R, regardless of the Mg2+ concentration, is bidirectional and incapable of bypassing structural barriers in the DNA or accommodating four DNA strands. The reaction exhibits the same limitations as that promoted by wild type RecA protein in the presence of adenosine 5'-O-(3-thio)triphosphate. The Mg2+ effects, the limitations of RecA-mediated DNA strand exchange in the absence of ATP hydrolysis, and unusual DNA structures observed by electron microscopy in some experiments, are interpreted in the context of a model in which a fast phase of DNA strand exchange produces a discontinuous three-stranded DNA pairing intermediate, followed by a slow phase in which the discontinuities are resolved. The mutant protein also facilitates the autocatalytic cleavage of the LexA repressor, but at a reduced rate.
Collapse
Affiliation(s)
- Q Shan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
116
|
Webb BL, Cox MM, Inman RB. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J Biol Chem 1995; 270:31397-404. [PMID: 8537414 DOI: 10.1074/jbc.270.52.31397] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The DNA binding and ATPase activities of RecF protein are modulated by RecR protein. Stoichiometric amounts of RecF protein bind to double-stranded (ds) DNA (about 1 RecF monomer/4-6 base pairs) in the presence of adenosine 5'-O-(3-thio)triphosphate (ATP gamma S), forming a homogeneous protein coating on the DNA. Little or no cooperativity is evident in the binding process. In the presence of ATP, RecF binding to dsDNA is much weaker, and no RecF protein coating forms. Instead, small numbers of RecF protomers are interspersed randomly along the DNA. RecR protein does not bind appreciably to the dsDNA under these same conditions. However, a protein coating, similar to that which was observed with RecF protein alone in the presence of ATP gamma S, was produced when both RecF and RecR proteins were incubated with dsDNA in the presence of ATP. An interaction between RecF and RecR enables both proteins to bind tightly to the dsDNA in an approximately 1:1 molar ratio. We also report a weak ATP hydrolytic activity of RecF which is stimulated by RecR.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
117
|
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
118
|
Iype LE, Inman RB, Cox MM. Blocked RecA protein-mediated DNA strand exchange reactions are reversed by the RuvA and RuvB proteins. J Biol Chem 1995; 270:19473-80. [PMID: 7642631 DOI: 10.1074/jbc.270.33.19473] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RecA protein is unable to complete a DNA strand exchange reaction between a circular single-stranded DNA and a linear duplex DNA substrate with heterologous sequences of 375 base pairs at the distal end. Instead, it generates a branched intermediate in which strand exchange has proceeded up to the homology/heterology junction. Addition of the RuvA and RuvB proteins to these stalled intermediates leads to the rapid conversion of intermediates back to the original substrates. The reversal reaction is initiated at the branch, and the hybrid DNA is unwound in the direction opposite to that of the RecA reaction that created it. Under optimal conditions the rate of the reaction exhibits only a modest dependence on the length of hybrid DNA that must be unwound. Products of the reversal reaction are detected within minutes after addition of RuvAB, and appear with an apparent first order progress curve, exhibiting a t1/2 in the range of 6-12 min under optimal conditions. Few molecules that have undergone only partial reversal are detected. This suggests that the assembly or activation of RuvAB on the branched substrate is rate-limiting, while any migration of RuvAB on the DNA to effect unwinding of the hybrid DNA (and reformation of substrate DNA) is very fast. The results are discussed in context of the role of RuvA and RuvB proteins in recombinational DNA repair. We suggest that one function of the RuvAB proteins is to act as an antirecombinase, to eliminate intragenomic crossovers between homologous segments of the bacterial chromosome that might otherwise lead to deleterious inversions or deletions.
Collapse
Affiliation(s)
- L E Iype
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
119
|
Abstract
A RecA protein-generated triple-stranded DNA species can be observed by electron microscopy, within narrowly defined conditions. Three-stranded DNA is detected only when initiation of normal DNA strand exchange is precluded by heterologous sequences within the duplex DNA substrate, when ATP is hydrolyzed, and when the DNA is cross-linked with a psoralen derivative prior to removal of RecA filaments. When adenosine 5'-O-(thiotriphosphate) is used, only the product hybrid duplex DNA can be cross-linked within the RecA filament. The third strand is either displaced or interwound in a conformation that does not permit cross-linking. When ATP is hydrolyzed by RecA, all three strands are cross-linked within the filament in a complex pattern that suggests a dynamic structure. This structure is altered when RecA protein is removed before cross-linking. Hsieh et al. (1990) and Rao et al. (1991, 1993) have proposed, on the basis of nuclease protection and chemical modification studies, that a stable triple-stranded DNA species can persist after removal of RecA protein. We have been unable to visualize these triple-stranded structures by the methods used in the present investigation. When RecA removal was followed immediately by interstrand cross-linking, only the two strands of the hybrid duplex DNA were cross-linked.
Collapse
Affiliation(s)
- S K Jain
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
120
|
Sandler SJ. Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:741-9. [PMID: 7830722 DOI: 10.1007/bf00297281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UV-inducible sulAp expression, an indicator of the SOS response, is reduced by recF+ overexpression in vivo. Different DNA-damaging agents and amounts of RecO and RecR were tested for their effects on this phenotype. It was found that recF+ overexpression reduced sulAp expression after DNA damage by mitomycin C or nalidixic acid, recO+ and recR+ overexpression partially suppressed the reduction of UV-induced sulAp expression caused by recF+ overexpression. The requirement for ATP binding to RecF to produce the phenotype was tested by genetically altering the putative phosphate binding cleft of recF in a way that should prevent the mutant recF protein from binding ATP. It was found that a change of lysine to glutamine at codon 36 results in a mutant recF protein (RecF4115) that is unable to reduce UV-inducible sulAp expression when overproduced. It is inferred from these results that recF overexpression may reduce UV-inducible sulAp expression by a mechanism that is sensitive to the ability of RecF to bind ATP and to the levels of RecO and RecR (RecOR) in the cell, but not to the type of DNA damage per se. Models are explored that can explain how recF+ overexpression reduces UV induction of sulAp and how RecOR overproduction might suppress this phenotype.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720
| |
Collapse
|
121
|
RuvA and RuvB proteins facilitate the bypass of heterologous DNA insertions during RecA protein-mediated DNA strand exchange. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31484-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
122
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 778] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
123
|
On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32043-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
124
|
Abstract
RecA is a DNA-dependent ATPase involved in DNA-strand repair. Most of the ATP hydrolysis that occurs in a RecA nucleoprotein filament is implicitly considered to be irrelevant in many current models for RecA-mediated DNA-strand exchange. However, preventing RecA from hydrolysing ATP alters its behavior, suggesting that ATP hydrolysis by RecA is more than incidental. This review explores recent results detailing the effects and rates of ATP hydrolysis by RecA, and models are proposed that permit us to account quantitatively for ATP consumption by this protein.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin, Madison 53706
| |
Collapse
|
125
|
Johnon A, Kolodner R. Characterization of the interaction of Saccharomyces cerevisiae strand exchange protein 1 with DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
126
|
O'Rourke B. Ion channels as sensors of cellular energy. Mechanisms for modulation by magnesium and nucleotides. Biochem Pharmacol 1993; 46:1103-12. [PMID: 7692854 DOI: 10.1016/0006-2952(93)90456-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- B O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
127
|
Cox MM. Relating biochemistry to biology: how the recombinational repair function of RecA protein is manifested in its molecular properties. Bioessays 1993; 15:617-23. [PMID: 8240315 DOI: 10.1002/bies.950150908] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The multiple activities of the RecA protein in DNA metabolism have inspired over a decade of research in dozens of laboratories around the world. This effort has nevertheless failed to yield an understanding of the mechanism of several RecA protein-mediated processes, the DNA strand exchange reactions prominent among them. The major factors impeding progress are the invalid constraints placed upon the problem by attempting to understand RecA protein-mediated DNA strand exchange within the context of an inappropriate biological paradigm-namely, homologous genetic recombination as a mechanism for generating genetic diversity. In this essay I summarize genetic and biochemical data demonstrating that RecA protein evolved as the central component of a recombinational DNA repair system, with the generation of genetic diversity being a sometimes useful byproduct, and review the major in vitro activities of RecA protein from a repair perspective. While models proposed for both recombination and recombinational repair often make use of DNA strand cleavage and transfer steps that appear to be quite similar, the molecular and thermodynamic requirements of the two processes are very different. The recombinational repair function provides a much more logical and informative framework for thinking about the biochemical properties of RecA and the strand exchange reactions it facilitates.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin, Madison 53706
| |
Collapse
|
128
|
Egelman EH. What do X-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination? Curr Opin Struct Biol 1993. [DOI: 10.1016/s0959-440x(05)80151-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|