101
|
Cialfi S, Uccelletti D, Carducci A, Wésolowski-Louvel M, Mancini P, Heipieper HJ, Saliola M. KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. MICROBIOLOGY-SGM 2011; 157:1509-1518. [PMID: 21310785 DOI: 10.1099/mic.0.044040-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In Saccharomyces cerevisiae, HSL1 (NIK1) encodes a serine-threonine protein kinase involved in cell cycle control and morphogenesis. Deletion of its putative orthologue in Kluyveromyces lactis, KlHSL1, gives rise to sensitivity to the respiratory inhibitor antimycin A (AA). Resistance to AA on glucose (Rag+ phenotype) is associated with genes (RAG) required for glucose metabolism/glycolysis. To understand the relationship between RAG and KlHSL1, rag and Klhsl1Δ mutant strains were investigated. The analysis showed that all the mutants contained a phosphorylated form of Hog1 and displayed an inability to synthesize/accumulate glycerol as a compatible solute. In addition, rag mutants also showed alterations in both cell wall and membrane fatty acids. The pleiotropic defects of these strains indicate that a common pathway regulates glucose utilization and stress response mechanisms, suggesting impaired adaptation of the plasma membrane/cell wall during the respiratory-fermentative transition. KlHsl1 could be the link between these adaptive pathways and the morphogenetic checkpoint.
Collapse
Affiliation(s)
- Samantha Cialfi
- Department of Biology and Biotechnology 'C. Darwin', University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology 'C. Darwin', University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Augusto Carducci
- Department of Biology and Biotechnology 'C. Darwin', University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Micheline Wésolowski-Louvel
- UMR, Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Lyon, F-69003, France; CNRS, Villeurbanne, F-69622, France; and INSA de Lyon, Villeurbanne, F-69621, France
| | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Michele Saliola
- Department of Biology and Biotechnology 'C. Darwin', University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
102
|
Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae. Arch Microbiol 2011; 193:323-34. [PMID: 21259000 DOI: 10.1007/s00203-010-0673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca(2+) flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca(2+). The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca(2+) levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca(2+) flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca(2+) flux. Acetate inhibits the Ca(2+) accumulation elicited by the ethanol/osmotic stress. The Ca(2+) flux is primarily via the Cch1 Ca(2+) influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca(2+) flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol.
Collapse
|
103
|
|
104
|
Over-expression of functional Saccharomyces cerevisiae GUP1, induces proliferation of intracellular membranes containing ER and Golgi resident proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:733-44. [PMID: 21167129 DOI: 10.1016/j.bbamem.2010.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/02/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022]
Abstract
High-level expression of the GUP1 gene in Saccharomyces cerevisiae resulted in the formation of proliferated structures, which hosted endoplasmic reticulum (ER), Golgi and itinerant proteins. The GUP1 over-expression enhanced ER biogenesis, as shown by the coordinated increased transcription rate of genes involved in both ER and Golgi metabolism and in phospholipids biosynthesis. The formation of Gup1-induced proliferation revealed that it depended on an intact unfolded protein response, because their assembly was reported to be lethal to yeast strains unable to initiate the UPR (Unfolded Protein Response) pathway. GUP1 over-expression affected global ER and Golgi structure and resulted in the biogenesis of novel membrane arrays with Golgi and ER hybrid composition. In fact, a number of ER and Golgi resident proteins together with itinerant proteins that normally cycle between ER and Golgi, were localized in the proliferated stacked membranes. The described assembling of novel membrane structures was affected by the functionality of the Gup1 O-acyltransferase domain, which regulates the Gup1 protein role as remodelase in the glycosylphosphatidylinositol (GPI) anchored proteins biosynthesis. To our knowledge, we presented the first evidence of sub cellular modifications in response over-expression of a GPI-anchor remodelase in S. cerevisiae.
Collapse
|
105
|
Jiménez-Martí E, Gomar-Alba M, Palacios A, Ortiz-Julien A, del Olmo ML. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response. Appl Microbiol Biotechnol 2010; 89:1551-61. [DOI: 10.1007/s00253-010-2909-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
106
|
Guo ZP, Zhang L, Ding ZY, Wang ZX, Shi GY. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast. J Ind Microbiol Biotechnol 2010; 38:935-43. [PMID: 20824484 DOI: 10.1007/s10295-010-0864-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/25/2010] [Indexed: 11/27/2022]
Abstract
The GPD2 gene, encoding NAD(+)-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpd2Δ P (PGK)-gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpd2Δ P (PGK)-GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ (max)) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.
Collapse
Affiliation(s)
- Zhong-peng Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Center for Bioresources and Bioenergy, School of Biotechnology, Jiangnan University, 214122, Wuxi, People's Republic of China
| | | | | | | | | |
Collapse
|
107
|
Wolf J, Schliebs W, Erdmann R. Peroxisomes as dynamic organelles: peroxisomal matrix protein import. FEBS J 2010; 277:3268-78. [PMID: 20629744 DOI: 10.1111/j.1742-4658.2010.07739.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The heterogeneity of peroxisomal matrix proteins which are imported in a folded, even oligomeric state, requires adaptive and dynamic properties of the translocation machinery. Dynamic multicompartmental subcellular distribution of peroxisomal proteins is governed by the accessibility of targeting signals. Conformational changes of peroxisomal targeting receptors upon cargo-binding might serve as a docking 'quality control'. Although the mechanisms are not understood in detail, recent work suggests the existence of a transient translocon within the peroxisomal membrane. Rapid formation and disassembly of the transient import pore ensures the integrity of the peroxisomal membrane barrier for small metabolites. In this review, we will focus on the regulatory aspects of peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Janina Wolf
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
108
|
Tian HC, Zhou J, Qiao B, Liu Y, Xia JM, Yuan YJ. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance. Appl Microbiol Biotechnol 2010; 87:1507-16. [DOI: 10.1007/s00253-010-2615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 04/03/2010] [Accepted: 04/11/2010] [Indexed: 11/30/2022]
|
109
|
Peng F, Li G, Wang X, Jiang Y, Yang Y. Cloning and characterization of a glycerol-3-phosphate dehydrogenase (NAD+) gene from the halotolerant yeast Pichia farinosa. Yeast 2010; 27:115-21. [PMID: 20014039 DOI: 10.1002/yea.1736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, a novel glycerol-3-phosphate dehydrogenase (NAD(+)) (EC1.1.1.8) gene (PfGPD) was cloned from halotolerant yeast Pichia farinosa, using degenerate reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of the PfGPD gene is 1403 bp, which has an open reading frame (ORF) encoding 370 amino acids. PfGPD is conserved with other glycerol-3-phosphate dehydrogenase genes and presents a single copy in the P. farinosa genome. Transcriptional analysis revealed that PfGPD gene expression level was high after 2 h induction in a hyperosmotic environment containing 2 M NaCl and returned to normal within 6 h. These results suggest that the PfGPD gene is induced by salt stress. Yeast complementation experiment indicated that PfGPD complements gpd1 mutation in S. cerevisiae. The Accession No. for PfGPD in GenBank is EF601986.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | |
Collapse
|
110
|
Tekolo OM, Mckenzie J, Botha A, Prior BA. The osmotic stress tolerance of basidiomycetous yeasts. FEMS Yeast Res 2010; 10:482-91. [DOI: 10.1111/j.1567-1364.2010.00612.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
111
|
Cao L, Kong Q, Zhang A, Chen X. Overexpression of SYM1 in a gpdDelta mutant of Saccharomyces cerevisiae with modified ammonium assimilation for optimization of ethanol production. J Taiwan Inst Chem Eng 2010. [DOI: 10.1016/j.jtice.2009.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
112
|
Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 2009; 285:6739-49. [PMID: 20026609 DOI: 10.1074/jbc.m109.058552] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gpd1p is a cytosolic NAD(+)-dependent glycerol 3-phosphate dehydrogenase that also localizes to peroxisomes and plays an essential role in the cellular response to osmotic stress and a role in redox balance. Here, we show that Gpd1p is directed to peroxisomes by virtue of an N-terminal type 2 peroxisomal targeting signal (PTS2) in a Pex7p-dependent manner. Significantly, localization of Gpd1p to peroxisomes is dependent on the metabolic status of cells and the phosphorylation of aminoacyl residues adjacent to the targeting signal. Exposure of cells to osmotic stress induces changes in the subcellular distribution of Gpd1p to the cytosol and nucleus. This behavior is similar to Pnc1p, which is coordinately expressed with Gpd1p, and under conditions of cell stress changes its subcellular distribution from peroxisomes to the nucleus where it mediates chromatin silencing. Although peroxisomes are necessary for the beta-oxidation of fatty acids in yeast, the localization of Gpd1p to peroxisomes is not. Rather, shifts in the distribution of Gpd1p to different cellular compartments in response to changing cellular status suggests a role for Gpd1p in the spatial regulation of redox potential, a process critical to cell survival, especially under the complex stress conditions expected to occur in the wild.
Collapse
Affiliation(s)
- Sunhee Jung
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | |
Collapse
|
113
|
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2009; 76:190-5. [PMID: 19915031 DOI: 10.1128/aem.01772-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).
Collapse
|
114
|
Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 2009; 76:329-37. [PMID: 19897760 DOI: 10.1128/aem.02318-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basidiomycetous genus Wallemia is an active inhabitant of hypersaline environments, and it has recently been described as comprising three halophilic and xerophilic species: Wallemia ichthyophaga, Wallemia muriae, and Wallemia sebi. Considering the important protective role the fungal cell wall has under fluctuating physicochemical environments, this study was focused on cell morphology changes, with particular emphasis on the structure of the cell wall, when these fungi were grown in media with low and high salinities. We compared the influence of salinity on the morphological characteristics of Wallemia spp. by light, transmission, and focused-ion-beam/scanning electron microscopy. W. ichthyophaga was the only species of this genus that was metabolically active at saturated NaCl concentrations. W. ichthyophaga grew in multicellular clumps and adapted to the high salinity with a significant increase in cell wall thickness. The other two species, W. muriae and W. sebi, also demonstrated adaptive responses to the high NaCl concentration, showing in particular an increased size of mycelial pellets at the high salinities, with an increase in cell wall thickness that was less pronounced. The comparison of all three of the Wallemia spp. supports previous findings relating to the extremely halophilic character of the phylogenetically distant W. ichthyophaga and demonstrates that, through morphological adaptations, the eukaryotic Wallemia spp. are representative of eukaryotic organisms that have successfully adapted to life in extremely saline environments.
Collapse
|
115
|
Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states. Biotechnol Adv 2009; 27:1092-1117. [DOI: 10.1016/j.biotechadv.2009.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
116
|
Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis. Mol Genet Genomics 2009; 282:571-86. [DOI: 10.1007/s00438-009-0486-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/13/2009] [Indexed: 11/26/2022]
|
117
|
Kaserer AO, Andi B, Cook PF, West AH. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 2009; 48:8044-50. [PMID: 19618914 DOI: 10.1021/bi900886g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multistep His-Asp phosphorelay system in Saccharomyces cerevisiae allows cells to adapt to osmotic, oxidative, and other environmental stresses. The pathway consists of a hybrid histidine kinase SLN1, a histidine-containing phosphotransfer (HPt) protein YPD1, and two response regulator proteins, SSK1 and SKN7. Under nonosmotic stress conditions, the SLN1 sensor kinase is active, and phosphoryl groups are shuttled through YPD1 to SSK1, therefore maintaining the response regulator protein in a constitutively phosphorylated state. The cellular response to hyperosmotic stress involves rapid efflux of water and changes in intracellular ion and osmolyte concentration. In this study, we examined the individual and combined effects of NaCl and glycerol on phosphotransfer rates within the SLN1-YPD1-SSK1 phosphorelay. The results show that the combined effects of glycerol and NaCl on the phosphotransfer reaction rates are different from the individual effects of glycerol and NaCl. The combinatory effect is likely more representative of the in vivo changes that occur during hyperosmotic stress. In addition, the effect of osmolyte concentration on the half-life of the phosphorylated SSK1 receiver domain in the presence/absence of YPD1 was evaluated. Our findings demonstrate that increasing osmolyte concentrations negatively affect the YPD1 x SSK1-P interaction, thereby facilitating dephosphorylation of SSK1 and activating the HOG1 MAP kinase cascade. In contrast, at the highest osmolyte concentrations, reflective of the osmoadaptation phase of the signaling pathway, the kinetics of the phosphorelay favor production of SSK1-P and inhibition of the HOG1 pathway.
Collapse
Affiliation(s)
- Alla O Kaserer
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
118
|
Renault P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A, Bely M. Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. Int J Food Microbiol 2009; 134:201-10. [DOI: 10.1016/j.ijfoodmicro.2009.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/16/2009] [Accepted: 06/20/2009] [Indexed: 11/17/2022]
|
119
|
Cheng JS, Zhou X, Ding MZ, Yuan YJ. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 2009; 83:909-23. [PMID: 19488749 DOI: 10.1007/s00253-009-2037-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras-cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation.
Collapse
|
120
|
Cheng JS, Qiao B, Yuan YJ. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl Microbiol Biotechnol 2008; 81:327-38. [DOI: 10.1007/s00253-008-1733-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
121
|
Yan H, Jia LH, Lin YP, Jiang N. Glycerol accumulation in the dimorphic yeastSaccharomycopsis fibuligera: cloning of two glycerol 3-phosphate dehydrogenase genes, one of which is markedly induced by osmotic stress. Yeast 2008; 25:609-21. [DOI: 10.1002/yea.1606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
122
|
Igbaria A, Lev S, Rose MS, Lee BN, Hadar R, Degani O, Horwitz BA. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:769-80. [PMID: 18473669 DOI: 10.1094/mpmi-21-6-0769] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pathogenicity mitogen-activated protein kinases (MAPKs), related to yeast FUS3/KSS1, are essential for virulence in fungi, including Cochliobolus heterostrophus, a necrotrophic pathogen causing Southern corn leaf blight. We compared the phenotypes of mutants in three MAPK genes: HOG1, MPS1, and CHK1. The chk1 and mps1 mutants show autolytic appearance, light pigmentation, and dramatic reduction in virulence and conidiation. Similarity of mps1 and chk1 mutants is reflected by coregulation by these two MAPKs of several genes. Unlike chk1, mps1 mutants are female-fertile and form normal-looking appressoria. HOG1 mediates resistance to hyperosmotic and, to a lesser extent, oxidative stress, and is required for stress upregulation of glycerol-3-phosphate phosphatase, transaldolase, and a monosaccharide transporter. Hog1, but not Mps1 or Chk1, was rapidly phosphorylated in response to increased osmolarity. The hog1 mutants have smaller appressoria and cause decreased disease symptoms on maize leaves. Surprisingly, loss of MPS1 in a wild-type or hog1 background improved resistance to some stresses. All three MAPKs contribute to the regulation of central developmental functions under normal and stress conditions, and full virulence cannot be achieved without appropriate input from all three pathways.
Collapse
Affiliation(s)
- Aeid Igbaria
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
123
|
Saliola M, Sponziello M, D'Amici S, Lodi T, Falcone C. Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res 2008; 8:697-705. [PMID: 18503541 DOI: 10.1111/j.1567-1364.2008.00386.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
KlGUT2 encodes the mitochondrial component of the glycerol-3-phosphate shuttle in Kluyveromyces lactis, a dehydrogenase involved in the maintenance of the NADH redox balance and in glycerol utilization. Deletion of KlGUT2 led to glycerol accumulation during growth in glucose and growth retardation in ethanol. In addition, KlGUT2 deletion altered the expression of other mitochondrial dehydrogenases that contribute to the maintenance of the intracellular redox balance, suggesting a rerouting of ethanol oxidation from the cytoplasm to the mitochondria. Finally, Northern analysis showed that KlGUT2 has two transcripts: one constitutively expressed and dependent on HGT1, the high-affinity hexose transporter gene, and the other induced under respiratory conditions.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro, Rome, Italy.
| | | | | | | | | |
Collapse
|
124
|
Logg K, Warringer J, Hashemi SH, Käll M, Blomberg A. The sodium pump Ena1p provides mechanistic insight into the salt sensitivity of vacuolar protein sorting mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:974-84. [PMID: 18395523 DOI: 10.1016/j.bbamcr.2008.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 02/10/2008] [Accepted: 02/26/2008] [Indexed: 01/26/2023]
Abstract
The vacuolar/endosomal network has an important but as yet undefined role in the cellular tolerance to salt stress. We hypothesized that the mechanistic basis for the importance of vacuolar protein sorting (vps) components in salt tolerance is the targeting of the crucial sodium exporter Ena1p to the plasma membrane. The link between Ena1p and the vps components was established by the observation that overexpression of Ena1p could suppress the salt sensitivity of the ESCRT knockouts vps20Delta, snf7/vps32Delta and snf8/vps22Delta. To further investigate this functional interaction, fluorescence microscopy was utilized to monitor localization of GFP-tagged Ena1p. For all analyzed vps mutants, Ena1p seemed properly localized to the plasma membrane, even during saline growth. However, quantitative differences in plasma membrane localized Ena1p were recorded; e.g. the highly salt sensitive pep12Delta mutant exhibited substantially enhanced Ena1p levels. In addition, the kinetics of Ena1p localization to the plasma membrane was severely delayed in several vps mutants, and this delay correlated to the salt specific growth defect. This paper discusses potential mechanistic hypotheses, like Ena1p transporter activity or localization kinetics, or ESCRT component's influence on signaling, for linking endosomal sorting functions to cellular salt sensitivity.
Collapse
Affiliation(s)
- Katarina Logg
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
125
|
Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 2008; 122:312-20. [PMID: 18262301 DOI: 10.1016/j.ijfoodmicro.2007.12.023] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 11/23/2007] [Accepted: 12/30/2007] [Indexed: 11/18/2022]
Abstract
Conventional wine yeasts produce high concentrations of volatile acidity, mainly acetic acid, during high-sugar fermentation. This alcoholic fermentation by-product is highly detrimental to wine quality and, in some cases, levels may even exceed legal limits. In this study, a non-conventional species, Torulaspora delbrueckii, was used, in pure cultures and mixed with Saccharomyces cerevisiae yeast, to ferment botrytized musts. Fermentation rate, biomass growth, and the formation of volatile acidity, acetaldehyde, and glycerol were considered. This study demonstrated that T. delbrueckii, often described as a low acetic producer under standard conditions, retained this quality even in a high-sugar medium. Unlike S. cerevisiae, this species did not respond to the hyper-osmotic medium by increasing acetic production as soon as it is inoculated into the must. Nevertheless, this yeast produced low ethanol and biomass yields, and the fermentation was sluggish. As a result, T. delbrueckii fermentations do not reach the required ethanol content (14%vol.), although this species can survive at this concentration. A mixed culture of T. delbrueckii and S. cerevisiae was the best combination for improving the analytical profile of sweet wine, particularly volatile acidity and acetaldehyde production. A mixed T. delbrueckii/S. cerevisiae culture at a 20:1 ratio produced 53% less in volatile acidity and 60% less acetaldehyde than a pure culture of S. cerevisiae. Inoculating S. cerevisiae after 5 days' fermentation by T. delbrueckii had less effect on volatile acidity and acetaldehyde production and resulted in stuck fermentation. These results contribute to a better understanding of the behaviour of non-Saccharomyces and their potential application in wine industry.
Collapse
Affiliation(s)
- Marina Bely
- UMR 1219 oenologie, Université Bordeaux 2, INRA, ISVV, 351 cours de Libération, 33400 Talence, France.
| | | | | | | |
Collapse
|
126
|
Gostincar C, Turk M, Trbuha T, Vaupotic T, Plemenitas A, Gunde-Cimerman N. Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 2008; 61:51-9. [PMID: 19287526 PMCID: PMC2610307 DOI: 10.3114/sim.2008.61.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Delta(9)-desaturase and Delta(12)-desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution.
Collapse
Affiliation(s)
- C Gostincar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
127
|
Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology (Reading) 2007; 153:4261-4273. [DOI: 10.1099/mic.0.2007/010751-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tina Kogej
- University of Ljubljana, Biotechnology Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Marlene Stein
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Marc Volkmann
- Geomicrobiology, ICBM, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | - Anna A. Gorbushina
- Geomicrobiology, ICBM, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | - Erwin A. Galinski
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnology Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
128
|
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling: Figure 1. FEMS Microbiol Rev 2007; 31:535-69. [PMID: 17645521 DOI: 10.1111/j.1574-6976.2007.00076.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Collapse
Affiliation(s)
- Brian R Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | |
Collapse
|
129
|
Jakobsen AN, Aasen IM, Strøm AR. Endogenously synthesized (-)-proto-quercitol and glycine betaine are principal compatible solutes of Schizochytrium sp. strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids. Appl Environ Microbiol 2007; 73:5848-56. [PMID: 17660311 PMCID: PMC2074927 DOI: 10.1128/aem.00610-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that endogenously synthesized (-)-proto-quercitol (1D-1,3,4/2,5-cyclohexanepentol) and glycine betaine were the principal compatible solutes of Schizochytrium sp. strain S8 (ATCC 20889) and three new osmotolerant isolates of thraustochytrids (strains T65, T66, and T67). The compatible solutes were identified and quantified by use of nuclear magnetic resonance spectroscopy, and their identity was confirmed by mass spectroscopy and measurement of the specific optical rotation. The cellular content of compatible solutes increased with increasing NaCl concentration of a defined medium. (-)-proto-Quercitol was the dominating solute at all NaCl concentrations tested (0.25 to 1.0 M), e.g., cells of S8 and T66 stressed with 1.0 M NaCl accumulated about 500 micromol (-)-proto-quercitol and 100 micromol glycine betaine per g dry weight. To our knowledge, (-)-proto-quercitol has previously been found only in eucalyptus. The 18S rRNA gene sequences of the four (-)-proto-quercitol-producing strains showed 99% identity, and they displayed the same fatty acid profile. The only polyunsaturated fatty acids accumulated were docosahexaenoic acid (78%) and docosapentaenoic acid (22%). A less osmotolerant isolate (strain T29), which was closely phylogenetically related to Thraustochytrium aureum (ATCC 34304), did not contain (-)-proto-quercitol or glycine betaine. Thus, the level of osmotolerance and the osmolyte systems vary among thraustochytrids.
Collapse
Affiliation(s)
- Anita N Jakobsen
- Department of Biotechnology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | | |
Collapse
|
130
|
Giovani G, Rosi I. Release of cell wall polysaccharides from Saccharomyces cerevisiae thermosensitive autolytic mutants during alcoholic fermentation. Int J Food Microbiol 2007; 116:19-24. [PMID: 17336415 DOI: 10.1016/j.ijfoodmicro.2006.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/02/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022]
Abstract
In order to increase the release of cell wall polysaccharides during alcoholic fermentation, a wine strain of Saccharomyces cerevisiae was subjected to UV mutagenesis to obtain thermosensitive autolytic mutants affected in cell wall integrity. Five mutants and the parental strain were utilized in fermentation trials conducted at 28, 32 and 34 degrees C. Results showed that at all temperatures the mutant strains released into the medium a higher polysaccharide quantity than the parental strain. In particular, at 28 degrees C there was a doubling of these macromolecules. At the end of alcoholic fermentation, all strains showed at 28 degrees C elevated and similar levels of viable cells; at 32 degrees C this parameter remained high for mutant strains ts16 and ts39 and the parental strain; at 34 degrees C all strains underwent a drop in cell viability, which was less intense in the case of strain ts16. As a relationship between cell viability and the quantity of polysaccharides released by the yeast strain was not found, it can be assumed that the mutation led to cells with a less stable wall and thus an easier release of macromolecules into the medium.
Collapse
Affiliation(s)
- Giovanna Giovani
- Dipartimento di Biotecnologie Agrarie, Università di Firenze, Via Donizetti, 6, 50144 Firenze, Italy
| | | |
Collapse
|
131
|
Simonin H, Beney L, Gervais P. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1600-10. [PMID: 17466936 DOI: 10.1016/j.bbamem.2007.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 02/01/2023]
Abstract
Yeasts are often exposed to variations in osmotic pressure in their natural environments or in their substrates when used in fermentation industries. Such changes may lead to cell death or activity loss. Although the involvement of the plasma membrane is strongly suspected, the mechanism remains unclear. Here, the integrity and functionality of the yeast plasma membrane at different levels of dehydration and rehydration during an osmotic treatment were assessed using various fluorescent dyes. Flow cytometry and confocal microscopy of cells stained with oxonol, propidium iodide, and lucifer yellow were used to study changes in membrane polarization, permeabilization, and endocytosis, respectively. Cell volume contraction, reversible depolarization, permeabilization, and endovesicle formation were successively observed with increasing levels of osmotic pressure during dehydration. The maximum survival rate was also detected at a specific rehydration level, of 20 MPa, above which cells were strongly permeabilized. Thus, we show that the two steps of an osmotic treatment, dehydration and rehydration, are both involved in the induction of cell death. Permeabilization of the plasma membranes is the critical event related to cell death. It may result from lipidic phase transitions in the membrane and from variations in the area-to-volume ratio during the osmotic treatment.
Collapse
Affiliation(s)
- Hélène Simonin
- Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques ENSBANA-1, Esplanade Erasme-21000 DIJON, France
| | | | | |
Collapse
|
132
|
Brandberg T, Gustafsson L, Franzén CJ. The impact of severe nitrogen limitation and microaerobic conditions on extended continuous cultivations of Saccharomyces cerevisiae with cell recirculation. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
133
|
Kim Y, Nandakumar MP, Marten MR. Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol 2007; 44:886-95. [PMID: 17258477 DOI: 10.1016/j.fgb.2006.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/29/2006] [Accepted: 12/03/2006] [Indexed: 02/02/2023]
Abstract
The model filamentous fungus Aspergillus nidulans, when grown in a moderate level of osmolyte (+0.6M KCl), was previously found to have a significantly reduced cell wall elasticity (Biotech Prog, 21:292, 2005). In this study, comparative proteomic analysis via two-dimensional gel electrophoresis (2de) and matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry was used to assess molecular level events associated with this phenomenon. Thirty of 90 differentially expressed proteins were identified. Sequence homology and conserved domains were used to assign probable function to twenty-one proteins currently annotated as "hypothetical." In osmoadapted cells, there was an increased expression of glyceraldehyde-3-phosphate dehydrogenase and aldehyde dehydrogenase, as well as a decreased expression of enolase, suggesting an increased glycerol biosynthesis and decreased use of the TCA cycle. There also was an increased expression of heat shock proteins and Shp1-like protein degradation protein, implicating increased protein turnover. Five novel osmoadaptation proteins of unknown functions were also identified.
Collapse
Affiliation(s)
- Yonghyun Kim
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
134
|
Modig T, Granath K, Adler L, Lidén G. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 2007; 75:289-96. [PMID: 17221190 DOI: 10.1007/s00253-006-0821-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.
Collapse
Affiliation(s)
- Tobias Modig
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| | | | | | | |
Collapse
|
135
|
Butinar L, Spencer-Martins I, Gunde-Cimerman N. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie van Leeuwenhoek 2006; 91:277-89. [PMID: 17072534 DOI: 10.1007/s10482-006-9117-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Recently a new habitat for microbial life has been discovered at the base of polythermal glaciers. In ice from these subglacial environments so far only non-photosynthetic bacterial communities were discovered, but no eukaryotic microorganisms. We found high numbers of yeast cells, amounting to a maximum of 4,000 CFU ml(-1) of melt ice, in four different high Arctic glaciers. Twenty-two distinct species were isolated, including two new yeast species. Basidiomycetes predominated, among which Cryptococcus liquefaciens was the dominant species (ca. 90% of total). Other frequently occurring species were Cryptococcus albidus, Cryptococcus magnus, Cryptococcus saitoi and Rhodotorula mucilaginosa. The dominant yeast species were psychrotolerant, halotolerant, freeze-thaw resistant, unable to form mycelium, relatively small-sized and able to utilize a wide range of carbon and nitrogen sources. This is the first report on the presence of yeast populations in subglacial ice.
Collapse
Affiliation(s)
- Lorena Butinar
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.
| | | | | |
Collapse
|
136
|
Thomé PE. Cell wall involvement in the glycerol response to high osmolarity in the halotolerant yeast Debaryomyces hansenii. Antonie van Leeuwenhoek 2006; 91:229-35. [PMID: 17072537 DOI: 10.1007/s10482-006-9112-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Osmotic stress was studied through the induction of the gene coding for glycerol 3-phosphate dehydrogenase (DhGPD1) in the halotolerant yeast Debaryomyces hansenii. This yeast responded to modifications in turgor pressure by stimulating the transcription of DhGPD1 when exposed to solutes that cause turgor stress (NaCl or sorbitol), but did not respond to water stress mediated by ethanol. In contrast to what has been documented to occur in Saccharomyces cerevisiae, D. hansenii protoplasts did not show induction in the transcription of DhGPD1 showing a limitation in their response to solute stress. The results presented indicate that the presence of the cell wall is of significance for the induction of DhGPD1 and hence for osmotic regulation in halotolerant D. hansenii. It appears that the main osmosensor that links high osmolarity with glycerol accumulation may be of a different nature in this yeast.
Collapse
Affiliation(s)
- Patricia E Thomé
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, UNAM, Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo, C.P. 77580, México.
| |
Collapse
|
137
|
|
138
|
Hernandez-Lopez MJ, Randez-Gil F, Prieto JA. Hog1 mitogen-activated protein kinase plays conserved and distinct roles in the osmotolerant yeast Torulaspora delbrueckii. EUKARYOTIC CELL 2006; 5:1410-9. [PMID: 16896224 PMCID: PMC1539137 DOI: 10.1128/ec.00068-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Torulaspora delbrueckii has emerged during evolution as one of the most osmotolerant yeasts. However, the molecular mechanisms underlying this unusual stress resistance are poorly understood. In this study, we have characterized the functional role of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase pathway in mediating the osmotic stress response, among others, in T. delbrueckii. We show that the T. delbrueckii Hog1p homologue TdHog1p is phosphorylated after cell transfer to NaCl- or sorbitol-containing medium. However, TdHog1p plays a minor role in tolerance to conditions of moderate osmotic stress, a trait related mainly with the osmotic balance. In consonance with this, the absence of TdHog1p produced only a weak defect in the timing of the osmostress-induced glycerol and GPD1 mRNA overaccumulation. Tdhog1Delta mutants also failed to display aberrant morphology changes in response to osmotic stress. Furthermore, our data indicate that the T. delbrueckii HOG pathway has evolved to respond to specific environmental conditions and to play a pivotal role in the stress cross-protection mechanism.
Collapse
Affiliation(s)
- María José Hernandez-Lopez
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, P.O. Box 73, E-46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
139
|
CHEN G, YAO S, GUAN Y. Influence of Osmoregulators on Osmotolerant Yeast Candida krusei for the Production of Glycerol. Chin J Chem Eng 2006. [DOI: 10.1016/s1004-9541(06)60085-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
140
|
Hernandez-Lopez MJ, Panadero J, Prieto JA, Randez-Gil F. Regulation of salt tolerance by Torulaspora delbrueckii calcineurin target Crz1p. EUKARYOTIC CELL 2006; 5:469-79. [PMID: 16524902 PMCID: PMC1398059 DOI: 10.1128/ec.5.3.469-479.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 11/28/2005] [Indexed: 11/20/2022]
Abstract
Recently, the academic interest in the yeast Torulaspora delbrueckii has increased notably due to its high resistance to several types of stress, including salt and osmotic imbalance. However, the molecular mechanisms underlying these unusual properties are poorly understood. In Saccharomyces cerevisiae, the high-salt response is mediated by calcineurin, a conserved Ca(2+)/calmodulin-modulated protein phosphatase that regulates the transcriptional factor Crz1p. Here, we cloned the T. delbrueckii TdCRZ1 gene, which encodes a putative zinc finger transcription factor homologue to Crz1p. Consistent with this, overexpression of TdCRZ1 enhanced the salt tolerance of S. cerevisiae wild-type cells and suppressed the sensitivity phenotype of cnb1Delta and crz1Delta mutants to monovalent and divalent cations. However, T. delbrueckii cells lacking TdCrz1p showed phenotypes distinct from those previously observed in S. cerevisiae crz1Delta mutants. Quite remarkably, Tdcrz1-null cells were insensitive to high Na(+) and were more Li(+) tolerant than wild-type cells. Clearly, TdCrz1p was not required for the salt-induced transcriptional activation of the TdENA1 gene, encoding a putative P-type ATPase homologue to the main S. cerevisiae Na(+) pump ENA1. Furthermore, T. delbrueckii cells were insensitive to the immunosuppressive agents FK506 and cyclosporine A, both in the presence and in the absence of NaCl. Signaling through the calcineurin/Crz1 pathway appeared to be essential only on high-Ca(2+)/Mn(2+) media. Hence, T. delbrueckii and S. cerevisiae differ in the regulatory circuits and mechanisms that drive the adaptive response to salt stress.
Collapse
Affiliation(s)
- Maria Jose Hernandez-Lopez
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, P.O. Box 73, E-46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
141
|
Granath K, Modig T, Forsmark A, Adler L, Lidén G. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae. Yeast 2006; 22:1257-68. [PMID: 16358322 DOI: 10.1002/yea.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobic conditions S. cerevisiae produces glycerol to regenerate NAD(+) from the excess NADH produced in cell metabolism. We here report on the role of an uncharacterized protein, Yig1p (Ypl201cp), in anaerobic glycerol production. Yig1p was previously shown to interact in two-hybrid tests with the GPP1 and GPP2 encoded glycerol 3-phosphatase (Gpp), and we here demonstrate that strains overexpressing YIG1 show strongly decreased Gpp activity and content of the major phosphatase, Gpp1p. However, cells overexpressing YIG1 exhibited only slightly decreased GPP1 transcript levels, suggesting that Yig1p modulates expression on both transcriptional and post-transcriptional levels. In agreement with such a role, a GFP-tagged derivate of Yig1p was localized to both the cytosol and the nucleus. Deletion or overexpression of YIG1 did not, however, significantly affect growth yield or glycerol yield in anaerobic batch cultures, which is consistent with the previously proposed low flux control exerted at the Gpp level.
Collapse
Affiliation(s)
- K Granath
- Department of Cell and Molecular Biology--Microbiology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
142
|
Greatrix BW, van Vuuren HJJ. Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress. Curr Genet 2006; 49:205-17. [PMID: 16397765 DOI: 10.1007/s00294-005-0046-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 12/01/2022]
Abstract
Saccharomyces cerevisiae contains a family of 17 hexose transporter (HXT) genes; only nine have assigned functions, some of which are still poorly defined. Despite extensive efforts to characterize the hexose transporters, the expression of HXT6 and HXT8-17 remains an enigma. In nature, S. cerevisiae finds itself under extreme nutritional conditions including sugars in excess of 40% (w/v), depletion of nutrients and extremes of both temperature and pH. Using HXT promoter-lacZ fusions, we have identified novel conditions under which the HXT17 gene is expressed; HXT17 promoter activity is up-regulated in media containing raffinose and galactose at pH 7.7 versus pH 4.7. We demonstrated that HXT5, HXT13 and, to a lesser extent, HXT15 were all induced in the presence of non-fermentable carbon sources. HXT1 encodes a low-affinity transporter and in short-term osmotic shock experiments, HXT1 promoter activity was reduced when cells were exposed to media containing 40% glucose. However, we found that the HXT1 mRNA transcript was stabilized under conditions of osmotic stress. Furthermore, the stabilization of HXT1 mRNA does not appear to be gene specific because 30 min after transcriptional arrest there is a fourfold more mRNA in osmotically stressed versus non-stressed yeast cells. A large portion of S. cerevisiae mRNA molecules may, therefore, have a decreased rate of turnover during exposure to osmotic stress indicating that post-transcriptional regulation plays an important role in the adaptation of S. cerevisiae to osmotic stress.
Collapse
Affiliation(s)
- Bradley W Greatrix
- Wine Research Centre, The University of British Columbia, Suite 231#2205 East Mall, V6T 1Z4, Vancouver, Canada
| | | |
Collapse
|
143
|
Adya AK, Canetta E, Walker GM. Atomic force microscopic study of the influence of physical stresses onSaccharomyces cerevisiaeandSchizosaccharomyces pombe. FEMS Yeast Res 2006; 6:120-8. [PMID: 16423077 DOI: 10.1111/j.1567-1364.2005.00003.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Collapse
Affiliation(s)
- Ashok K Adya
- Condensed Matter Group and Bio- and Nano-Technologies for Health Centre, School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK.
| | | | | |
Collapse
|
144
|
Passoth V, Fredlund E, Druvefors UA, Schnürer J. Biotechnology, physiology and genetics of the yeastPichia anomala. FEMS Yeast Res 2006; 6:3-13. [PMID: 16423066 DOI: 10.1111/j.1567-1364.2005.00004.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ascomycetous yeast Pichia anomala is frequently associated with food and feed products, either as a production organism or as a spoilage yeast. It belongs to the nonSaccharomyces wine yeasts and contributes to the wine aroma by the production of volatile compounds. The ability to grow in preserved food and feed environments is due to its capacity to grow under low pH, high osmotic pressure and low oxygen tension. A new application of P. anomala is its use as a biocontrol agent, which is based on the potential to inhibit a variety of moulds in different environments. Although classified as a biosafety class-1 organism, cases of P. anomala infections have been reported in immunocompromised patients. On the other hand, P. anomala killer toxins have a potential as antimicrobial agents. The yeast can use a broad range of nitrogen and phosphor sources, which makes it a potential agent to decrease environmental pollution by organic residues from agriculture. However, present knowledge of the physiological basis of its performance is limited. Recently, the first studies have been published dealing with the global regulation of the metabolism of P. anomala under different conditions of oxygenation.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Microbiology, Uppsala Genetic Center, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | | | | | |
Collapse
|
145
|
Calderón-Torres M, Peña A, Thomé PE. DhARO4, an amino acid biosynthetic gene, is stimulated by high salinity inDebaryomyces hansenii. Yeast 2006; 23:725-34. [PMID: 16862599 DOI: 10.1002/yea.1384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly halotolerant yeast Debaryomyces hansenii when grown in the presence of 2M NaCl, increased the expression of ARO4 which is involved in the biosynthesis of aromatic amino acids. The function of the isolated gene was verified by complementation of a Saccharomyces cerevisiae null mutant, aro4Delta, restoring the specific activity of the enzyme (a 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) to wild-type levels. DhARO4 transcript expression under high salinity was stimulated at the beginning of the exponential growth phase. As the DhARO4 promoter region presents putative GCRE and CRE sequences, its expression was evaluated under conditions of NaCl stress and amino acid starvation, showing similar expression levels for either condition. The combined effect of both stressors resulted in a further increase in transcript levels over the singly added stressors, indicating independent stimulatory events. Our results support the hypothesis that high salinity and amino acid availability are physiologically interconnected.
Collapse
Affiliation(s)
- Marissa Calderón-Torres
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 1152, Cancún, Quintana Roo 77500, México.
| | | | | |
Collapse
|
146
|
Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 2005; 71:6600-5. [PMID: 16269687 PMCID: PMC1287720 DOI: 10.1128/aem.71.11.6600-6605.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hortaea werneckii and Aureobasidium pullulans, black yeast-like fungi isolated from hypersaline waters of salterns as their natural ecological niche, have been previously defined as halophilic and halotolerant microorganisms, respectively. In the present study we assessed their growth and determined the intracellular cation concentrations of salt-adapted and non-salt-adapted cells of both species at a wide range of salinities (0 to 25% NaCl and 0 to 20% NaCl, respectively). Although 5% NaCl improved the growth of H. werneckii, even the minimal addition of NaCl to the growth medium slowed down the growth rate of A. pullulans, confirming their halophilic and halotolerant nature. Salt-adapted cells of H. werneckii and A. pullulans kept very low amounts of internal Na+ even when grown at high NaCl concentrations and can be thus considered Na+ excluders, suggesting the existence of efficient mechanisms for the regulation of ion fluxes. Based on our results, we can conclude that these organisms do not use K+ or Na+ for osmoregulation. Comparison of cation fluctuations after a hyperosmotic shock, to which nonadapted cells of both species were exposed, demonstrated better ionic homeostasis regulation of H. werneckii compared to A. pullulans. We observed small fluctuations of cation concentrations after a hyperosmotic shock in nonadapted A. pullulans similar to those in salt-adapted H. werneckii, which additionally confirmed better regulation of ionic homeostasis in the latter. These features can be expected from organisms adapted to survival within a wide range of salinities and to occasional exposure to extremely high NaCl concentrations, both characteristic for their natural environment.
Collapse
Affiliation(s)
- Tina Kogej
- University of Ljubljana, Biotech Faculty, Department of Biology, Slovenia
| | | | | | | |
Collapse
|
147
|
Bleve G, Zacheo G, Cappello M, Dellaglio F, Grieco F. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein. Biochem J 2005; 390:145-55. [PMID: 15813700 PMCID: PMC1184570 DOI: 10.1042/bj20042045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1-GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1-GFP or GFP-Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters.
Collapse
Affiliation(s)
- Gianluca Bleve
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Giuseppe Zacheo
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Maria Stella Cappello
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
| | - Franco Dellaglio
- †Dipartimento Scientifico e Tecnologico, Universita’ di Verona, 37134 Verona, Italy
| | - Francesco Grieco
- *Istituto di Scienze delle Produzioni Alimentari Sezione di Lecce, CNR, 73100 Lecce, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
148
|
Bely M, Rinaldi A, Dubourdieu D. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 2005; 96:507-12. [PMID: 16233565 DOI: 10.1016/s1389-1723(04)70141-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 09/02/2003] [Indexed: 11/13/2022]
Abstract
We analyzed the variability of volatile acidity and glycerol production by Saccharomyces cerevisiae on a large sample of high sugar musts. The production of volatile acidity was inversely correlated with the maximum cell population and the assimilable nitrogen concentration. The higher the nitrogen concentration, the less volatile acidity was produced. An approach to minimize volatile acidity production during high sugar fermentations by adjustment of assimilable nitrogen in musts was investigated in terms of both quantity and addition time. It was found that the optimal nitrogen concentration in the must is 190 mgN.l(-1). The best moment for nitrogen addition was at the beginning of fermentation. Addition at the end of the growth phase had less effect on volatile acidity reduction. We suggest that by stimulating cell growth, nitrogen addition provides NADH in the redox-equilibrating process, which in turn reduces volatile acidity formation.
Collapse
Affiliation(s)
- Marina Bely
- Faculté d'Oenologie, Université Victor Segalen Bordeaux 2, 351 Cours de la Libération, 33405 Talence, France.
| | | | | |
Collapse
|
149
|
Gori K, Mortensen HD, Arneborg N, Jespersen L. Expression of theGPD1 andGPP2 orthologues and glycerol retention during growth ofDebaryomyces hansenii at high NaCl concentrations. Yeast 2005; 22:1213-22. [PMID: 16278930 DOI: 10.1002/yea.1306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly NaCl-tolerant yeast Debaryomyces hansenii produces and obtains high levels of intracellular glycerol as a compatible solute when grown at high NaCl concentrations. The effect of high NaCl concentrations (4%, 8% and 12% w/v) on the glycerol production and the levels of intra- and extracellular glycerol was determined for two D. hansenii strains with different NaCl tolerance and compared to one strain of the moderately NaCl-tolerant yeast Saccharomyces cerevisiae. Initially, high NaCl tolerance seems to be determined by enhanced glycerol production, due to an increased expression of DhGPD1 and DhGPP2 (AL436338) in D. hansenii and GPD1 and GPP2 in S. cerevisiae; however, the ability to obtain high levels of intracellular glycerol seems to be more important. The two D. hansenii strains had higher levels of intracellular glycerol than the S. cerevisiae strain and were able to obtain high levels of intracellular glycerol, even at very high NaCl concentrations, indicating the presence of, for example, a type of closing channel, as previously described for other yeast species.
Collapse
Affiliation(s)
- Klaus Gori
- Department of Food Science, Food Microbiology, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
150
|
Mortensen HD, Gori K, Siegumfeldt H, Nissen P, Jespersen L, Arneborg N. Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains. Appl Microbiol Biotechnol 2005; 71:713-9. [PMID: 16240114 DOI: 10.1007/s00253-005-0196-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/14/2005] [Accepted: 09/17/2005] [Indexed: 10/25/2022]
Abstract
The effects of NaCl stress on cell area and intracellular pH (pHi) of individual cells of two Debaryomyces hansenii strains were investigated. Our results show that one of the strains was more NaCl tolerant than the other, as determined by the rate of growth initiation. Whereas NaCl stress caused similar cell shrinkages (30-35%), it caused different pHi changes of the two D. hansenii strains; i.e., in the more NaCl-tolerant strain, pHi homeostasis was maintained, whereas in the less NaCl-tolerant strain, intracellular acidification occurred. Thus, cell shrinkage could not explain the different intracellular acidifications in the two strains. Instead, we introduce the concept of yeasts having an intracellular pKa (pK(a,i)) value, since permeabilized D. hansenii cells had a very high buffer capacity at a certain pH. Our results demonstrate that the more NaCl-tolerant strain was better able to maintain its pK(a,i) close to its pHi homeostasis level during NaCl stress. In turn, these findings indicate that the closer a D. hansenii strain can keep its pK(a,i) to its pHi homeostasis level, the better it may manage NaCl stress. Furthermore, our results suggest that the NaCl-induced effects on pHi were mainly due to hyperosmotic stress and not ionic stress.
Collapse
Affiliation(s)
- H D Mortensen
- Department of Food Science, Food Microbiology, The Royal Veterinary & Agricultural University, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|