101
|
Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. PLoS One 2019; 14:e0214545. [PMID: 30925190 PMCID: PMC6440694 DOI: 10.1371/journal.pone.0214545] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 01/15/2023] Open
Abstract
Doxorubicin is a chemotherapeutic agent that is commonly used to treat a broad range of cancers. However, significant cardiotoxicity, associated with prolonged exposure to doxorubicin, limits its continued therapeutic use. One strategy to prevent the uptake of doxorubicin into cardiac cells is the encapsulation of the drug to prevent non-specific uptake and also to improve the drugs’ pharmacokinetic properties. Although encapsulated forms of doxorubicin limit the cardiotoxicity observed, they are not without their own liabilities as an increased amount of drug is deposited in the skin where liposomal doxorubicin can cause palmar-plantar erythrodysesthesia. Exosomes are small endogenous extracellular vesicles, that transfer bioactive material from one cell to another, and are considered attractive drug delivery vehicles due to their natural origin. In this study, we generated doxorubicin-loaded exosomes and demonstrate their rapid cellular uptake and re-distribution of doxorubicin from endosomes to the cytoplasm and nucleus resulting in enhanced potency in a number of cultured and primary cell lines when compared to free doxorubicin and liposomal formulations of doxorubicin. In contrast to other delivery methods for doxorubicin, exosomes do not accumulate in the heart, thereby providing potential for limiting the cardiac side effects and improved therapeutic index.
Collapse
|
102
|
Saeed M, Zalba S, Seynhaeve ALB, Debets R, Ten Hagen TLM. Liposomes targeted to MHC-restricted antigen improve drug delivery and antimelanoma response. Int J Nanomedicine 2019; 14:2069-2089. [PMID: 30988609 PMCID: PMC6440454 DOI: 10.2147/ijn.s190736] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Melanoma is the most aggressive form of skin cancer. Chemotherapy at a late stage fails due to low accumulation in tumors, indicating the need for targeted therapy. Materials and methods To increase drug uptake by tumor cells, we have targeted doxorubicin-containing liposomes using a T-cell receptor (TCR)-like antibody (scFv G8 and Hyb3) directed against melanoma antigen A1 (MAGE-A1) presented by human leukocyte antigen A1 (M1/A1). With the use of flow cytometry and confocal microscopy, we have tested our formulation in vitro. In vivo pharmacokinetics was done in tumor-free nu/nu mice, while biodistribution and efficacy study was done in nu/nu mice xenograft. Results We demonstrated two to five times higher binding and internalization of these immunoliposomes by M1+/A1+ melanoma cells in vitro in comparison with nontargeted liposomes. Cytotoxicity assay showed significant tumor cell kill at 10 µM doxorubicin (DXR) for targeted vs nontargeted liposomes. In vivo pharmacokinetics of nontargeted and targeted liposomes were similar, while accumulation of targeted liposomes was 2- to 2.5-fold and 6.6-fold enhanced when compared with nontargeted liposomes and free drug, respectively. Notably, we showed a superior antitumor activity of MAGE-A1-targeted DXR liposomes toward M1+/A1+ expressing tumors in mice compared with the treatment of M1−/A1+ tumors. Our results indicate that targeted liposomes showed better cytotoxicity in vitro and pharmacokinetics in vivo. Conclusion Liposomes decorated with TCR-mimicking scFv antibodies effectively and selectively target antigen-positive melanoma. We showed that DXR-loaded liposomes coupled to anti-M1/-A1 scFv inflict a significant antitumor response. Targeting tumor cells specifically promotes internalization of drug-containing nanoparticles and may improve drug delivery and ultimately antitumor efficacy. Our data argue that targeting MAGE in A1 context, by nanosized carriers decorated with TCR-like antibodies mimicking scFv, can be used as a theragnostic platform for drug delivery, immunotherapy, and potentially imaging, and diagnosis of melanoma.
Collapse
Affiliation(s)
- Mesha Saeed
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands,
| | - Sara Zalba
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands,
| | - Ann L B Seynhaeve
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands,
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands,
| |
Collapse
|
103
|
Leung AWY, Amador C, Wang LC, Mody UV, Bally MB. What Drives Innovation: The Canadian Touch on Liposomal Therapeutics. Pharmaceutics 2019; 11:pharmaceutics11030124. [PMID: 30884782 PMCID: PMC6471263 DOI: 10.3390/pharmaceutics11030124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Liposomes are considered one of the most successful drug delivery systems (DDS) given their established utility and success in the clinic. In the past 40–50 years, Canadian scientists have made ground-breaking discoveries, many of which were successfully translated to the clinic, leading to the formation of biotech companies, the creation of research tools, such as the Lipex Extruder and the NanoAssemblr™, as well as contributing significantly to the development of pharmaceutical products, such as Abelcet®, MyoCet®, Marqibo®, Vyxeos®, and Onpattro™, which are making positive impacts on patients’ health. This review highlights the Canadian contribution to the development of these and other important liposomal technologies that have touched patients. In this review, we try to address the question of what drives innovation: Is it the individual, the teams, the funding, and/or an entrepreneurial spirit that leads to success? From this perspective, it is possible to define how innovation will translate to meaningful commercial ventures and products with impact in the future. We begin with a brief history followed by descriptions of drug delivery technologies influenced by Canadian researchers. We will discuss recent advances in liposomal technologies, including the Metaplex technology from the author’s lab. The latter exemplifies how a nanotechnology platform can be designed based on multidisciplinary groups with expertise in coordination chemistry, nanomedicines, disease, and business to create new therapeutics that can effect better outcomes in patient populations. We conclude that the team is central to the effort; arguing if the team is entrepreneurial and well positioned, the funds needed will be found, but likely not solely in Canada.
Collapse
Affiliation(s)
- Ada W Y Leung
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Carolyn Amador
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Lin Chuan Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Urmi V Mody
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Marcel B Bally
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
104
|
Tan A, Hong L, Du JD, Boyd BJ. Self-Assembled Nanostructured Lipid Systems: Is There a Link between Structure and Cytotoxicity? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801223. [PMID: 30775224 PMCID: PMC6364503 DOI: 10.1002/advs.201801223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Indexed: 05/20/2023]
Abstract
Self-assembly of lipid-based liquid crystalline (LLC) nanoparticles is a formulation art arising from the hydrophilic-lipophilic qualities and the geometric packing of amphiphilic lipid molecules in an aqueous environment. The diversity of commercialized amphiphilic lipids and an increased understanding of the physicochemical factors dictating their membrane curvature has enabled versatile architectural design and engineering of LLC nanoparticles. While these exotic nanostructured materials are hypothesized to form the next generation of smart therapeutics for a broad field of biomedical applications, biological knowledge particularly on the systemic biocompatibility or cytotoxicity of LLC materials remains unclear. Here, an overview on the interactions between LLCs of different internal nanostructures and biological components (including soluble plasma constituents, blood cells, and isolated tissue cell lines) is provided. Factors affecting cell-nanoparticle tolerability such as the type of lipids, type of steric stabilizers, nanoparticle surface charges, and internal nanostructures (or lipid phase behaviors) are elucidated. The mechanisms of cellular uptake and lipid transfer between neighboring membrane domains are also reviewed. A critical analysis of these studies sheds light on future strategies to transform LLC materials into a viable therapeutic entity ideal for internal applications.
Collapse
Affiliation(s)
- Angel Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Linda Hong
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Joanne D. Du
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| | - Ben J. Boyd
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyDrug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University, Parkville Campus381 Royal ParadeParkvilleVIC3052Australia
| |
Collapse
|
105
|
Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech 2019; 20:99. [PMID: 30719596 DOI: 10.1208/s12249-019-1316-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
This study reports co-delivery of doxorubicin (DOX) and ceramide in a liposomal system in B16BL6 melanoma cell lines for enhanced cytotoxic effects. Different types of ceramides (C6-ceramide, C8-ceramide, and C8-glucosylceramide) and lipids (1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)) were considered in the preparation of liposomes. DOX was encapsulated within liposome, and ceramide was used as the component of the lipid bilayer. The formulations were optimized for size and size distribution, zeta potential, and DOX encapsulation efficiency (EE). Cytotoxic effect on B16BL6 melanoma cell lines was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ceramide based liposome formulations generally provided a mean diameter < 181 nm, a zeta potential, + 35 mV, and EE > 90% DOX EE. Co-delivery of DOX and C8-ceramide with DOTAP liposomes demonstrated significantly higher cytotoxicity as compared to DOX liposomes without ceramide (P < 0.001), and also showed enhanced cellular uptake by B16BL6 cell lines. This study provides basis for developing a co-delivery system of DOX and ceramide for lowering the dose and dose-related side effects of DOX for the treatment of melanoma.
Collapse
|
106
|
Javanbakht S, Shaabani A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol 2019; 123:389-397. [DOI: 10.1016/j.ijbiomac.2018.11.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023]
|
107
|
Cao D, Zhang X, Akabar MD, Luo Y, Wu H, Ke X, Ci T. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:181-191. [DOI: 10.1080/21691401.2018.1548470] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dinglingge Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Xingxian Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - MD. Akabar
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuan Luo
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Hao Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
108
|
Sun X, Wei J, Lyu J, Bian T, Liu Z, Huang J, Pi F, Li C, Zhong Z. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnology 2019; 17:10. [PMID: 30670021 PMCID: PMC6341739 DOI: 10.1186/s12951-019-0447-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background Osteoporosis is a bone-incapacitating malady and it is characterized by obvious bone mass loss and bone microarchitecture deterioration. Current treatments for osteoporosis have many limitations, including the non-obvious therapeutic effect and long-term safety issues. Icariin is a pharmacologically active flavonoid glycoside, which shows potential application in treatment of osteoporosis. But its clinical application is limited by the inherent disadvantages such as poor water solubility, first pass effect after oral administration, and low bioavailability. Moreover, due to lack of targeting ability, icariin cannot accumulate at the local diseased region to provide early protection from fractures. To solve the application problems of icariin and enhance its therapeutic effects on osteoporosis, this work aimed to design a targeting drug delivery system of biomineral-binding liposomes (BBL) mediated by pyrophosphate ions. Results Biomineral-binding liposomes enhanced the binding ability of liposomes with hydroxyapatite particles. It increased the serum level of alkaline phosphatase and reduced that of tartrate-resistant acid phosphatase 5b. Meanwhile, BBL increased the mechanical strength of femoral midshaft, preserving the trabecular bone microarchitecture. Moreover, BBL could initiate bone turnover/remodeling of rats with osteoporosis. Conclusions This drug targeting delivery system of BBL loading with icariin showed more therapeutic advantages than the free icariin for the treatment of osteoporosis, which may be a kind of valid candidate in future osteoporosis therapy. Electronic supplementary material The online version of this article (10.1186/s12951-019-0447-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoduan Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tierong Bian
- Medical Experimental Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Juan Huang
- Luzhou TCM Hospital, Luzhou, 646000, Sichuan, China
| | - Fengjuan Pi
- Luzhou TCM Hospital, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
109
|
Comparative Analysis of Protein Quantification Methods for the Rapid Determination of Protein Loading in Liposomal Formulations. Pharmaceutics 2019; 11:pharmaceutics11010039. [PMID: 30669330 PMCID: PMC6358724 DOI: 10.3390/pharmaceutics11010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
Advances in manufacturing processes provide the ability for the high throughput production of liposomes containing a range of moieties, from small molecules to large biologicals (including proteins and nucleic acids for prophylactic and therapeutic applications). Whilst rapid quantification methods for small molecules are generally well established, the ability to rapidly quantify liposomal entrapment of proteins is limited. Indeed, most standard protein quantification techniques (including the BCA assay and Reverse phase-high performance liquid chromatography (RP-HPLC)) measure protein encapsulation indirectly, by measuring the amount of non-incorporated drug, and subtracting from the initial amount of protein added. However, this can give inaccurate and misrepresentative results. To address this, we have developed a range of methods to directly quantify protein entrapment within liposomes. The encapsulation efficiency within neutral, anionic and cationic liposome formulations was determined by three techniques; BCA assay, RP-HPLC and HPLC coupled to an evaporative light scattering detector, (HPLC-ELSD). All three methods are reliable for the quantification of protein, with linear responses and correlation coefficients of 0.99, and LOQ for all three methods being less than 10 µg/mL. Here within, we provide three methods for the rapid and robust quantification of protein loading within liposomal (and other bilayer) vesicle systems.
Collapse
|
110
|
Tasca E, Giudice AD, Galantini L, Schillén K, Giuliani AM, Giustini M. A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles. J Colloid Interface Sci 2019; 540:593-601. [PMID: 30677613 DOI: 10.1016/j.jcis.2019.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles. EXPERIMENTS We studied the DX uptake in the micellar systems formed by sodium cholate (NaC) and the PEO100PPO65PEO100 (F127) copolymer, prepared with different mole ratios (MR = nNaC/nF127) in the range 0 ÷ 1. The systems were characterized by small angle X-ray scattering (SAXS) and dynamic light scattering (DLS); DX encapsulation was followed by steady-state and time-resolved fluorescence spectroscopy. FINDINGS The successful solubilization of DX in the host micellar systems did not affect their structure, as evidenced by both SAXS and DLS data. In the presence of NaC, DX experiences a more apolar environment as indicated by its characteristic fluorescent behaviour. The almost complete uptake of the drug occurred shortly after the sample preparation; however, time resolved fluorescence revealed a slow partition of DX between corona and core regions of the micelles. DX degradation in the mixed micellar systems was markedly reduced relative to aqueous DX solutions.
Collapse
Affiliation(s)
- Elisamaria Tasca
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Luciano Galantini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I. Operative Unit of Bari, c/o Chemistry Department, University "Aldo Moro", Bari, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Mauro Giustini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I. Operative Unit of Bari, c/o Chemistry Department, University "Aldo Moro", Bari, Italy.
| |
Collapse
|
111
|
Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm 2018; 557:329-341. [PMID: 30599231 DOI: 10.1016/j.ijpharm.2018.12.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022]
Abstract
In the current study, we employed poly(amidoamine) (PAMAM) dendrimers of generation 4 (G4) to deliver paclitaxel (PTX), a poorly soluble anti-cancer agent precisely to cancer cells via its conjugation on dendrimer surface. Further, G4 PAMAM has been PEGylated (PEG) and tagged with Biotin, an essential micronutrient for cellular functions, receptors of which are overexpressed in certain cancers. The synthesized multifunctional conjugates were characterized by 1H NMR and zeta potential analysis techniques. In addition, the conjugates were evaluated in vitro in cell monolayers and 3D spheroids of biotin receptor over-expressed A549 cell line (human non-small cell lung cancer). G4 PTX PEG-Biotin conjugate penetrated at significantly higher extent in monolayers as well as spheroids as studied by flow cytometry and confocal microscopy by visualizing the cells at varied depth. The G4 PTX PEG-Biotin conjugate demonstrated higher cytotoxicity compared to free PTX and G4 PTX PEG conjugate as assessed by MTT assay in monolayers and Presto Blue assay in detached spheroidal cells. G4 PTX PEG-Biotin demonstrated significant inhibition of growth of tumor spheroids. Therefore, the newly synthesized biotin anchored PTX-conjugated dendrimer system is promising and could be further explored for efficiently delivering PTX to biotin receptor overexpressed cancers.
Collapse
Affiliation(s)
- Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India.
| |
Collapse
|
112
|
Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr Polym 2018; 208:294-301. [PMID: 30658803 DOI: 10.1016/j.carbpol.2018.12.066] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
The aim of present work is to improve the solubility, surface charged and capacity of drug loading of graphene oxide (GO) by modification of GO with carboxymethylcellulose (CMC) and Zinc-based metal-organic framework (MOF-5) to realize and control accurately the release manner. To achieve this aim, carboxymethylcellulose/Zinc-based metal-organic framework/graphene oxide bio-nanocomposite (CMC/MOF-5/GO) as a new drug delivery system was synthesized in one-pot through the solvothermal technique. The prepared CMC/MOF-5/GO was characterized and used as a carrier to encapsulate the doxorubicin (DOX) as an anticancer drug. The obtained compounds were characterized using SEM, AFM, XRD, FTIR, EDX spectroscopy, BET and Zeta potentials-DLS analysis. The AFM images of GO and CMC/MOF-5/GO illustrated that the sheet thickness of GO was around 30 nm, which increased to ˜80 nm after modification with CMC and MOF-5.In addition, the drug delivery evaluation showed that the DOX-loaded bio-nanocomposites enhanced anticancer properties. Under tumor cell microenvironment at pH 5, the DOX release rate was significantly higher than that under physiological conditions at pH 7.4. The MTT results showed that DOX@CMC/MOF-5/GO exhibits notable cytotoxicity to K562 cells. The resulted bio-nanocomposite showed that this carrier system could be potentially used in anticancer drug delivery systems.
Collapse
|
113
|
Tajvar S, Mohammadi S, Askari A, Janfaza S, Nikkhah M, Tamjid E, Hosseinkhani S. Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J Liposome Res 2018; 29:163-170. [DOI: 10.1080/08982104.2018.1524481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samira Tajvar
- Department of Bioinformatics, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - Soheila Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Askari
- Department of Bioinformatics, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
114
|
Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2018; 36:196-203. [PMID: 30541350 PMCID: PMC6430695 DOI: 10.1080/02656736.2018.1550815] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022] Open
Abstract
Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Profound Medical, Mississauga, ON, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore Laetsch
- Children’s Health, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
115
|
Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity. Eur J Pharm Biopharm 2018; 133:331-338. [DOI: 10.1016/j.ejpb.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/20/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
|
116
|
Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC-MS/MS. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1226-S1235. [PMID: 30450981 DOI: 10.1080/21691401.2018.1536063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, citric acid-functionalized Fe3O4 magnetic nanoparticles (CA-MNPs) were prepared via a coprecipitation method and were fully characterized. Doxorubicin (DOX) and melittin (MEL), as anticancer agents, were loaded onto CA-MNPs surface through electrostatic interactions with the aim to achieve an effective co-delivery system for cancer therapy. The loading efficiency and in vitro release profiles of DOX and MEL were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS step was performed in the selected reaction monitoring (SRM) mode which enabled simultaneous quantification of the analytes with high specificity and sensitivity. An excellent loading efficiency of about 100% was achieved for DOX and MEL in a drug to nanocarrier ratio of 1:10. The in vitro release of the drugs from CA-MNPs was evaluated for 8 h at pH 7.4, 5.5 and 4.5. The experimental results revealed that the release behaviour of both of the anticancer agents was strongly pH-dependent and significantly enhanced at pH 4.5. The in vitro MTT assay on MCF-7 breast cancer cell line exhibited a synergistic effect between DOX and MEL which led to substantially greater antitumor efficacy, compared to single administration of these anticancer agents at equivalent doses. The results indicated that the co-delivery system of (DOX/MEL)-loaded CA-MNPs is highly capable to be used in magnetically targeted cancer therapy.
Collapse
|
117
|
Troendle EP, Khan A, Searson PC, Ulmschneider MB. Predicting drug delivery efficiency into tumor tissues through molecular simulation of transport in complex vascular networks. J Control Release 2018; 292:221-234. [PMID: 30415016 PMCID: PMC10131895 DOI: 10.1016/j.jconrel.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Efficient delivery of anticancer drugs into tumor tissues at maximally effective and minimally toxic concentrations is vital for therapeutic success. At present, no method exists that can predict the spatial and temporal distribution of drugs into a target tissue after administration of a specific dose. This prevents accurate estimation of optimal dosage regimens for cancer therapy. Here we present a new method that predicts quantitatively the time-dependent spatial distribution of drugs in tumor tissues at sub-micrometer resolution. This is achieved by modeling the diffusive flow of individual drug molecules through the three-dimensional network of blood-vessels that vascularize the tumor, and into surrounding tissues, using molecular mechanics techniques. By evaluating delivery into tumors supplied by a series of blood-vessel networks with varying degrees of complexity, we show that the optimal dose depends critically on the precise vascular structure. Finally, we apply our method to calculate the optimal dosage of the cancer drug doxil into a section of a mouse ovarian tumor, and demonstrate the enhanced delivery of liposomally administered doxorubicin when compared to free doxorubicin. Comparison with experimental data and a multiple-compartment model show that the model accurately recapitulates known pharmacokinetics and drug-load predictions. In addition, it provides, for the first time, a detailed picture of the spatial dependence of drug uptake into tissues surrounding tumor vasculatures. This approach is fundamentally different to current continuum models, and reveals that the target tumor vascular topology is as important for therapeutic success as the transport properties of the drug delivery platform itself. This sets the stage for revisiting drug dosage calculations.
Collapse
Affiliation(s)
- Evan P Troendle
- Department of Chemistry, King's College London, London, UK; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ayesha Khan
- University of Exeter Medical School, Exeter, UK
| | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Martin B Ulmschneider
- Department of Chemistry, King's College London, London, UK; University of Exeter Medical School, Exeter, UK; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
118
|
Agarwal S, Muniyandi P, Maekawa T, Kumar DS. Vesicular systems employing natural substances as promising drug candidates for MMP inhibition in glioblastoma: A nanotechnological approach. Int J Pharm 2018; 551:339-361. [PMID: 30236647 DOI: 10.1016/j.ijpharm.2018.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM), one of the most lethal Brain tumors, characterized by its high invasive nature and increased mortality rates forms a major bottleneck in transport of therapeutics across the Blood Brain Barrier (BBB). Matrix metalloproteinases (MMPs) are classified as enzymes, which are found to be up regulated in the Glioma tumor microenvironment and thus can be considered as a target for inhibition for curbing GBM. Many chemotherapeutics and techniques have been employed for inhibiting MMPs till now but all of them failed miserably and were withdrawn in clinical trials due to their inability in restricting the tumor growth or increasing the overall survival rates. Thus, the quest for finding the suitable MMP inhibitor is still on and there is a critical need for identification of novel compounds which can alter the BBB permeability, restrain tumor growth and prevent tumor recurrence. Currently, naturally derived substances are gaining widespread attention as tumor inhibitors and many studies have been reported by far highlighting their importance in restricting MMP expression thus serving as chemotherapeutics for cancer due to their minimal toxicity. These substances may serve as probable candidates for inhibiting MMP expression in GBM. However, targeting and delivering the inhibitor to its target site is an issue that needs to be overcome in order to attain maximum specificity and sustained release. The birth of nanotechnology served as a boon in delivering drugs to the most complicated areas thus paving way for Nano drug delivery. An efficient Nano carrier with ability to cross the BBB and competently kill the Glioma cells forms the prerequisite for GBM chemotherapy. Vesicular drug delivery systems are one such class of carriers, which have the capacity to release the drug at a predetermined rate at the target site thus minimizing any undesirable side effects. Exploiting vesicular systems as promising Nano drug carriers to formulate naturally derived substances, that can bypass the BBB and act as an inhibitor against MMPs in GBM is the main theme of this review.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Priyadharshni Muniyandi
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - D Sakthi Kumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| |
Collapse
|
119
|
Sylvester B, Tefas L, Vlase L, Tomuţă I, Porfire A. A Quality by Design (QbD) approach to the development of a gradient high-performance liquid chromatography for the simultaneous assay of curcuminoids and doxorubicin from long-circulating liposomes. J Pharm Biomed Anal 2018; 158:395-404. [DOI: 10.1016/j.jpba.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023]
|
120
|
Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym 2018; 195:453-459. [DOI: 10.1016/j.carbpol.2018.04.103] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 11/26/2022]
|
121
|
Prieto C, Linares I. Nanoparticles and nanothermia for malignant brain tumors, a suggestion of treatment for further investigations. Rep Pract Oncol Radiother 2018; 23:474-480. [PMID: 30263017 PMCID: PMC6158037 DOI: 10.1016/j.rpor.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
The current treatment for brain tumors, such as glioblastoma multiforme (GBM), has not been developed enough yet in order to fully heal them. The main causes are the lack of specificity of the treatments, the difficulty of passage of drugs through the blood-brain barrier, heterogeneity and tumor aggressiveness, and widespread dissemination in the brain. The application of nanoparticles (Nps) have been a breakthrough for both diagnostic imaging and targeted therapies. There have been numerous studies with different types of Nps in brain tumors, but we have focused on thermosensitive liposomes, which are characterized by releasing the chemotherapeutic agent included within its lipophilic membranes through heat. Furthermore, increasing the temperature in brain tumors through hyperthermia has been proven therapeutically beneficial. Nanothermia or modulated-electro-hyperthermia (MEHT) is an improved technique that allows to create hot spots in nanorange at the membrane rafts, specifically in tumor cells, theoretically increasing the selectivity of the damage. In scientific records, experiments that combine both techniques (thermosensitive liposomes and nanothermia) have never been conducted. We propose a hypothesis for further research.
Collapse
Affiliation(s)
- Cristina Prieto
- Radiation Oncology Department, University Hospital San Cecilio, Av. Dr. Olóriz 16, 18012 Granada, Spain
| | - Isabel Linares
- Radiation Oncology Department, Institut Català d'Oncologia, Avinguda Granvia, 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
122
|
Karimzadeh Z, Javanbakht S, Namazi H. Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. BIOIMPACTS : BI 2018; 9:5-13. [PMID: 30788255 PMCID: PMC6378098 DOI: 10.15171/bi.2019.02] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
Abstract
Introduction: In recent years, more attention was dedicated to developing new methods for designing of drug delivery systems. The aim of present work is to improve the efficiency of the antibacterial drug delivery process, and to realize and to control accurately the release. Methods: First, graphene oxide (GO) was prepared according to the modified Hummers method then the GO was modified with carboxymethylcellulose (CMC) and Zn-based metal-organic framework (MOF-5) through the solvothermal technique. Results: Performing the various analysis methods including scanning electron microscope (SEM), X-ray diffraction (XRD), EDX, Fourier transform infrared (FTIR) spectroscopy and Zeta potentials on the obtained bio-nanocomposite showed that the new modified GO has been prepared. With using common analysis methods the structure of synthesized materials was determined and confirmed and finally, their antibacterial behavior was examined based on the broth microdilution methods. Conclusion: Carboxymethylcellulose/MOF-5/GO bio-nanocomposite (CMC/MOF-5/GO) was successfully synthesized through the solvothermal technique. Tetracycline (TC) was encapsulated in the GO and CMC/MOF-5/GO. The drug release tests showed that the TC-loaded CMC/MOF5/GO has an effective protection against stomach pH. With controlling the TC release in the gastrointestinal tract conditions, the long-time stability of drug dosing was enhanced. Furthermore, antibacterial activity tests showed that the TC-loaded CMC/MOF-5/GO has an antibacterial activity to negatively charge E. coli bacteria in contrast to TC-loaded GO.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Siamak Javanbakht
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
123
|
Peretz Damari S, Shamrakov D, Varenik M, Koren E, Nativ-Roth E, Barenholz Y, Regev O. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. Int J Pharm 2018; 547:648-655. [PMID: 29913218 DOI: 10.1016/j.ijpharm.2018.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Size and morphology distributions are critical to the performance of nano-drug systems, as they determine drug pharmacokinetics and biodistribution. Therefore, comprehensive and reliable analyses of these properties are required by both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). In this study, we compare two most commonly used approaches for assessing the size distribution and morphology of liposomal nano-drug systems, namely, dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM); an automated quantitative analysis method was developed for the latter method. We demonstrate the advantages and disadvantages of each of these two approaches for a commercial formulation of the anti-cancer drug doxorubicin - Doxil®, in which the drug is encapsulated, mostly in the form of nano-rod crystals. With increasing drug concentration, these nano-rods change the shape of the liposomes from spherical, before drug loading, to prolate (oval), post drug loading. Cryo-TEM analysis provides a detailed size distribution of both the liposomes (minor and major axes) and the nano-rod drug. Both these values are relevant to the drug performance. In this study, we show that at elevated drug concentration (2.75 mg/ml) the drug grows mainly along the major axis and that this high concentration can result, in some cases, in liposome rupture. We show that the combination of cryo-TEM and DLS constitutes a reliable tool for demonstrating the stability of the formulation in human plasma at body temperature, a characteristic that is crucial for achieving therapeutic efficacy.
Collapse
Affiliation(s)
- Sivan Peretz Damari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | - Maxim Varenik
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Erez Koren
- Laboratory of Membrane and Liposome Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Einat Nativ-Roth
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
124
|
Tasca E, D'Abramo M, Galantini L, Giuliani AM, Pavel NV, Palazzo G, Giustini M. A Stereochemically Driven Supramolecular Polymerisation. Chemistry 2018; 24:8195-8204. [DOI: 10.1002/chem.201800644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Elisamaria Tasca
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Marco D'Abramo
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Luciano Galantini
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
| | - Anna Maria Giuliani
- STEBICEF Department; University of Palermo; V.le delle Scienze 90128 Palermo Italy
| | - Nicolae Viorel Pavel
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
| | - Gerardo Palazzo
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
- Chemistry Department; University “Aldo Moro”; Via E. Orabona, 4 70126 Bari Italy
| | - Mauro Giustini
- Chemistry Department; University “La Sapienza”; P.le Aldo Moro 5 00185 Rome Italy
- Center for Colloid and Surface Science-C.S.G.I. Operative Unit of Bari c/o Chemistry Department; University “Aldo Moro”; Bari Italy
| |
Collapse
|
125
|
Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018; 10:pharmaceutics10020054. [PMID: 29710857 PMCID: PMC6027124 DOI: 10.3390/pharmaceutics10020054] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Collapse
|
126
|
Lee H, Son J, Na CB, Yi G, Koo H, Park JB. The effects of doxorubicin-loaded liposomes on viability, stem cell surface marker expression and secretion of vascular endothelial growth factor of three-dimensional stem cell spheroids. Exp Ther Med 2018; 15:4950-4960. [PMID: 29805519 PMCID: PMC5958669 DOI: 10.3892/etm.2018.6064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/20/2018] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to evaluate the effects of anionic, cationic and neutral liposomes containing doxorubicin on the cellular viability and osteogenic differentiation of three-dimensional stem cell spheroids. Doxorubicin-loaded liposomes were prepared using the traditional thin-lipid-film-hydration method and were characterized using transmission electron microscopy and a zeta potential analyzer. The doxorubicin release profile from these liposomes was also analyzed in vitro. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were observed using a confocal microscope and quantitative cellular viability was evaluated using a Cell-Counting Kit-8 (CCK-8) assay. Furthermore, the secretion of vascular endothelial growth factor was evaluated. Western blot analysis was performed to assess the expression of collagen I and glyceraldehyde 3-phosphate. Results indicated that the spheroids were well formed in silicon elastomer-based concave microwells on day 1. In general, the shapes of the cells in the in the doxorubicin-loaded anionic, cationic and neutral liposome groups were similar to the control group except for the 10 µg/ml groups on days 3, 5, and 7. No significant changes in cellular viability were noted with the addition of doxorubicin at day 1 but significant decreases in cellular viability were noted with application of doxorubicin at day 5. Notably, higher concentrations of doxorubicin reduced the secretion of vascular endothelial growth factor and stem cell marker expression. To conclude, the present study indicated that doxorubicin-loaded anionic liposomes produced the most sustained release profile and cationic liposomes produced the highest uptake of the stem cell spheroids. These findings suggested that higher concentrations of doxorubicin-loaded liposomes affected cellular viability, the secretion of vascular endothelial growth factor and stem cell marker expression.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jihwan Son
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chae-Bin Na
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gawon Yi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
127
|
Colombo S, Beck-Broichsitter M, Bøtker JP, Malmsten M, Rantanen J, Bohr A. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Adv Drug Deliv Rev 2018; 128:115-131. [PMID: 29626549 DOI: 10.1016/j.addr.2018.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 01/31/2023]
Abstract
Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field.
Collapse
Affiliation(s)
- Stefano Colombo
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark
| | | | | | - Martin Malmsten
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark; Uppsala University, Department of Pharmacy, Uppsala, Sweden
| | - Jukka Rantanen
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark
| | - Adam Bohr
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark.
| |
Collapse
|
128
|
Vaidya T, Straubinger RM, Ait-Oudhia S. Development and Evaluation of Tri-Functional Immunoliposomes for the Treatment of HER2 Positive Breast Cancer. Pharm Res 2018. [DOI: 10.1007/s11095-018-2365-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
129
|
Targeting Glioblastoma Cells Expressing CD44 with Liposomes Encapsulating Doxorubicin and Displaying Chlorotoxin-IgG Fc Fusion Protein. Int J Mol Sci 2018; 19:ijms19030659. [PMID: 29495404 PMCID: PMC5877520 DOI: 10.3390/ijms19030659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100-150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.
Collapse
|
130
|
Huang CF, Liang KS, Hsu TL, Lee TT, Chen YY, Yang SM, Chen HH, Huang SH, Chang WH, Lee TK, Chen P, Peng KE, Chen CC, Shi CZ, Hu YF, Margaritondo G, Ishikawa T, Wong CH, Hwu Y. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution. NANOSCALE 2018; 10:2820-2824. [PMID: 29362758 DOI: 10.1039/c7nr09395k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.
Collapse
Affiliation(s)
- Chi-Feng Huang
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Zizzari A, Bianco M, Carbone L, Perrone E, Amato F, Maruccio G, Rendina F, Arima V. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach. MATERIALS 2017; 10:ma10121411. [PMID: 29232873 PMCID: PMC5744346 DOI: 10.3390/ma10121411] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.
Collapse
Affiliation(s)
- Alessandra Zizzari
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| | - Monica Bianco
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
| | - Luigi Carbone
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
| | - Elisabetta Perrone
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
| | - Francesco Amato
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Maruccio
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| | - Filippo Rendina
- Janssen Pharmaceutical Company of Johnson & Johnson, via C. Janssen, Borgo S. Michele, 04100 Latina, Italy.
| | - Valentina Arima
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
132
|
Noothalapati H, Iwasaki K, Yoshimoto C, Yoshikiyo K, Nishikawa T, Ando M, Hamaguchi HO, Yamamoto T. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:186-190. [PMID: 28689162 DOI: 10.1016/j.saa.2017.06.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/01/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (CC stretching, CH deformation and CH stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome.
Collapse
Affiliation(s)
- Hemanth Noothalapati
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue 690-8504, Japan.
| | - Keita Iwasaki
- Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Chikako Yoshimoto
- Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Keisuke Yoshikiyo
- Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Tomoe Nishikawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku Tokyo, 113-0033, Japan
| | - Masahiro Ando
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 162-0041, Japan
| | - Hiro-O Hamaguchi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku Tokyo, 113-0033, Japan; Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 162-0041, Japan; Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tatsuyuki Yamamoto
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue 690-8504, Japan; Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan.
| |
Collapse
|
133
|
Mali PR, Shirsat PK, Khomane N, Nayak L, Nanubolu JB, Meshram HM. 1,3-Dipolar Cycloaddition Reactions for the Synthesis of Novel Oxindole Derivatives and Their Cytotoxic Properties. ACS COMBINATORIAL SCIENCE 2017; 19:633-639. [PMID: 28816439 DOI: 10.1021/acscombsci.7b00044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The multicomponent reaction between isatin, amino acid, but-2-ynedioates, and phenacyl bromide has been developed using microwave irradiation under catalyst and base-free conditions in aqueous medium. This synthetic protocol is useful for the synthesis of various functionalized spirooxindole derivatives. This MCR exhibits a broad substrate scope with excellent yields and shorter reaction time. Additionally the synthesized spirooxindole derivatives were evaluated for their anticancer activity against three human cancer cell lines: MCF-7 (breast), A549 (lung), and HeLa cervical. Most of the compounds showed moderate to potent cytotoxic activity against the tested cell lines.
Collapse
Affiliation(s)
- Prakash R. Mali
- Medicinal
Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India
| | - Prashishkumar K. Shirsat
- Medicinal
Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India
| | - Navnath Khomane
- Medicinal
Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India
| | - Lakshama Nayak
- Medicinal
Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007, India
| | - Jagadeesh Babu Nanubolu
- Laboratory
of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - H. M. Meshram
- Medicinal
Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007, India
| |
Collapse
|
134
|
Samuelsson E, Shen H, Blanco E, Ferrari M, Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf B Biointerfaces 2017; 158:356-362. [PMID: 28719856 PMCID: PMC5645238 DOI: 10.1016/j.colsurfb.2017.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022]
Abstract
The liver is a major barrier for site-specific delivery of systemically injected nanoparticles, as up to 90% of the dose is usually captured by this organ. Kupffer cells are thought to be the main cellular component responsible for nanoparticle accumulation in the liver. These resident macrophages form part of the mononuclear phagocyte system, which recognizes and engulfs foreign bodies in the circulatory system. In this study, we have compared two strategies for reducing nanoparticle accumulation in the liver, in order to investigate the specific contribution of Kupffer cells. Specifically, we have performed a comparison of the capability of pegylation and Kupffer cell depletion to reduce liposome accumulation in the liver. Pegylation reduces nanoparticle interactions with all types of cells and can serve as a control for elucidating the role of specific cell populations in liver accumulation. The results indicate that liposome pegylation is a more effective strategy for avoiding liver uptake compared to depletion of Kupffer cells, suggesting that nanoparticle interactions with other cells in the liver may also play a contributing role. This study highlights the need for a more complete understanding of factors that mediate nanoparticle accumulation in the liver and for the exploration of microenvironmental modulation strategies for reducing nanoparticle-cell interactions in this organ.
Collapse
Affiliation(s)
- Emma Samuelsson
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
135
|
Fukuda A, Tahara K, Hane Y, Matsui T, Sasaoka S, Hatahira H, Motooka Y, Hasegawa S, Naganuma M, Abe J, Nakao S, Takeuchi H, Nakamura M. Comparison of the adverse event profiles of conventional and liposomal formulations of doxorubicin using the FDA adverse event reporting system. PLoS One 2017; 12:e0185654. [PMID: 28953936 PMCID: PMC5617225 DOI: 10.1371/journal.pone.0185654] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/16/2017] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline widely used for the treatment of solid and hematological tumors. The aim of this study was to assess the adverse event profiles of conventional DOX and liposomal DOX. This is the first study to evaluate the effect of a liposomal formulation of DOX using spontaneous reporting system (SRS) databases. The SRS used was the US Food and Drug Administration Adverse Event Reporting System (FAERS). This study relied on definitions of preferred terms provided by the Medical Dictionary for Regulatory Activities (MedDRA) and the standardized MedDRA Queries (SMQ) database. We also calculated the reporting odds ratios (RORs) of suspected drugs (conventional DOX; PEGylated-liposome DOX; non-PEGylated-liposome DOX). The FAERS database contained 7,561,254 reports from January 2004 to December 2015. The number of reported AE cases for conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX was 5039, 3780, and 349, respectively. Conventional DOX and liposomal DOX have potential risks of causing myelosuppression, cardiotoxicity, alopecia, nausea, and vomiting, among other effects. The RORs (95% CI) from SMQ for haematopoietic leucopenia associated with conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX were 12.75 (11.89–13.68), 6.43 (5.81–7.13), and 14.73 (11.42–18.99), respectively. Liposomal DOX formulations were associated with lower RORs with regard to myelosuppression, cardiotoxicity, and alopecia than the conventional DOX was. The RORs (95% CI) for palmar-plantar erythrodysesthesia (PPE) associated with conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX were 6.56 (4.74–9.07), 64.77 (56.84–73.80), and 28.76 (15.77–52.45), respectively. This study is the first to evaluate the relationship between DOX liposomal formulations and their adverse event profiles. The results indicate that careful observation for PPE is recommended with the use of liposomal DOX, especially PEGylated-liposome DOX formulations.
Collapse
Affiliation(s)
- Akiho Fukuda
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu University, Gifu-shi, Gifu, Japan
| | - Yuuki Hane
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Toshinobu Matsui
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Sayaka Sasaoka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Haruna Hatahira
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Yumi Motooka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Shiori Hasegawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Misa Naganuma
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Junko Abe
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
- Medical database Co., LTD, Shibuya-ku, Tokyo, Japan
| | - Satoshi Nakao
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu University, Gifu-shi, Gifu, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
- * E-mail:
| |
Collapse
|
136
|
Zhai Q, Chen Y, Xu J, Huang Y, Sun J, Liu Y, Zhang X, Li S, Tang S. Lymphoma Immunochemotherapy: Targeted Delivery of Doxorubicin via a Dual Functional Nanocarrier. Mol Pharm 2017; 14:3888-3895. [PMID: 28850241 DOI: 10.1021/acs.molpharmaceut.7b00606] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemotherapy drug (paclitaxel, PTX) incorporated in a dual functional polymeric nanocarrier, PEG-Fmoc-NLG, has shown promise as an immunochemotherapy in a murine breast cancer model, 4T1.2. The formulation is composed of an amphiphilic polymer with a built-in immunotherapy drug NLG919 that exhibits the immunostimulatory ability through the inhibition of indoleamine 2,3-dioxygenase 1 (IDO-1) in cancer cells. This work evaluates whether the PEG-derivatized NLG polymer can also be used for delivery of doxorubicin (Dox) in treatment of leukemia. The Dox-loaded micelles were self-assembled from PEG-Fmoc-NLG conjugate, which have a spherical shape with a uniform size of ∼120 nm. In cultured murine lymphocytic leukemia cells (A20), Dox-loaded PEG-Fmoc-NLG micelles showed a cytotoxicity that was comparable to that of free Dox. For in vivo studies, significantly improved antitumor activity was observed for the Dox/PEG-Fmoc-NLG group compared to Doxil or the free Dox group in an A20 lymphoma mouse model. Flow cytometric analysis showed that treatment with Dox/PEG-Fmoc-NLG micelles led to significant increases in the numbers of both total CD4+/CD8+ T cells and the functional CD4+/CD8+ T cells with concomitant decreases in the numbers of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg). Dox/PEG-Fmoc-NLG may represent a promising immunochemotherapy for lymphoma, which warrants more studies in the future.
Collapse
Affiliation(s)
- Qianyu Zhai
- Department of Pediatrics, People's Liberation Army General Hospital , Beijing 100853, China.,Department of Pediatrics, The Third Central Hospital of Tianjin City , Tianjin 300170, China
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University , No. 1160, Shengli Street, Yinchuan 750004, China
| | - Xiaolan Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Suoqin Tang
- Department of Pediatrics, People's Liberation Army General Hospital , Beijing 100853, China
| |
Collapse
|
137
|
Abstract
Circulating tumor cells are a hallmark of cancer metastasis which accounts for approximately 90% of all cancer-related deaths. Their detection and characterization have significant implications in cancer biology and clinical practice. However, CTCs are rare cells and consist of heterogeneous subpopulations, requiring highly sensitive and specific techniques to identify and isolate them with high efficiency. Nanomaterials, with unique structural and functional properties, have shown strong promise to meet the challenging demands. In this review, we discuss CTC capture and therapeutic targeting, emphasizing the significance of the nanomaterials being used for this purpose. The next generation of therapy for metastatic cancer may well involve capturing and even directly neutralizing CTCs using nanomaterials.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
138
|
Calixresorcinarene-capped silver nanoparticles as new supramolecular hybrid nanocontainers. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
139
|
|
140
|
Dash TK, Konkimalla VB. Selection of P-Glycoprotein Inhibitor and Formulation of Combinational Nanoformulation Containing Selected Agent Curcumin and DOX for Reversal of Resistance in K562 Cells. Pharm Res 2017; 34:1741-1750. [PMID: 28536971 DOI: 10.1007/s11095-017-2182-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To select P-glycoprotein (P-gp) inhibitor from natural source for reversal of DOX resistance in K562 cells and to develop selected one in to nanoformulation in combination with DOX. METHODS DOX resistant K562 (K562R) cells were developed and reversal of resistance by P-gp inhibitor was validated by co-treatment with verapamil. The p-gp inhibitors were evaluated for their potential to inhibit P-gp (calcein assay) and to reverse drug resistance (XTT cell viability assay). The selected agent, curcumin was formulated in to liposome along with DOX and characterized for size, zeta potential, encapsulation efficiency and release rate. Uptake, P-gp inhibition and reversal of acquired drug resistance in K562R cells were performed. RESULTS P-gp inhibitors such as biochanin-A and curcumin were marked suitable for combination with DOX. However, only curcumin could increase the sensitivity of DOX at all dosing levels, therefore used for further studies. Liposomes loaded with curcumin were formulated and characterized where a prolonged release was observed. The uptake of liposomal curcumin was comparable to nanodispersed curcumin but had lower cytotoxicity. DOX and curcumin coloaded liposomes successfully reversed DOX resistance in K562 cells. CONCLUSION The coloaded liposomes increased the safety of curcumin with improved efficacy thus can be employed for reversal of acquired DOX resistance.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India.
| |
Collapse
|
141
|
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260:46-60. [PMID: 28536049 DOI: 10.1016/j.jconrel.2017.05.028] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.
Collapse
Affiliation(s)
- Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
142
|
Dash TK, Konkimalla VB. Formulation and Optimization of Doxorubicin and Biochanin A Combinational Liposomes for Reversal of Chemoresistance. AAPS PharmSciTech 2017; 18:1116-1124. [PMID: 27600324 DOI: 10.1208/s12249-016-0614-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023] Open
Abstract
Circumvention of drug resistance still remains a challenge in the development of anticancer therapeutics. Combinational nano-formulations provide many avenues for effective cancer therapy and reversal of drug resistance. In the current study, combination of biochanin A (BioA) and doxorubicin (DOX) in liposomes were prepared and studied for its potential to reverse DOX resistance in COLO205 cells. After development and validation of DOX resistant cells of COLO205 (ColoR), dosing ratio of DOX and BioA for reversal of DOX resistance was determined by co-treatment in ColoR cells. As limited solubility and analytical data available for BioA, therefore solubility was studied for BioA and analytical method was developed for the combination. Combinational liposomes were prepared and optimized for both lipid content and surface charge by evaluating size, polydispersity index, zeta potential, and encapsulation efficiency. The optimized formulation had a size about 125 nm; zeta potential of -19.5 mV and 70% encapsulation efficiency (EE) for BioA. Thus, prepared combinational liposomes of DOX and BioA were evaluated for its cellular uptake and efficacy to reverse DOX resistance. From the study, increased DOX uptake and promising effect for reversal of DOX resistance was observed.
Collapse
|
143
|
Cao Y, Xu L, Kuang Y, Xiong D, Pei R. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J Mater Chem B 2017; 5:3431-3461. [PMID: 32264282 DOI: 10.1039/c7tb00382j] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gadolinium-based nanoscale magnetic resonance imaging (MRI) contrast agents (CAs) have gained significant momentum as a promising nanoplatform for detecting tumor tissue in medical diagnosis, due to their favorable capability of enhancing the longitudinal relaxivity (r1) of individual gadolinium ions, delivering to the region of interest a large number of gadolinium ions, and incorporating different functionalities. This mini-review highlights the latest developments and applications, and simultaneously gives some perspectives for their future development.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
144
|
Sivasubramanian K, Mathiyazhakan M, Wiraja C, Upputuri PK, Xu C, Pramanik M. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41007. [PMID: 27918790 DOI: 10.1117/1.jbo.22.4.041007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in <italic<in vivo</italic<, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.
Collapse
Affiliation(s)
- Kathyayini Sivasubramanian
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Malathi Mathiyazhakan
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Christian Wiraja
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Chenjie Xu
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, SingaporebNanyang Technological University, NTU-Northwestern Institute for Nanomedicine, 50 Nanyang Avenue, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| |
Collapse
|
145
|
Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today 2017; 22:270-281. [DOI: 10.1016/j.drudis.2016.11.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
|
146
|
Sneider A, Jadia R, Piel B, VanDyke D, Tsiros C, Rai P. Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer. ACTA ACUST UNITED AC 2017; 2:1-13. [PMID: 28174679 PMCID: PMC5292187 DOI: 10.7150/oncm.17406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Triple Negative Breast Cancer (TNBC) continues to present a challenge in the clinic, as there is still no approved targeted therapy. TNBC is the worst sub-type of breast cancer in terms of prognosis and exhibits a deficiency in estrogen, progesterone, and human epidermal growth factor 2 (HER2) receptors. One possible option for the treatment of TNBC is chemotherapy. The issue with many chemotherapy drugs is that their effectiveness is diminished due to poor water solubility, and the method of administration directly or with a co-solvent intravenously can lead to an increase in toxicity. The issues of drug solubility can be avoided by using liposomes as a drug delivery carrier. Liposomes are engineered, biological nanoconstructs that possess the ability to encapsulate both hydrophobic and hydrophilic drugs and have been clinically approved to treat cancer. Specific targeting of cancer cell receptors through the use of ligands conjugated to the surface of drug-loaded liposomes could lessen damage to normal, healthy tissue. This study focuses on polyethylene glycol (PEG)-coated, folate conjugated, benzoporphyrin derivative (BPD)-loaded liposomes for treatment via photodynamic therapy (PDT). The folate receptor is over expressed on TNBC cells so these liposomes are targeted for greater uptake into cancer cells. PDT involves remotely irradiating light at 690 nm to trigger BPD, a hydrophobic photosensitive drug, to form reactive oxygen species that cause tumor cell death. BPD also displays a fluorescence signal when excited by light making it possible to image the fluorescence prior to PDT and for theranostics. In this study, free BPD, non-targeted and folate-targeted PEGylated BPD-loaded liposomes were introduced to a metastatic breast cancer cell line (MDA-MB-231) in vitro. The liposomes were reproducibly synthesized and characterized for size, polydispersity index (PDI), zeta potential, stability, and BPD release kinetics. Folate competition tests, fluorescence confocal imaging, and MTT assay were used to observe and quantify targeting effectiveness. The toxicity of BPD before and after PDT in monolayer and 3D in vitro cultures with TNBC cells was observed. This study may contribute to a novel nanoparticle-mediated approach to target TNBC using PDT.
Collapse
Affiliation(s)
- Alexandra Sneider
- University of Massachusetts Lowell, Department of Chemical Engineering, Francis College of Engineering, 1 University Ave, Lowell, MA 01854, USA
| | - Rahul Jadia
- University of Massachusetts Lowell, Biomedical Engineering and Biotechnology Program, 1 University Ave, Lowell, MA 01854, USA
| | - Brandon Piel
- University of Massachusetts Lowell, Department of Chemical Engineering, Francis College of Engineering, 1 University Ave, Lowell, MA 01854, USA
| | - Derek VanDyke
- University of Massachusetts Lowell, Department of Chemical Engineering, Francis College of Engineering, 1 University Ave, Lowell, MA 01854, USA
| | - Christopher Tsiros
- University of Massachusetts Lowell, Biomedical Engineering and Biotechnology Program, 1 University Ave, Lowell, MA 01854, USA
| | - Prakash Rai
- University of Massachusetts Lowell, Department of Chemical Engineering, Francis College of Engineering, 1 University Ave, Lowell, MA 01854, USA. ; University of Massachusetts Lowell, Biomedical Engineering and Biotechnology Program, 1 University Ave, Lowell, MA 01854, USA
| |
Collapse
|
147
|
Waghulde S, Naik P. An Overview of Therapeutic Applications. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over the last few years' great advances have been made on the development drug delivery systems for different purposes for targeting the diseased conditions. Novel drug delivery originates from polymers or associated with some devices is generally related with the emergence of novel characteristics. These changes are what eventually comprise the value of drug delivery system and Novel drug delivery system. Novel properties become existed without making new materials. Novel drug delivery system comparable to traditional system, following Targeted Drug Delivery System (TDDS) is also called targeting drug system. A new drug delivery system makes the drugs densely gather pathological-change structures, and has an improved healing effect and less toxic side effects. The drugs can improve the strength of pharmacological action and reduce the bad effect all over the body, for they release in the target organs.
Collapse
|
148
|
Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Mol Pharm 2016; 14:107-123. [DOI: 10.1021/acs.molpharmaceut.6b00732] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuanrong Xin
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ran Li
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yanru Ge
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
149
|
Lohade AA, Jain RR, Iyer K, Roy SK, Shimpi HH, Pawar Y, Rajan MGR, Menon MD. A Novel Folate-Targeted Nanoliposomal System of Doxorubicin for Cancer Targeting. AAPS PharmSciTech 2016; 17:1298-1311. [PMID: 26689406 DOI: 10.1208/s12249-015-0462-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Targeted drug delivery systems for cancer improves anti-tumor efficacy and reduces systemic toxicity by restricting availability of cytotoxic drugs within tumors. Targeting moieties, such as natural ligands (folic acid, transferrin, and biotin) which are overexpressed on tumors, have been used to enhance liposome-encapsulated drug accumulation within tumors and resulted in better control. In this report, we explored the scope of targeting ligand folic acid, which is incorporated in liposome systems using folic acid-modified cholesterol (CPF), enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in increased cytotoxicity within tumors. Folate-tagged poloxamer-coated liposomes (FDL) were found to have significantly higher cellular uptake than conventional poloxamer-coated liposomes (DL), as confirmed by fluorometric analysis in B16F10 melanoma cells. Biodistribution study of the radiolabeled liposomal system indicated the significantly higher tumor uptake of FDL as compared to DL. Anti-tumor activity of FDL against murine B16F10 melanoma tumor-bearing mice revealed that FDL inhibited tumor growth more efficiently than the DL. Taken together, the results demonstrated the significant potential of the folate-conjugated nanoliposomal system for drug delivery to tumors.
Collapse
|
150
|
Ma L, Bygd HC, Bratlie KM. Improving selective targeting to macrophage subpopulations through modifying liposomes with arginine based materials. Integr Biol (Camb) 2016; 9:58-67. [DOI: 10.1039/c6ib00133e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lilusi Ma
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
| | - Hannah C. Bygd
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering Iowa State University Ames Iowa 50011 USA Fax: +515-294-5444 Tel: +515-294-7304
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|