101
|
Wang SQ, Li XJ, Zhou S, Sun DX, Wang H, Cheng PF, Ma XR, Liu L, Liu JX, Wang FF, Liang YF, Wu JM. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin. PLoS One 2013; 8:e61687. [PMID: 23637882 PMCID: PMC3634853 DOI: 10.1371/journal.pone.0061687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression.
Collapse
Affiliation(s)
- Shu-Qiu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- * E-mail:
| | - Xiao-Jie Li
- School of Rehabilitation Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Shaobo Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Department of Life Science, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Di-Xiang Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Peng-Fei Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Xiao-Ru Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Lei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jun-Xing Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Fang-Fang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Yan-Feng Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jia-Mei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| |
Collapse
|
102
|
Lee CH, Umemori H. Suppression of epileptogenesis-associated changes in response to seizures in FGF22-deficient mice. Front Cell Neurosci 2013; 7:43. [PMID: 23616746 PMCID: PMC3629311 DOI: 10.3389/fncel.2013.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/29/2013] [Indexed: 01/20/2023] Open
Abstract
In the developing hippocampus, fibroblast growth factor (FGF) 22 promotes the formation of excitatory presynaptic terminals. Remarkably, FGF22 knockout (KO) mice show resistance to generalized seizures in adults as assessed by chemical kindling, a model that is widely used to study epileptogenesis (Terauchi et al., 2010). Repeated injections of low dose pentylenetetrazol (PTZ) induce generalized seizures ("kindled") in wild type (WT) mice. With additional PTZ injections, FGF22KO mice do show moderate seizures, but they do not kindle. Thus, analyses of how FGF22 impacts seizure susceptibility will contribute to the better understanding of the molecular and cellular mechanisms of epileptogenesis. To decipher the roles of FGF22 in the seizure phenotype, we examine four pathophysiological changes in the hippocampus associated with epileptogenesis: enhancement of dentate neurogenesis, hilar ectopic dentate granule cells (DGCs), increase in hilar cell death, and formation of mossy fiber sprouting (MFS). Dentate neurogenesis is enhanced, hilar ectopic DGCs appeared, and hilar cell death is increased in PTZ-kindled WT mice relative to PBS-injected WT mice. Even in WT mice with fewer PTZ injections, which showed only mild seizures (so were not kindled), neurogenesis, hilar ectopic DGCs, and hilar cell death are increased, suggesting that mild seizures are enough to induce these changes in WT mice. In contrast, PTZ-injected FGF22KO mice do not show these changes despite having moderate seizures: neurogenesis is rather suppressed, hilar ectopic DGCs do not appear, and hilar cell death is unchanged in PTZ-injected FGF22KO mice relative to PBS-injected FGF22KO mice. These results indicate that FGF22 plays important roles in controlling neurogenesis, ectopic migration of DGCs, and hilar cell death after seizures, which may contribute to the generalized seizure-resistant phenotype of FGF22KO mice and suggests a possibility that inhibition of FGF22 may alleviate epileptogenesis.
Collapse
Affiliation(s)
- Clara H. Lee
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
103
|
Abstract
Epilepsy is a prevalent neurological disorder associated with significant morbidity and mortality, but the only available drug therapies target its symptoms rather than the underlying cause. The process that links brain injury or other predisposing factors to the subsequent emergence of epilepsy is termed epileptogenesis. Substantial research has focused on elucidating the mechanisms of epileptogenesis so as to identify more specific targets for intervention, with the hope of preventing epilepsy before seizures emerge. Recent work has yielded important conceptual advances in this field. We suggest that such insights into the mechanisms of epileptogenesis converge at the level of cortical circuit dysfunction.
Collapse
|
104
|
Thomas EA, Petrou S. Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 2013; 54:1195-202. [PMID: 23566163 DOI: 10.1111/epi.12172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE A common notion of the mechanism by which the antiepileptic drugs (AEDs) carbamazepine and phenytoin act is that they block sodium channels by binding preferentially to the inactivated state, thereby allowing normal neuronal firing while blocking ictal activity. However, these drugs have unpredictable efficacy and, in some cases, may exacerbate seizures. Previous studies have suggested that reducing sodium channel availability in the dentate gyrus (DG) paradoxically increases excitability. We used a biophysically detailed computer model of the DG to test the hypothesis that AEDs increase excitability by disproportionately reducing negative feedback mechanisms. METHODS We built a Markov model of sodium channel gating that reproduces responses to voltage clamp experiments in the presence of carbamazepine and phenytoin. We incorporated this validated Markov model into a biophysically realistic computer model of DG neurons and networks. Simulated drug concentrations were similar to those measured in cerebral spinal fluid in medicated patients. Single neuron models were stimulated with current injections, and networks were stimulated with perforant path synaptic input. In the network model, environmental effects were studied by introducing mossy fiber sprouting. KEY FINDINGS As expected, drugs reduced sodium channel availability, which in turn reduced action potential amplitude. This had only a small effect on action potential (AP) firing rate during brief (100 msec) current injections. Paradoxically, long current injections (2,500 msec) increased AP firing rates. This was caused by reduced calcium entry and consequently reduced activation of calcium activated potassium channels. It is important to note that the main determinant of drug effect was resting membrane potential (RMP) and not action potential firing rate. Binding of phenytoin and carbamazepine is slow and, thus drug effects are largely determined by the long term state of the RMP. This paradoxical AP firing increase was dependent on the unusually large calcium-activated potassium conductances expressed by DG granule cells. This predicts that drug efficacy in a given network will depend on the precise makeup of conductances in the network. RMP is expected to vary with the level of activity in the network. We simulated the effects of drugs on single shot stimulus responses in networks with mossy fiber sprouting and varied the RMP in all neurons as a model for network activity. For an RMP of -50 mV, representing an active network, drugs had no effect, or in some cases, increased excitability. Drugs had an increasingly larger inhibitory effect on network responses as RMP decreased. An important prediction is that drugs will be unable to block ictal activity invading an active network. SIGNIFICANCE Our key findings are that drug effects depend on both intrinsic properties of the network and its behavioral state. This may explain the paradoxical and unpredictable effects of some AEDs on seizure control in some patients.
Collapse
Affiliation(s)
- Evan A Thomas
- Florey Neuroscience Institutes, Parkville, Victoria, Australia.
| | | |
Collapse
|
105
|
Peng BW, Justice JA, He XH, Sanchez RM. Decreased A-currents in hippocampal dentate granule cells after seizure-inducing hypoxia in the immature rat. Epilepsia 2013; 54:1223-31. [PMID: 23815572 DOI: 10.1111/epi.12150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Cerebral hypoxia is a major cause of neonatal seizures, and can lead to epilepsy. Pathologic anatomic and physiologic changes in the dentate gyrus have been associated with epileptogenesis in many experimental models, as this region is widely believed to gate the propagation of limbic seizures. However, the consequences of hypoxia-induced seizures for the immature dentate gyrus have not been extensively examined. METHODS Seizures were induced by global hypoxia (5-7% O2 for 15 min) in rat pups on postnatal day 10. Whole-cell voltage-clamp recordings were used to examine A-type potassium currents (IA ) in dentate granule cells in hippocampal slices obtained 1-17 days after hypoxia treatment. KEY FINDINGS Seizure-inducing hypoxia resulted in decreased maximum IA amplitude in dentate granule cells recorded within the first week but not at later times after hypoxia treatment. The decreased IA amplitude was not associated with changes in the voltage-dependence of activation or inactivation removal, or in sensitivity to inhibition by 4-aminopyridine (4-AP). However, consistent with the role of IA in shaping firing patterns, we observed in the hypoxia group a significantly decreased latency to first spike with depolarizing current injection from hyperpolarized potentials. These differences were not associated with changes in resting membrane potential or input resistance, and were eliminated by application of 10 m 4-AP. SIGNIFICANCE Given the role of IA to slow action potential firing, decreased IA could contribute to long-term hippocampal pathology after neonatal seizure-inducing hypoxia by increasing dentate granule cell excitability during a critical window of activity-dependent hippocampal maturation.
Collapse
Affiliation(s)
- Bi-Wen Peng
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
106
|
Abstract
Benign epilepsy with centrotemporal spikes, early-onset childhood occipital epilepsy (Panayiotopoulos syndrome [PS]) and late-onset childhood occipital epilepsy (Gastaut type [LOCE-G]) are the principal pediatric focal epilepsy syndromes. They share major common characteristics: the appearance and resolution of electroclinical features are age related, there is a strong genetic predisposition, the clinical course is often mild with infrequent and easy to control seizures, interictal epileptiform activity is disproportionately abundant when compared with the clinical correlate, and tends to potentiate and generalize during sleep. In this review, we outline the relevant pathophysiology underlying this electroclinical spectrum. Then, the initial description of individual syndromes is followed by a summary of overlapping features and intermediate presentations that question the boundaries between these entities and provide the basis for the concept of a childhood seizure susceptibility syndrome. Additionally, we outline the main features of the related epileptic encephalopathies. An outlook on potential future lines of research completes this review.
Collapse
|
107
|
Cai X, Yang L, Zhou J, Zhu D, Guo Q, Chen Z, Chen S, Zhou L. Anomalous expression of chloride transporters in the sclerosed hippocampus of mesial temporal lobe epilepsy patients. Neural Regen Res 2013; 8:561-8. [PMID: 25206700 PMCID: PMC4146056 DOI: 10.3969/j.issn.1673-5374.2013.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
The Na+-K+-Cl- cotransporter 1 and K+-Cl- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of Cl- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-Cl- cotransporter 1 and K+-Cl- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-Cl- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-Cl- cotransporter 1 than for the K+-Cl- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-Cl- cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.
Collapse
Affiliation(s)
- Xiaodong Cai
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Libai Yang
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jueqian Zhou
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Dan Zhu
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou 510510, Guangdong Province, China
| | - Qiang Guo
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou 510510, Guangdong Province, China
| | - Ziyi Chen
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Shuda Chen
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
108
|
Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc Natl Acad Sci U S A 2013; 110:3567-72. [PMID: 23401510 DOI: 10.1073/pnas.1216958110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is characterized by recurrent synchronizations of neuronal activity, which are both a cardinal clinical symptom and a debilitating phenomenon. Although the temporal dynamics of epileptiform synchronizations are well described at the macroscopic level using electrophysiological approaches, less is known about how spatially distributed microcircuits contribute to these events. It is important to understand the relationship between micro and macro network activity because the various mechanisms proposed to underlie the generation of such pathological dynamics are united by the assumption that epileptic activity is recurrent and hypersynchronous across multiple scales. However, quantitative analyses of epileptiform spatial dynamics with cellular resolution have been hampered by the difficulty of simultaneously recording from multiple neurons in lesioned, adult brain tissue. We have overcome this experimental limitation and used two-photon calcium imaging in combination with a functional clustering algorithm to uncover the functional network structure of the chronically epileptic dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. We show that, under hyperexcitable conditions, slices from the epileptic dentate gyrus display recurrent interictal-like network events with a high diversity in the activity patterns of individual neurons. Analysis reveals that multiple functional clusters of spatially localized neurons comprise epileptic networks, and that network events are composed of the coactivation of variable subsets of these clusters, which show little repetition between events. Thus, these interictal-like recurrent macroscopic events are not necessarily recurrent when viewed at the microcircuit scale and instead display a patterned but variable structure.
Collapse
|
109
|
Dieni CV, Chancey JH, Overstreet-Wadiche LS. Dynamic functions of GABA signaling during granule cell maturation. Front Neural Circuits 2013; 6:113. [PMID: 23316139 PMCID: PMC3539683 DOI: 10.3389/fncir.2012.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABAA receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | |
Collapse
|
110
|
BADAWY RADWAAB, JACKSON GRAEMED, BERKOVIC SAMUELF, MACDONELL RICHARDAL. CORTICAL EXCITABILITY AND REFRACTORY EPILEPSY: A THREE-YEAR LONGITUDINAL TRANSCRANIAL MAGNETIC STIMULATION STUDY. Int J Neural Syst 2012; 23:1250030. [DOI: 10.1142/s012906571250030x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial magnetic stimulation was used to study the effect of recurrent seizures on cortical excitability over time in epilepsy. 77 patients with firm diagnoses of idiopathic generalized epilepsy (IGE) or focal epilepsy were repeatedly evaluated over three years. At onset, all groups had increased cortical excitability. At the end of follow-up the refractory group was associated with a broad increase in cortical excitability. Conversely, cortical excitability decreased in all seizure free groups after introduction of an effective medication.
Collapse
Affiliation(s)
- RADWA A. B. BADAWY
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - GRAEME D. JACKSON
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - SAMUEL F. BERKOVIC
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - RICHARD A. L. MACDONELL
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| |
Collapse
|
111
|
"Please release me, let me go"-changes in presynaptic release following status epilepticus. Epilepsy Curr 2012; 12:170-1. [PMID: 23118598 DOI: 10.5698/1535-7511-12.5.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
112
|
Chwiej J, Kutorasinska J, Janeczko K, Gzielo-Jurek K, Uram L, Appel K, Simon R, Setkowicz Z. Progress of elemental anomalies of hippocampal formation in the pilocarpine model of temporal lobe epilepsy--an X-ray fluorescence microscopy study. Anal Bioanal Chem 2012; 404:3071-80. [PMID: 23052869 PMCID: PMC3501183 DOI: 10.1007/s00216-012-6425-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022]
Abstract
In the present paper, X-ray fluorescence microscopy was applied to follow the processes occurring in rat hippocampal formation during the post-seizure period. In the study, one of the status epilepticus animal models of epilepsy was used, namely the model of temporal lobe epilepsy with pilocarpine-induced seizures. In order to analyze the dynamics of seizure-induced elemental changes, the samples taken from seizure-experiencing animals 3 h and 1, 4, and 7 days after proconvulsive agent administration were analyzed. The obtained results confirmed the utility of X-ray fluorescence microscopy in the research of mechanisms involved in the pathogenesis and progress of epilepsy. The topographic and quantitative elemental analysis of hippocampal formations from different periods of epileptogenesis showed that excitotoxicity, mossy fibers sprouting, and iron-induced oxidative stress may be the processes responsible for seizure-induced neurodegenerative changes and spontaneous recurrent seizures occurring in the chronic phase of the pilocarpine model. The analysis of correlations between the recorded elemental anomalies and quantitative parameters describing animal behavior in the acute period of pilocarpine-induced status epilepticus showed that the areal densities of selected elements measured in the latent period strongly depend on the progress of the acute phase. Especially important seem to be the observations done for Ca and Zn levels which suggest that the intensity of the pathological processes such as excitotoxicity and mossy fibers sprouting depend on the total time of seizure activity. These results as well as dependencies found between the levels of S, K, and Cu and the intensity of maximal seizures clearly confirm how important it is to control the duration and intensity of seizures in clinical practice.
Collapse
Affiliation(s)
- J Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Pun RY, Rolle IJ, LaSarge CL, Hosford BE, Rosen JM, Uhl JD, Schmeltzer SN, Faulkner C, Bronson SL, Murphy BL, Richards DA, Holland KD, Danzer SC. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 2012; 75:1022-34. [PMID: 22998871 PMCID: PMC3474536 DOI: 10.1016/j.neuron.2012.08.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2012] [Indexed: 12/30/2022]
Abstract
The dentate gyrus is hypothesized to function as a "gate," limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dentate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation. While the presence of abnormal DGCs in epilepsy has been known for decades, direct evidence linking abnormal DGCs to seizures has been lacking. Here, we isolate the effects of abnormal DGCs using a transgenic mouse model to selectively delete PTEN from postnatally generated DGCs. PTEN deletion led to hyperactivation of the mTOR pathway, producing abnormal DGCs morphologically similar to those in epilepsy. Strikingly, animals in which PTEN was deleted from ≥ 9% of the DGC population developed spontaneous seizures in about 4 weeks, confirming that abnormal DGCs, which are present in both animals and humans with epilepsy, are capable of causing the disease.
Collapse
Affiliation(s)
- Raymund Y.K. Pun
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Isaiah J. Rolle
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Bethany E. Hosford
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Jules M. Rosen
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Juli D. Uhl
- Division of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Centre Research Foundation, Cincinnati, OH, 45229
| | | | - Christian Faulkner
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | | | - Brian L. Murphy
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - David A. Richards
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Katherine D. Holland
- Department of Neurology, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| |
Collapse
|
114
|
Gittelman JX, Wang L, Colburn HS, Pollak GD. Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Front Neural Circuits 2012; 6:67. [PMID: 23024629 PMCID: PMC3444759 DOI: 10.3389/fncir.2012.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
Pharmacological block of inhibition is often used to determine if inhibition contributes to spike selectivity, in which a preferred stimulus evokes more spikes than a null stimulus. When inhibitory block reduces spike selectivity, a common interpretation is that differences between the preferred- and null-evoked inhibitions created the selectivity from less-selective excitatory inputs. In models based on empirical properties of cells from the inferior colliculus (IC) of awake bats, we show that inhibitory differences are not required. Instead, inhibition can enhance spike selectivity by changing the gain, the ratio of output spikes to input current. Within the model, we made preferred stimuli that evoked more spikes than null stimuli using five distinct synaptic mechanisms. In two cases, synaptic selectivity (the differences between the preferred and null inputs) was entirely excitatory, and in two it was entirely inhibitory. In each case, blocking inhibition eliminated spike selectivity. Thus, observing spike rates following inhibitory block did not distinguish among the cases where synaptic selectivity was entirely excitatory or inhibitory. We then did the same modeling experiment using empirical synaptic conductances derived from responses to preferred and null sounds. In most cases, inhibition in the model enhanced spike selectivity mainly by gain modulation and firing rate reduction. Sometimes, inhibition reduced the null gain to zero, eliminating null-evoked spikes. In some cases, inhibition increased the preferred gain more than the null gain, enhancing the difference between the preferred- and null-evoked spikes. Finally, inhibition kept firing rates low. When selectivity is quantified by the selectivity index (SI, the ratio of the difference to the sum of the spikes evoked by the preferred and null stimuli), inhibitory block reduced the SI by increasing overall firing rates. These results are consistent with inhibition shaping spike selectivity by gain control.
Collapse
Affiliation(s)
- Joshua X Gittelman
- Section of Neurobiology, Institute for Neuroscience, Center for Perceptual Systems, The University of Texas Austin, TX, USA
| | | | | | | |
Collapse
|
115
|
Beamer E, Otahal J, Sills GJ, Thippeswamy T. N (w) -propyl-L-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur J Neurosci 2012; 36:3194-203. [PMID: 22943535 DOI: 10.1111/j.1460-9568.2012.08234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We investigated the anticonvulsant and neurobiological effects of a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, N (w) -propyl-l-arginine (L-NPA), on kainic acid (KA)-induced status epilepticus (SE) and early epileptogenesis in C57BL/6J mice. SE was induced with 20 mg/kg KA (i.p.) and seizures terminated after 2 h with diazepam (10 mg/kg, i.p). L-NPA (20 mg/kg, i.p.) or vehicle was administered 30 min before KA. Behavioural seizure severity was scored using a modified Racine score and electrographic seizure was recorded using an implantable telemetry device. Neuronal activity, activity-dependent synaptogenesis and reactive gliosis were quantified immunohistochemically, using c-Fos, synaptophysin and microglial and astrocytic markers. L-NPA treatment reduced the severity and duration of convulsive motor seizures, the power of electroencephalogram in the gamma band, and the frequency of epileptiform spikes during SE. It also reduced c-Fos expression in dentate granule cells at 2 h post-KA, and reduced the overall rate of epileptiform spiking (by 2- to 2.5-fold) in the first 7 days after KA administration. Furthermore, treatment with L-NPA suppressed both hippocampal gliosis and activity-dependent synaptogenesis in the outer and middle molecular layers of the dentate gyrus in the early phase of epileptogenesis (72 h post-KA). These results suggest that nNOS facilitates seizure generation during SE and may be important for the neurobiological changes associated with the development of chronic epilepsy, especially in the early stages of epileptogenesis. As such, it might represent a novel target for disease modification in epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, 4th floor Room 4.306, UCD Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | |
Collapse
|
116
|
Shetty AK, Hattiangady B, Rao MS, Shuai B. Neurogenesis response of middle-aged hippocampus to acute seizure activity. PLoS One 2012; 7:e43286. [PMID: 22912847 PMCID: PMC3422269 DOI: 10.1371/journal.pone.0043286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/23/2012] [Indexed: 01/19/2023] Open
Abstract
Acute Seizure (AS) activity in young adult age conspicuously modifies hippocampal neurogenesis. This is epitomized by both increased addition of new neurons to the granule cell layer (GCL) by neural stem/progenitor cells (NSCs) in the dentate subgranular zone (SGZ), and greatly enhanced numbers of newly born neurons located abnormally in the dentate hilus (DH). Interestingly, AS activity in old age does not induce such changes in hippocampal neurogenesis. However, the effect of AS activity on neurogenesis in the middle-aged hippocampus is yet to be elucidated. We examined hippocampal neurogenesis in middle-aged F344 rats after a continuous AS activity for >4 hrs, induced through graded intraperitoneal injections of the kainic acid. We labeled newly born cells via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, commencing from the day of induction of AS activity. AS activity enhanced the addition of newly born BrdU+ cells by 5.6 fold and newly born neurons (expressing both BrdU and doublecortin [DCX]) by 2.2 fold to the SGZ-GCL. Measurement of the total number of DCX+ newly born neurons also revealed a similar trend. Furthermore, AS activity increased DCX+ newly born neurons located ectopically in the DH (2.7 fold increase and 17% of total newly born neurons). This rate of ectopic migration is however considerably less than what was observed earlier for the young adult hippocampus after similar AS activity. Thus, the plasticity of hippocampal neurogenesis to AS activity in middle age is closer to its response observed in the young adult age. However, the extent of abnormal migration of newly born neurons into the DH is less than that of the young adult hippocampus after similar AS activity. These results also point out a highly divergent response of neurogenesis to AS activity between middle age and old age.
Collapse
Affiliation(s)
- Ashok K Shetty
- Research Service, Veterans Affairs Medical Centers of Durham, North Carolina, and Temple, Texas, United States of America.
| | | | | | | |
Collapse
|
117
|
Neurogenesis is enhanced and mossy fiber sprouting arises in FGF7-deficient mice during development. Mol Cell Neurosci 2012; 51:61-7. [PMID: 22889808 DOI: 10.1016/j.mcn.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/08/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
One of the most common types of epilepsy in adults is temporal lobe epilepsy. Temporal lobe epilepsy is often resistant to pharmacological treatment, requiring urgent understanding of its molecular and cellular mechanisms. It is generally accepted that an imbalance between excitatory and inhibitory inputs is related to epileptogenesis. We have recently identified that fibroblast growth factor (FGF) 7 is critical for inhibitory synapse formation in the developing hippocampus. Remarkably, FGF7 knockout mice are prone to epileptic seizures induced by chemical kindling (Terauchi et al., 2010). Here we show that FGF7 knockout mice exhibit epileptogenesis-related changes in the hippocampus even without kindling induction. FGF7 knockout mice show mossy fiber sprouting and enhanced dentate neurogenesis by 2 months of age, without apparent spontaneous seizures. These results suggest that FGF7-deficiency impairs inhibitory synapse formation, which results in mossy fiber sprouting and enhanced neurogenesis during development, making FGF7 knockout mice vulnerable to epilepsy.
Collapse
|
118
|
Christodoulou JA, Walker LM, Del Tufo SN, Katzir T, Gabrieli JDE, Whitfield-Gabrieli S, Chang BS. Abnormal structural and functional brain connectivity in gray matter heterotopia. Epilepsia 2012; 53:1024-32. [PMID: 22524972 PMCID: PMC3370071 DOI: 10.1111/j.1528-1167.2012.03466.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Periventricular nodular heterotopia (PNH) is a malformation of cortical development associated with epilepsy and dyslexia. Evidence suggests that heterotopic gray matter can be functional in brain malformations and that connectivity abnormalities may be important in these disorders. We hypothesized that nodular heterotopia develop abnormal connections and systematically investigated the structural and functional connectivity of heterotopia in patients with PNH. METHODS Eleven patients were studied using diffusion tensor tractography and resting-state functional connectivity MRI with bold oxygenation level-dependent (BOLD) imaging. Fiber tracks with a terminus within heterotopic nodules were visualized to determine structural connectivity, and brain regions demonstrating resting-state functional correlations to heterotopic nodules were analyzed. Relationships between these connectivity results and measures of clinical epilepsy and cognitive disability were examined. KEY FINDINGS A majority of heterotopia (69%) showed structural connectivity to discrete regions of overlying cortex, and almost all (96%) showed functional connectivity to these regions (mean peak correlation coefficient 0.61). Heterotopia also demonstrated connectivity to regions of contralateral cortex, other heterotopic nodules, ipsilateral but nonoverlying cortex, and deep gray matter structures or the cerebellum. Patients with the longest durations of epilepsy had a higher degree of abnormal functional connectivity (p = 0.036). SIGNIFICANCE Most heterotopic nodules in PNH are structurally and functionally connected to overlying cortex, and the strength of abnormal connectivity is higher among patients with the longest duration of epilepsy. Along with prior evidence that cortico-cortical tract defects underlie dyslexia in this disorder, the current findings suggest that altered connectivity is likely a critical substrate for neurologic dysfunction in brain malformations.
Collapse
Affiliation(s)
- Joanna A. Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Linsey M. Walker
- Comprehensive Epilepsy Center, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Stephanie N. Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Tami Katzir
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
| | - John D. E. Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Bernard S. Chang
- Comprehensive Epilepsy Center, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
119
|
Chierzi S, Stachniak TJ, Trudel E, Bourque CW, Murai KK. Activity maintains structural plasticity of mossy fiber terminals in the hippocampus. Mol Cell Neurosci 2012; 50:260-71. [PMID: 22579606 DOI: 10.1016/j.mcn.2012.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/14/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022] Open
Abstract
Neural activity plays an important role in organizing and optimizing neural circuits during development and in the mature nervous system. However, the cellular events that underlie this process still remain to be fully understood. In this study, we investigated the role of neural activity in regulating the structural plasticity of presynaptic terminals in the hippocampal formation. We designed a virus to drive the Drosophila Allatostatin receptor in individual dentate granule neurons to suppress activity of complex mossy fiber terminals 'on-demand' in organotypic slices and used time-lapse confocal imaging to determine the impact on presynaptic remodeling. We found that activity played an important role in maintaining the structural plasticity of the core region of the mossy fiber terminal (MFT) that synapses onto CA3 pyramidal cell thorny excrescences but was not essential for the motility of terminal filopodial extensions that contact local inhibitory neurons. Short-term suppression of activity did not have an impact on the size of the MFT, however, longer-term suppression reduced the overall size of the MFT. Remarkably, global blockade of activity with tetrodotoxin (TTX) interfered with the ability of single cell activity deprivation to slow down terminal dynamics suggesting that differences in activity levels among neighboring synapses promote synaptic remodeling events. The results from our studies indicate that neural activity plays an important role in maintaining structural plasticity of presynaptic compartments in the central nervous system and provide new insight into the time-frame during which activity can affect the morphology of synaptic connections.
Collapse
Affiliation(s)
- Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada H3G 1A4
| | | | | | | | | |
Collapse
|
120
|
|
121
|
Chwiej J, Dulinska J, Janeczko K, Appel K, Setkowicz Z. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study. J Biol Inorg Chem 2012; 17:731-9. [DOI: 10.1007/s00775-012-0892-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/07/2012] [Indexed: 11/29/2022]
|
122
|
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy. Neurobiol Dis 2012; 47:1-12. [PMID: 22426397 DOI: 10.1016/j.nbd.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease.
Collapse
|
123
|
Abstract
Alzheimer's disease (AD) and epilepsy are separated in the medical community, but seizures occur in some patients with AD, and AD is a risk factor for epilepsy. Furthermore, memory impairment is common in patients with epilepsy. The relationship between AD and epilepsy remains an important question because ideas for therapeutic approaches could be shared between AD and epilepsy research laboratories if AD and epilepsy were related. Here we focus on one of the many types of epilepsy, temporal lobe epilepsy (TLE), because patients with TLE often exhibit memory impairment, depression and other comorbidities that occur in AD. Moreover, the seizures that occur in patients with AD may be nonconvulsive, which occur in patients with TLE. Here we first compare neuropathology in TLE and AD with an emphasis on the hippocampus, which is central to both AD and TLE research. Then we compare animal models of AD pathology with animal models of TLE. Although many aspects of the comparisons are still controversial, there is one conclusion that we suggest is clear: some animal models of TLE could be used to help address questions in AD research, and some animal models of AD pathology are bona fide animal models of epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA and Departments of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA Tel.: +1 845 398 5427 Fax: +1 845 398 5422
| |
Collapse
|
124
|
Rohde J, Kirschstein T, Wilkars W, Müller L, Tokay T, Porath K, Bender RA, Köhling R. Upregulation of presynaptic mGluR2, but not mGluR3 in the epileptic medial perforant path. Neuropharmacology 2012; 62:1867-73. [DOI: 10.1016/j.neuropharm.2011.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
|
125
|
Pinheiro PS, Lanore F, Veran J, Artinian J, Blanchet C, Crépel V, Perrais D, Mulle C. Selective Block of Postsynaptic Kainate Receptors Reveals Their Function at Hippocampal Mossy Fiber Synapses. Cereb Cortex 2012; 23:323-31. [DOI: 10.1093/cercor/bhs022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
126
|
Upreti C, Otero R, Partida C, Skinner F, Thakker R, Pacheco LF, Zhou ZY, Maglakelidze G, Velíšková J, Velíšek L, Romanovicz D, Jones T, Stanton PK, Garrido-Sanabria ER. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; 135:869-85. [PMID: 22344585 DOI: 10.1093/brain/awr341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Ogawa B, Wang L, Ohishi T, Taniai E, Akane H, Suzuki K, Mitsumori K, Shibutani M. Reversible aberration of neurogenesis targeting late-stage progenitor cells in the hippocampal dentate gyrus of rat offspring after maternal exposure to acrylamide. Arch Toxicol 2012; 86:779-90. [DOI: 10.1007/s00204-012-0801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022]
|
128
|
Danzer SC. Depression, stress, epilepsy and adult neurogenesis. Exp Neurol 2012; 233:22-32. [PMID: 21684275 PMCID: PMC3199026 DOI: 10.1016/j.expneurol.2011.05.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/12/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022]
Abstract
Epilepsy and depression share an unusually high coincidence suggestive of a common etiology. Disrupted production of adult-born hippocampal granule cells in both disorders may contribute to this high coincidence. Chronic stress and depression are associated with decreased granule cell neurogenesis. Epilepsy is associated with increased production - but aberrant integration - of new cells early in the disease and decreased production late in the disease. In both cases, the literature suggests these changes in neurogenesis play important roles in their respective diseases. Aberrant integration of adult-generated cells during the development of epilepsy may impair the ability of the dentate gyrus to prevent excess excitatory activity from reaching hippocampal pyramidal cells, thereby promoting seizures. Effective treatment of a subset of depressive symptoms, on the other hand, may require increased granule cell neurogenesis, indicating that adult-generated granule cells can modulate mood and affect. Given the robust changes in adult neurogenesis evident in both disorders, competing effects on brain structure are likely. Changes in relative risk, disease course or response to treatment seem probable, but complex and changing patterns of neurogenesis in both conditions will require sophisticated experimental designs to test these ideas. Despite the challenges, this area of research is critical for understanding and improving treatment for patients suffering from these disorders.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
129
|
Affiliation(s)
- Ciğdem Ozkara
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | |
Collapse
|
130
|
Abstract
Cortical processing reflects the interplay of synaptic excitation and synaptic inhibition. Rapidly accumulating evidence is highlighting the crucial role of inhibition in shaping spontaneous and sensory-evoked cortical activity and thus underscores how a better knowledge of inhibitory circuits is necessary for our understanding of cortical function. We discuss current views of how inhibition regulates the function of cortical neurons and point to a number of important open questions.
Collapse
|
131
|
Anderson WS, Azhar F, Kudela P, Bergey GK, Franaszczuk PJ. Epileptic seizures from abnormal networks: why some seizures defy predictability. Epilepsy Res 2011; 99:202-13. [PMID: 22169211 DOI: 10.1016/j.eplepsyres.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/19/2011] [Accepted: 11/18/2011] [Indexed: 11/17/2022]
Abstract
Seizure prediction has proven to be difficult in clinically realistic environments. Is it possible that fluctuations in cortical firing could influence the onset of seizures in an ictal zone? To test this, we have now used neural network simulations in a computational model of cortex having a total of 65,536 neurons with intercellular wiring patterned after histological data. A spatially distributed Poisson driven background input representing the activity of neighboring cortex affected 1% of the neurons. Gamma distributions were fit to the interbursting phase intervals, a non-parametric test for randomness was applied, and a dynamical systems analysis was performed to search for period-1 orbits in the intervals. The non-parametric analysis suggests that intervals are being drawn at random from their underlying joint distribution and the dynamical systems analysis is consistent with a nondeterministic dynamical interpretation of the generation of bursting phases. These results imply that in a region of cortex with abnormal connectivity analogous to a seizure focus, it is possible to initiate seizure activity with fluctuations of input from the surrounding cortical regions. These findings suggest one possibility for ictal generation from abnormal focal epileptic networks. This mechanism additionally could help explain the difficulty in predicting partial seizures in some patients.
Collapse
Affiliation(s)
- William S Anderson
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
132
|
Zhang ZJ, Valiante TA, Carlen PL. Transition to seizure: from "macro"- to "micro"-mysteries. Epilepsy Res 2011; 97:290-9. [PMID: 22075227 DOI: 10.1016/j.eplepsyres.2011.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 01/25/2023]
Abstract
One of the most terrifying aspects of epilepsy is the sudden and apparently unpredictable transition of the brain into the pathological state of an epileptic seizure. The pathophysiology of the transition to seizure still remains mysterious. Herein we review some of the key concepts and relevant literatures dealing with this enigmatic transitioning of brain states. At the "MACRO" level, electroencephalographic (EEG) recordings at time display preictal phenomena followed by pathological high-frequency oscillations at the seizure onset. Numerous seizure prediction algorithms predicated on identifying changes prior to seizure onset have met with little success, underscoring our lack of understanding of the dynamics of transition to seizure, amongst other inherent limitation. We then discuss the concept of synchronized hyperexcited oscillatory networks underlying seizure generation. We consider these networks as weakly coupled oscillators, a concept which forms the basis of some relevant mathematical modeling of seizure transitions. Next, the underlying "MICRO" processes involved in seizure generation are discussed. The depolarization of the GABA(A) chloride reversal potential is a major concept, facilitating epileptogenesis, particularly in immature brain. Also the balance of inhibitory and excitatory local neuronal networks plays an important role in the process of transitioning to seizure. Gap junctional communication, including that which occurs between glia, as well as ephaptic interactions are increasingly recognized as critical for seizure generation. In brief, this review examines the evidence regarding the characterization of the transition to seizure at both the "MACRO" and "MICRO" levels, trying to characterize this mysterious yet critical problem of the brain state transitioning into a seizure.
Collapse
Affiliation(s)
- Z J Zhang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto Western Hospital, Toronto, ON, Canada.
| | | | | |
Collapse
|
133
|
Williams ME, Wilke SA, Daggett A, Davis E, Otto S, Ravi D, Ripley B, Bushong EA, Ellisman MH, Klein G, Ghosh A. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 2011; 71:640-55. [PMID: 21867881 DOI: 10.1016/j.neuron.2011.06.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2011] [Indexed: 01/06/2023]
Abstract
Our understanding of mechanisms that regulate the differentiation of specific classes of synapses is limited. Here, we investigate the formation of synapses between hippocampal dentate gyrus (DG) neurons and their target CA3 neurons and find that DG neurons preferentially form synapses with CA3 rather than DG or CA1 neurons in culture, suggesting that specific interactions between DG and CA3 neurons drive synapse formation. Cadherin-9 is expressed selectively in DG and CA3 neurons, and downregulation of cadherin-9 in CA3 neurons leads to a selective decrease in the number and size of DG synapses onto CA3 neurons. In addition, loss of cadherin-9 from DG or CA3 neurons in vivo leads to striking defects in the formation and differentiation of the DG-CA3 mossy fiber synapse. These observations indicate that cadherin-9 bidirectionally regulates DG-CA3 synapse development and highlight the critical role of differentially expressed molecular cues in establishing specific connections in the mammalian brain.
Collapse
Affiliation(s)
- Megan E Williams
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Jiruska P, Bragin A. High-frequency activity in experimental and clinical epileptic foci. Epilepsy Res 2011; 97:300-7. [PMID: 22024189 DOI: 10.1016/j.eplepsyres.2011.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 08/03/2011] [Accepted: 09/08/2011] [Indexed: 11/25/2022]
Abstract
Pathological high-frequency electrographic activity (pHFA, >80Hz) represents one of the major discoveries in epilepsy research over the past few decades. In this review we focus on the high-frequency activity recorded in vivo in chronic models of epilepsy. The presence of HFA particularly of fast ripples (250-600Hz)reflects epileptogenic reorganization of brain tissue, endogenous epileptogenicity and ability to generate spontaneous seizures. The spatial distribution of epileptic HFA can be used to localize epileptic foci. In some regions of brain the localizing value of epileptic HFA is weakened by frequency overlap with physiological HFA. In this situation, only detailed knowledge of the regional physiological activity may provide relevant information which frequencies provide localizing information. In the epileptic hippocampus, the activity from 250Hz to 600Hz frequency band (fast ripples) is always epileptic and can be used as reliable marker of epileptic tissue in all hippocampal subregions. The localizing value of HFA in the identification of the epileptic focus is discussed from an experimental and clinical perspective; as the information provided by HFA can improve presurgical diagnosis and surgical outcome. Finally, research into HFA has contributed to improved understanding and new insights into the cellular and network organization of epileptic foci and the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Premysl Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | |
Collapse
|
135
|
Abstract
Temporal lobe epilepsy (TLE), exemplified by complex partial seizures, is recognized in ~30% of epileptic patients. Seizures in TLE are associated with cognitive dysfunction and are resistant to antiepileptic drug therapy in ~35% of patients. Although surgical resection of the hippocampus bestows improved seizure regulation in most cases of intractable TLE, this choice can cause lasting cognitive deficiency and reliance on antiepileptic drugs. Thus, alternative therapies that are proficient in both containing the spontaneous recurrent seizures and reversing the cognitive dysfunction are needed. The cell transplantation approach is promising in serving as an adept alternate therapy for TLE, because this strategy has shown the capability to curtail epileptogenesis when used soon after an initial precipitating brain injury, and to restrain spontaneous recurrent seizures and improve cognitive function when utilized after the occurrence of TLE. Nonetheless, this treatment needs further advancement and rigorous evaluation in animal prototypes of chronic TLE before the conceivable clinical use. It is especially vital to gauge the efficacy of distinct donor cell types, such as the hippocampal precursor cells, γ-aminobutyric acid-ergic progenitors, and neural stem cells derived from diverse human sources (including the embryonic stem cells and induced pluripotent stem cells) for longstanding seizure suppression using continuous electroencephalographic recordings for prolonged periods. Additionally, the identification of the mechanisms underlying the graft-mediated seizure suppression and improved cognitive function, and the development of apt grafting strategies that enhance the anti-seizure and pro-cognitive effects of grafts will be necessary. The goal of this review is to evaluate the progress made hitherto in this area and to discuss the prospect for cell-based therapy for TLE.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center at Scott & White, Department of Molecular and Cellular Medicine, Temple, TX 76502, USA.
| |
Collapse
|
136
|
Drumond L, Kushmerick C, Guidine P, Doretto M, Moraes M, Massensini A. Reduced hippocampal GABAergic function in Wistar audiogenic rats. Braz J Med Biol Res 2011; 44:1054-9. [DOI: 10.1590/s0100-879x2011007500118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/25/2011] [Indexed: 03/13/2023] Open
|
137
|
Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 2011; 131:269-86. [PMID: 21554899 PMCID: PMC3133838 DOI: 10.1016/j.pharmthera.2011.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/26/2022]
Abstract
Resveratrol (RESV; 3,5,4'-tri-hydroxy stilbene), a naturally occurring phytoalexin, is found at a high concentration in the skin of red grapes and red wine. RESV mediates a wide-range of biological activities, which comprise an increased life span, anti-ischemic, anti-cancer, antiviral, anti-aging and anti-inflammatory properties. Studies in several animal prototypes of brain injury suggest that RESV is an effective neuroprotective compound. Ability to enter the brain after a peripheral administration and no adverse effects on the brain or body are other features that are appealing for using this compound as a therapy for brain injury or neurodegenerative diseases. The goal of this review is to discuss the promise of RESV for treating acute seizures, preventing the acute seizure or status epilepticus induced development of chronic epilepsy, and easing the chronic epilepsy typified by spontaneous recurrent seizures and cognitive dysfunction. First, the various beneficial effects of RESV on the normal brain are discussed to provide a rationale for considering RESV treatment in the management of acute seizures and epilepsy. Next, the detrimental effects of acute seizures or status epilepticus on the hippocampus and the implications of post-status epilepticus changes in the hippocampus towards the occurrence of chronic epilepsy and cognitive dysfunction are summarized. The final segment evaluates studies that have used RESV as a neuroprotective compound against seizures, and proposes studies that are critically needed prior to the clinical application of RESV as a prophylaxis against the development of chronic epilepsy and cognitive dysfunction after an episode of status epilepticus or head injury.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
138
|
Shen H, Liu L, Huo Z, Lin Z. Hippocampal stem cell grafting-mediated recovery of injured hippocampus in the rat model of temporal lobe epilepsy. Int J Neurosci 2011; 120:647-54. [PMID: 20718693 DOI: 10.3109/00207454.2010.509526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hippocampal stem cells (HSCs) are considered promising donor cells to promote reorganization of degenerated regions of the injured hippocampus in the epileptic brain. However, the efficacy of HSC grafting for repairing injured hippocampus remains unclear. To address this issue, we transplanted neonatal rat HSCs into the right hippocampus in rats with kainite acid (KA)-induced epilepsy. The activity of the hippocampus and amygdala nucleus was monitored with electroencephalogram (EEG) throughout 24 weeks posttransplantation. Rats with grafted HSCs exhibited reduced frequency of epileptic wave discharge and a 50% decrease in the amplitude of discharge. At 1, 4, 8, and 24 weeks posttransplantation, the aberrant mossy fiber sprouting (MFS) was evaluated with Timm's stain and the number of CA3 pyramidal neurons was analyzed with Nissl staining. Aberrant MFS induced by KA-lesion was notably suppressed by HSC grafts beginning 4 weeks posttransplantation, and was most effective by 8 weeks. In addition, the loss of CA3 pyramidal neurons was partially restored and reached the most recovery at 8 weeks. Taken together, these results suggest that HSCs derived from the postnatal hippocampus offer a promising reparative effect on KA-induced epileptic brain.
Collapse
Affiliation(s)
- Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
| | | | | | | |
Collapse
|
139
|
Wang FJ, Li CM, Hou XH, Wang R, Zhang LM. Selective Upregulation of Brain-Derived Neurotrophic Factor (BDNF) Transcripts and BDNF Direct Induction of Activity Independent N-Methyl-D-Aspartate Currents in Temporal Lobe Epilepsy Patients with Hippocampal Sclerosis. J Int Med Res 2011; 39:1358-68. [PMID: 21986136 DOI: 10.1177/147323001103900422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in many aspects of neuronal biology and hippocampal physiology and pathology, and has been implicated as a potential therapeutic target in temporal lobe epilepsy (TLE). BDNF total mRNA and its six transcripts were compared in the hippocampal tissue of TLE patients with or without hippocampal sclerosis (HS) by real-time fluorescence quantitative polymerase chain reaction. Excitatory actions induced by BDNF on hippocampal cells were investigated by whole-cell patch-clamp recordings. Statistically significant increases in three human BDNF mRNA transcripts were observed in TLE patients with HS compared with those without HS (transcripts 2, 3 and 5 exhibited 2.1-, 2.3-and 4.1-fold increases, respectively); there were no significant increases in other transcripts. BDNF directly induced N-methyl-d-aspartate currents in dentate granule cells of TLE patients with HS. These results demonstrated that BDNF transcripts were selectively upregulated in TLE patients with HS compared with those without HS. Moreover, BDNF induced excitability of dentate granule cells in TLE patients with HS.
Collapse
Affiliation(s)
- FJ Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - CM Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - XH Hou
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - R Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LM Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
140
|
Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia 2011; 52:1741-9. [PMID: 21801166 DOI: 10.1111/j.1528-1167.2011.03196.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Mesial temporal lobe epilepsy (mTLE) is a chronic disorder with spontaneous seizures recurring for years, or even decades. Many structural and functional changes have been detected in both the seizure focus and distal regions throughout the brain over this duration that may reflect the development of epileptogenic networks. Resting state functional magnetic resonance imaging (fMRI) connectivity mapping has the potential to elucidate and quantify these networks. The network between the left and right hippocampus may very likely be one of the most susceptible to changes due to long-term seizure propagation effects. Therefore, the objective of this study was to quantify cross hippocampal influence in mTLE using high temporal resolution fMRI, and to determine its relationship with disease duration. METHODS fMRI images were acquired in the resting (interictal) state with 500 ms temporal resolution across the temporal lobes of 19 mTLE patients (13 left, 6 right). The left and right hippocampi were identified on each subject's images using both structurally defined and functionally defined boundaries. The cross hippocampal influence was quantified in two ways for each pair of regions: (1) the nondirectional hippocampal functional connectivity calculated as the Pearson's correlation between the average time series in the left and the right hippocampus regions, and (2) the Granger causality (GC) laterality measure, which implies directional influence by determining temporal precedence. Each of these measures was correlated with age, age of onset, and disease duration across subjects to investigate relationship to disease progression. KEY FINDINGS The hippocampal connectivity was not significantly different between patients with left and right mTLE using either the structurally or the functionally defined regions. Across all patients, hippocampal connectivity was not correlated significantly with age of onset or duration of disease. However, as duration of disease increased after 10 years (nine patients), the hippocampal connectivity increased linearly. Using the functionally defined regions, the GC laterality was increased in the right mTLE over the left mTLE, indicating that the left hippocampus was influencing the right hippocampus more than the right influencing left. This was also positively correlated with age of onset. Furthermore, like hippocampal connectivity, the relationship between GC laterality and duration of disease changes after 10 years duration of disease. After this duration, the GC laterality was positive in the three of three patients with right mTLE (left influencing right), whereas the GC laterality was negative in five of six patients with left mTLE (right influencing left). SIGNIFICANCE This study reveals a relationship between fMRI functional connectivity and causal influence of the left and right hippocampi and duration of disease in mTLE. During the interictal state, the interhemispheric hippocampal connectivity initially is disrupted and then linearly increases as the epilepsy progresses longer than 10 years. This increase in connectivity appears to be due to the hippocampus contralateral to the epileptogenic focus exerting more influence over the ipsilateral hippocampus. These findings may have implications in understanding the functional development of epileptic networks and possibly prediction of surgical outcome of mTLE.
Collapse
Affiliation(s)
- Victoria L Morgan
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.
| | | | | | | | | |
Collapse
|
141
|
Ben-Ari Y, Dudek FE. Primary and secondary mechanisms of epileptogenesis in the temporal lobe: there is a before and an after. Epilepsy Curr 2011; 10:118-25. [PMID: 20944823 DOI: 10.1111/j.1535-7511.2010.01376.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extensive data involving several animal models of temporal lobe epilepsy highlight synaptic alterations that likely act synergistically during acquired epileptogenesis. Most of this research has utilized experimental models in which intense electrical activity in adult animals, primarily involving status epilepticus, causes variable neuronal death in the hippocampus and other temporal lobe structures. Neuronal death, including principal cells and specific interneurons, likely has several roles in epileptogenesis after brain injury. Both reduction of GABA-mediated inhibition from selective interneuron loss and the progressive formation of new recurrent excitatory circuits after death of principal neurons enhance excitability and promote seizures during the development of epilepsy. These epileptogenic circuits hypothetically continue to undergo secondary epileptogenesis, which involves further modifications that contribute to a progressive, albeit variable, increase in the frequency and severity of spontaneous recurrent seizures.
Collapse
|
142
|
Koubeissi MZ, Rashid S, Casadesus G, Xu K, Syed TU, Lüders H, Durand D. Transection of CA3 does not affect memory performance in rats. Epilepsy Behav 2011; 21:267-70. [PMID: 21576037 PMCID: PMC3125457 DOI: 10.1016/j.yebeh.2011.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
Longitudinal hippocampal pathways are needed for seizure synchronization, and there is evidence that their transection may abolish seizures. However, the effect of such transection on memory is unknown. In this study, we investigated the effect of transverse CA3 transections on memory function in Sprague-Dawley rats. With a stereotactic knife, a single CA3 transection was made unilaterally (n=5) or bilaterally (n=5). Sham surgery was done in another group (n=4). Morris water maze and novel object recognition tests were started 18 days later and revealed no significant differences between transected animals and controls. Cresyl-violet brain staining confirmed the locations of transections in the CA3 region. We conclude that normal performances in Morris water maze and novel object recognition tests do not appear to require intact transmission throughout the whole length of CA3, supporting the hypothesis that CA3 transections may be used in temporal lobe epilepsy to interrupt seizure circuitry while preserving memory.
Collapse
Affiliation(s)
- Mohamad Z Koubeissi
- Neurology Department, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106–5040, USA.
| | | | | | | | | | | | | |
Collapse
|
143
|
Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 2011; 61:1033-47. [PMID: 21736883 DOI: 10.1016/j.neuropharm.2011.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023]
Abstract
Epileptogenesis, i.e., the process leading to epilepsy, is a presumed consequence of brain insults including head trauma, stroke, infections, tumors, status epilepticus (SE), and complex febrile seizures. Typically, brain insults produce morphological and functional alterations in the hippocampal formation, including neurodegeneration in CA1, CA3, and, most consistently, the dentate hilus. Most of these alterations develop gradually, over several days, after the insult, providing a therapeutic window of opportunity for neuroprotective agents in the immediate post-injury period. We have previously reported that prolonged (four weeks) treatment with the antiepileptic drug valproate (VPA) after SE prevents hippocampal damage and most of the behavioral alterations that occur after brain insult, but not the development of spontaneously occurring seizures. These data indicated that VPA, although not preventing epilepsy, might be an effective disease-modifying treatment following brain insult. The present study was designed to (1) determine the therapeutic window for the neuroprotective effect of VPA after SE; (2) compare the efficacy of different intermittent i.p. versus continuous i.v. VPA treatment protocols; and (3) compare VPA with the glutamate (AMPA) receptor antagonist NS1209. As in our previous study with VPA, SE was induced by sustained electrical stimulation of the basolateral amygdala in rats and terminated after 4 h by diazepam. In vehicle controls, >90% of the animals developed significant neurodegeneration in the dentate hilus, whereas damage in CA1 and CA3 was more variable. Hilar parvalbumin-expressing interneurons were more sensitive to the effects of seizures than somatostatin-stained hilar interneurons or hilar mossy cells. Among the various VPA treatment protocols, continuous infusion of VPA for 24 immediately following the SE was the most effective neuroprotective treatment, preventing most of the neuronal damage. Infusion with NS1209 for 24 h exhibited similar neuroprotective efficacy. These data demonstrate that short treatment after SE with either VPA or NS1209 is powerfully neuroprotective, and may be disease-modifying treatments following brain insult.
Collapse
|
144
|
Abstract
Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause-effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses--without affecting the number of cells--in five subsets of local interneurons of the Drosophila olfactory glomeruli and measured the behavioral effects on olfactory perception. The neuron subsets were chosen under the criteria of GABA or ChAT expression. The reduction of one subset of synapses, mostly inhibitory, converted the responses to all odorants and concentrations tested as repulsive, while the reduction of another subset, mostly excitatory, led to a shift toward attraction. However, the simultaneous reduction of both synapse subsets restored normal perception. One group of local interneurons proved unaffected by the induced synapse loss in the perception of some odorants, indicating a functional specialization of these cells. Using genetic tools for space and temporal control of synapse number decrease, we show that the perception effects are specific to the local interneurons, rather than the mushroom bodies, and are not based on major structural changes elicited during development. These findings demonstrate that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition.
Collapse
|
145
|
Winden KD, Karsten SL, Bragin A, Kudo LC, Gehman L, Ruidera J, Geschwind DH, Engel J. A systems level, functional genomics analysis of chronic epilepsy. PLoS One 2011; 6:e20763. [PMID: 21695113 PMCID: PMC3114768 DOI: 10.1371/journal.pone.0020763] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/09/2011] [Indexed: 12/28/2022] Open
Abstract
Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity, and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes. One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary, combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-epileptogenic effects and epileptogenicity.
Collapse
Affiliation(s)
- Kellen D. Winden
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- Program in Neurogenetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanislav L. Karsten
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Neuroscience Research, Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lili C. Kudo
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- NeuroIndx Inc., Signal Hill, California, United States of America
| | - Lauren Gehman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine Ruidera
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel H. Geschwind
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- Program in Neurogenetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DHG); (JE)
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DHG); (JE)
| |
Collapse
|
146
|
Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G, Locatelli D, Vezzani A, Battaglia G. Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. ACTA ACUST UNITED AC 2011; 134:2828-43. [PMID: 21482549 DOI: 10.1093/brain/awr045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, via Temolo 4, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Elucidating the Complex Interactions between Stress and Epileptogenic Pathways. Cardiovasc Psychiatry Neurol 2011; 2011:461263. [PMID: 21547249 PMCID: PMC3085328 DOI: 10.1155/2011/461263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/22/2011] [Indexed: 11/24/2022] Open
Abstract
Clinical and experimental data suggest that stress contributes to the pathology of epilepsy. We review mechanisms by which stress, primarily via stress hormones, may exacerbate epilepsy, focusing on the intersection between stress-induced pathways and the progression of pathological events that occur before, during, and after the onset of epileptogenesis. In addition to this temporal nuance, we discuss other complexities in stress-epilepsy interactions, including the role of blood-brain barrier dysfunction, neuron-glia interactions, and inflammatory/cytokine pathways that may be protective or damaging depending on context. We advocate the use of global analytical tools, such as microarray, in support of a shift away from a narrow focus on seizures and towards profiling the complex, early process of epileptogenesis, in which multiple pathways may interact to dictate the ultimate onset of chronic, recurring seizures.
Collapse
|
148
|
Dudek FE, Staley KJ. Circuit mechanisms of acquired epileptogenesis. Epilepsia 2010. [DOI: 10.1111/j.1528-1167.2010.02824.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
149
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
150
|
Stefaniuk M, Swiech L, Dzwonek J, Lukasiuk K. Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. J Neurochem 2010; 115:1183-94. [PMID: 20874767 DOI: 10.1111/j.1471-4159.2010.07023.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that Ttyh1 mRNA is expressed in neurons and its expression is up-regulated in the brain during epileptogenesis and epilepsy. In this study, we aimed to elucidate the role of Ttyh1 in neurons. We found widespread expression of Ttyh1 protein in neurons in vivo and in vitro. Ttyh1 immunoreactivity in vitro was frequently found in invaginations of dendritic spines; however, Ttyh1, seldom co-localized with synaptic markers in vivo. Silencing Ttyh1 expression with siRNA in hippocampal cultures resulted in alterations of MAP2 distribution along neurites causing it to appear in the form of chains of beads. Over-expression of Ttyh1 caused intense neuritogenesis and the formation of numerous filopodia-like protrusions. Similar protrusions were also produced in SH-SY5Y neuroblastoma cells over-expressing Ttyh1. Using a biotin-streptavidin pull-down assay and mass spectrometry, we identified proteins that can form complexes with Ttyh1 in the brain. Ttyh1 binding proteins are often expressed in the endoplasmic reticulum or the Golgi apparatus or are localized at synapses. Finally, we found increased expression of Ttyh1 in the inner molecular layer of the dentate gyrus in an animal model of epilepsy. On the basis of our findings, we propose Ttyh1 involvement in brain pathology.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Epileptogenesis, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|