101
|
Wei H, Mundade R, Lange K, Lu T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 2013; 13:32-41. [PMID: 24296620 PMCID: PMC3925732 DOI: 10.4161/cc.27353] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate arginine residues on histones and other proteins. PRMTs play a crucial role in influencing various cellular functions, including cellular development and tumorigenesis. Arginine methylation by PRMTs is found on both nuclear and cytoplasmic proteins. Recently, there is increasing evidence regarding post-translational modifications of non-histone proteins by PRMTs, illustrating the previously unknown importance of PRMTs in the regulation of various cellular functions by post-translational modifications. In this review, we present the recent developments in the regulation of non-histone proteins by PRMTs.
Collapse
|
102
|
Targeting protein arginine N-methyltransferases with peptide-based inhibitors: opportunities and challenges. Future Med Chem 2013; 5:2199-206. [DOI: 10.4155/fmc.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently peptide-based inhibitors have been used to selectively inhibit a family of epigenetic enzymes called protein arginine N-methyltransferases (PRMTs), which has been implicated in different physiological processes and human diseases, such as heart disease and cancer. The diverse efforts to tease out subtle structural differences among PRMT enzymes in order to generate selective inhibitors as well as existing challenges in the field will be examined. The acquisition of PRMT substrate sequence preferences and structural information obtained from small-molecule inhibitors have helped in developing different peptide-based inhibitors that show great promise not only as inhibitors, but also as molecular probes to characterize PRMTs.
Collapse
|
103
|
Martens-Lobenhoffer J, Bode-Böger SM. Mass spectrometric quantification of L-arginine and its pathway related substances in biofluids: the road to maturity. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 964:89-102. [PMID: 24210895 DOI: 10.1016/j.jchromb.2013.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/18/2022]
Abstract
The amino acid L-arginine together with its metabolites and related substances is in the center of many biologically important pathways, especially the urea cycle and the nitric oxide (NO) synthesis. Therefore, the concentrations of these substances in various biological fluids are of great interest as predictive markers for health and disease. Yet, they provide major analytical difficulties as they are very polar in nature and therefore not easily to be separated on standard reversed phase HPLC stationary phases. Furthermore, as endogenous substances, no analyte-free matrix is available, a fact that results in complicated calibration procedures. This review evaluates the analytical literature for the determination of L-arginine, symmetric dimethylarginine, asymmetric dimethylarginine, monomethylarginine, L-citrulline, L-ornithine, L-homoarginine, agmatine and dimethylguanidinovaleric acid in biological fluids. Papers are discussed, which were published since 2007 and describe methods applying capillary electrophoresis (CE), gas chromatography (GC), reversed phase HPLC or polar phase HPLC, coupled to mass spectrometric quantification. Nowadays, many carefully developed and validated methods for L-arginine and its related substances are available to the scientific community. The use of stable isotope labeled internal standards enables high precision and accuracy in mass spectrometry-based quantitative analysis.
Collapse
Affiliation(s)
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
104
|
Kleparnik M, Tomandlova M, Glatz Z, Tomandl J. Determination of asymmetric and symmetric dimethylarginines in human plasma by HPLC with electrochemical detection. J Sep Sci 2013; 36:3696-701. [DOI: 10.1002/jssc.201300813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Martin Kleparnik
- Department of Biochemistry; Faculty of Medicine; Masaryk University; Kamenice Brno Czech Republic
| | - Marie Tomandlova
- Department of Biochemistry; Faculty of Medicine; Masaryk University; Kamenice Brno Czech Republic
| | - Zdenek Glatz
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Kamenice Brno Czech Republic
| | - Josef Tomandl
- Department of Biochemistry; Faculty of Medicine; Masaryk University; Kamenice Brno Czech Republic
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Kamenice Brno Czech Republic
| |
Collapse
|
105
|
Dillon MBC, Rust HL, Thompson PR, Mowen KA. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 2013; 288:27872-80. [PMID: 23946480 DOI: 10.1074/jbc.m113.491092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.
Collapse
Affiliation(s)
- Myles B C Dillon
- From the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | |
Collapse
|
106
|
Low JK, Hart-Smith G, Erce MA, Wilkins MR. Analysis of the Proteome of Saccharomyces cerevisiae for Methylarginine. J Proteome Res 2013; 12:3884-99. [DOI: 10.1021/pr400556c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jason K.K. Low
- Systems Biology Laboratory, School of Biotechnology
and Biomolecular Sciences, The University of New South Wales, NSW 2052 Sydney, Australia
| | - Gene Hart-Smith
- Systems Biology Laboratory, School of Biotechnology
and Biomolecular Sciences, The University of New South Wales, NSW 2052 Sydney, Australia
| | - Melissa A. Erce
- Systems Biology Laboratory, School of Biotechnology
and Biomolecular Sciences, The University of New South Wales, NSW 2052 Sydney, Australia
| | - Marc R. Wilkins
- Systems Biology Laboratory, School of Biotechnology
and Biomolecular Sciences, The University of New South Wales, NSW 2052 Sydney, Australia
| |
Collapse
|
107
|
Thapar R, Denmon AP. Signaling pathways that control mRNA turnover. Cell Signal 2013; 25:1699-710. [PMID: 23602935 PMCID: PMC3703460 DOI: 10.1016/j.cellsig.2013.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover.
Collapse
Affiliation(s)
- Roopa Thapar
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| | | |
Collapse
|
108
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
109
|
Singhroy DN, Mesplède T, Sabbah A, Quashie PK, Falgueyret JP, Wainberg MA. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 2013; 10:73. [PMID: 23866860 PMCID: PMC3750301 DOI: 10.1186/1742-4690-10-73] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
Background Protein arginine methyltransferase 6 (PRMT6) is a nuclear enzyme that methylates arginine residues on histones and transcription factors. In addition, PRMT6 inhibits HIV-1 replication in cell culture by directly methylating and interfering with the functions of several HIV-1 proteins, i.e. Tat, Rev and nucleocapsid (NC). PRMT6 also displays automethylation capacity but the role of this post-translational modification in its antiretroviral activity remains unknown. Results Here we report the identification by liquid chromatography-mass spectrometry of R35 within PRMT6 as the target residue for automethylation and have confirmed this by site-directed mutagenesis and in vitro and in vivo methylation assays. We further show that automethylation at position 35 greatly affects PRMT6 stability and is indispensable for its antiretroviral activity, as demonstrated in HIV-1 single-cycle TZM-bl infectivity assays. Conclusion These results show that PRMT6 automethylation plays a role in the stability of this protein and that this event is indispensible for its anti-HIV-1 activity.
Collapse
Affiliation(s)
- Diane N Singhroy
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, 3755 Cote Sainte Catherine, Montreal, QC, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
110
|
Baumgartner R, Stocker H, Hafen E. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster. PLoS Genet 2013; 9:e1003598. [PMID: 23874212 PMCID: PMC3708825 DOI: 10.1371/journal.pgen.1003598] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/15/2013] [Indexed: 12/19/2022] Open
Abstract
Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1. Animal growth is orchestrated by controlled expression of growth-regulatory factors. This regulation is achieved at different molecular levels like transcription, translation initiation, and translational regulation. Whereas transcriptional control and translation initiation of growth components have been well studied, the role of translational control in this process is less well understood. Here, we describe Lingerer (Lig), an UBA domain-containing protein, as a new growth suppressor that associates with the three RNA-binding proteins Fragile X mental retardation protein 1 (FMR1), Rasputin (Rin) and Caprin (Capr). Drosophila FMR1, Rin and Capr orthologs are known translational regulators. In lig mutants and in FMR1, Capr and rin in combination as double mutants, organ size is increased due to excess proliferation. These data unveil a growth-regulatory function of Lig, and a redundant function of the RNA-binding proteins FMR1, Capr and Rin. Our findings demonstrate the involvement of mRNA-binding proteins in epithelial growth control and may also contribute to a better molecular understanding of the Fragile X mental retardation syndrome.
Collapse
Affiliation(s)
- Roland Baumgartner
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse, Zürich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse, Zürich, Switzerland
| | - Ernst Hafen
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
111
|
Horiuchi KY, Eason MM, Ferry JJ, Planck JL, Walsh CP, Smith RF, Howitz KT, Ma H. Assay development for histone methyltransferases. Assay Drug Dev Technol 2013; 11:227-36. [PMID: 23557020 DOI: 10.1089/adt.2012.480] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications play a crucial role in human diseases. Unlike genetic mutations, however, they do not change the underlying DNA sequences. Epigenetic phenomena have gained increased attention in the field of cancer research, with many studies indicating that they are significantly involved in tumor establishment and progression. Histone methyltransferases (HMTs) are a large group of enzymes that specifically methylate protein lysine and arginine residues, especially in histones, using S-adenosyl-L-methionine (SAM) as the methyl donor. However, in general, HMTs have no widely accepted high-throughput screening (HTS) assay format, and reference inhibitors are not available for many of the enzymes. In this study, we describe the application of a miniaturized, radioisotope-based reaction system: the HotSpot(SM) platform for methyltransferases. Since this platform employs tritiated SAM as a cofactor, it can be applied to the assay of any HMT. The key advantage of this format is that any substrate can be used, including peptides, proteins, or even nucleosomes, without the need for labeling or any other modifications. Using this platform, we have determined substrate specificities, characterized enzyme kinetics, performed compound profiling for both lysine and arginine methyltransferases, and carried out HTS for a small-library LOPAC against DOT1L. After hit confirmation and profiling, we found that suramin inhibited DOT1L, NSD2, and PRMT4 with IC₅₀ values at a low μM range.
Collapse
Affiliation(s)
- Kurumi Y Horiuchi
- Department of Biochemistry, Reaction Biology Corporation, One Great Valley Parkway, Suite 2, Malvern, PA 19355, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Kumar S, Maiti S. Effect of different arginine methylations on the thermodynamics of Tat peptide binding to HIV-1 TAR RNA. Biochimie 2013; 95:1422-31. [PMID: 23541506 DOI: 10.1016/j.biochi.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022]
Abstract
RNA-binding proteins are an important class of mediators that regulate cell function and differentiation. Methylation of arginine, a post-translational modification (PTM) found in these proteins, can modulate their function. Arginine can be monomethylated or dimethylated, depending on the type of methyl transferases involved. This paper describes a comparative study of the thermodynamics of unmodified and modified Tat peptide interaction with TAR RNA, where the peptide is methylated at epsilon (ɛ) and eta (η) nitrogen atoms of guanidinium group of arginine side chain at position 52 or 53. The results indicate that monomethylation of arginine at epsilon (ɛ) nitrogen atom enhances binding affinity, owing to a more favourable enthalpy component which overrides the less favourable entropy change. In contrast, monomethylation of arginine residue at η nitrogen results in reduced binding affinity originating exclusively from a less favourable enthalpy change leaving entropic component unaffected. However, in case of simultaneous methylation at ɛ and η positions, the binding parameters remain almost unaffected, when compared to the unmodified peptide. In case of symmetric dimethylation at η position the observed enthalpy change of the binding was found to be smaller than the values obtained for the unmodified peptide. Asymmetric dimethylation at η position showed the most reduced binding affinities owing to less favourable enthalpy changes. These results provide insights that enable elucidation of the biological outcome of arginine methylation as PTMs that regulate protein function, and will contribute to our understanding of how these PTMs are established in vitro and in vivo.
Collapse
Affiliation(s)
- Santosh Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | |
Collapse
|
113
|
Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol 2013; 87:4360-71. [PMID: 23388725 DOI: 10.1128/jvi.02574-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.
Collapse
|
114
|
Bhargavan B, Chhunchha B, Fatma N, Kubo E, Kumar A, Singh DP. Epigenetic repression of LEDGF during UVB exposure by recruitment of SUV39H1 and HDAC1 to the Sp1-responsive elements within LEDGF promoter CpG island. Epigenetics 2013; 8:268-80. [PMID: 23386123 DOI: 10.4161/epi.23861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression level of lens epithelial derived growth factor (LEDGF) is vital for LEDGF-mediated cell survival and cytoprotection against proapoptotic stimuli. We previously demonstrated that LEDGF is transcriptionally regulated by Sp1-responsive elements within a CpG island in the LEDGF promoter. Herein, we report on the existence of epigenetic signaling involved in the repression of LEDGF transcription in lens epithelial cells (LECs) facing UVB. UVB exposure led to histone H3 dimethylation and deacetylation at its CpG island, where a histone deacetylase/histone methylase (HDAC1/SUV39H1) complex was recruited. Exposure of LECs to UVB stress altered LEDGF protein and mRNA expression as well as promoter activity, while failing to methylate the CpG island. These events were correlated with increased reactive oxygen species (ROS) and increased cell death. LEDGF promoter activity and expression remained unaltered after 5-Aza treatment, but were relieved with tricostatin A, an inhibitor of HDACs. Expression analysis disclosed that UVB radiation altered the global expression levels of acetylated histone proteins, diminished total histone acetyltransferase (HAT) activity and increased HDAC activity and HDAC1 expression. In silico analysis of LEDGF proximal promoter and ChIP analyses disclosed HDAC1/SUV39H1 complex anchored to the -170/-10 nt promoter regions at Sp1-responsive elements and also attenuated Sp1 binding, resulting in HDAC1- and SUV39H1-dependent deacetylation and dimethylation of H3 at K9. Acetylation of H3K9 was essential for LEDGF active transcription, while enrichment of H3K9me2 at Sp1-responsive elements within CpGs (-170/-10) by UVB radiation repressed LEDGF transcription. Our study may contribute to understanding diseases associated with LEDGF aberrant expression due to specific epigenetic modifications, including blinding disorders.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
115
|
Lakowski TM, Szeitz A, Pak ML, Thomas D, Vhuiyan MI, Kotthaus J, Clement B, Frankel A. MS³ fragmentation patterns of monomethylarginine species and the quantification of all methylarginine species in yeast using MRM³. J Proteomics 2013; 80:43-54. [PMID: 23333926 DOI: 10.1016/j.jprot.2013.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
Abstract
Protein arginine methylation is one of the epigenetic modifications to proteins that is studied in yeast and is known to be involved in a number of human diseases. All eukaryotes produce Nη-monomethylarginine (ηMMA), asymmetric Nη1, Nη1-dimethylarginine (aDMA), and most produce symmetric Nη1, Nη2-dimethylarginine (sDMA) on proteins, but only yeast produce Nδ-monomethylarginine (δMMA). It has proven difficult to differentiate among all of these methylarginines using mass spectrometry. Accordingly, we demonstrated that the two forms of MMA have indistinguishable primary product ion spectra. However, the secondary product ion spectra of δMMA and ηMMA exhibited distinct patterns of ions. Using incorporation of deuterated methyl-groups in yeast, we determined which secondary product ions were methylated and their structures. Utilizing distinct secondary product ions, a triple quadrupole multiple reaction monitoring cubed (MRM(3)) assay was developed to measure δMMA, ηMMA, sDMA and aDMA derived from hydrolyzed protein. As a proof-of-concept, δMMA and ηMMA were measured using the MRM(3) method in wild type and mutant strains of Saccharomyces cerevisiae and compared to the total MMA measured using an existing assay. The MRM(3) assay represents the only method to directly quantify δMMA and the only method to simultaneously quantify all yeast methylarginines.
Collapse
Affiliation(s)
- Ted M Lakowski
- Faculty of Pharmacy, The University of Manitoba, Winnipeg, Manitoba, Canada.
| | - András Szeitz
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Magnolia L Pak
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Thomas
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mynol I Vhuiyan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joscha Kotthaus
- Pharmaceutical Institute, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmaceutical Institute, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
116
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
117
|
JaŸwińska-Kozuba A, Martens-Lobenhoffer J, Surdacki A, Kruszelnicka O, Rycaj J, Godula-Stuglik U, Bode-Böger SM. Associations between endogenous dimethylarginines and renal function in healthy children and adolescents. Int J Mol Sci 2012. [PMID: 23203136 PMCID: PMC3509652 DOI: 10.3390/ijms131115464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The structural isomer of asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), is eliminated almost entirely by urinary excretion and considered a sensitive index of glomerular filtration rate (GFR). However, reports on this relationship in healthy subjects younger than 18 years of age are rare. Therefore, our aim was to investigate relations between endogenous dimethylarginines and renal function indices in healthy children and adolescents. We studied 40 subjects aged 3–18 years free of coexistent diseases or subclinical carotid atherosclerosis. A serum creatinine-derived estimated GFR (eGFR) was calculated by the revised bedside Schwartz equation. L-arginine, ADMA and SDMA were measured by liquid chromatography-tandem mass spectrometry. Mean eGFR was 122 ± 22 (SD) mL/min per 1.73 m2. Creatinine and eGFR exhibited closer correlations with the SDMA/ADMA ratio (r = 0.64, p < 0.0001; r = −0.63, p < 0.0001, respectively) than with SDMA (r = 0.31, p = 0.05; r = −0.35, p = 0.03). Neither creatinine nor eGFR correlated with ADMA or L-arginine. Adjustment for age or height only slightly attenuated the associations between the SDMA/ADMA ratio and eGFR or creatinine. Our findings suggest the superiority of the SDMA/ADMA ratio over SDMA as a renal function index in healthy children. Thus, further studies are warranted to verify our preliminary results in a larger group of subjects below 18 years of age.
Collapse
Affiliation(s)
| | - Jens Martens-Lobenhoffer
- Institute for Clinical Pharmacology, Otto-von-Guericke University, 39120 Magdeburg, Germany; E-Mails: (J.M.-L.); (S.M.B.-B.)
| | - Andrzej Surdacki
- 2nd Department of Cardiology, Jagiellonian University/University Hospital, 31-501 Cracow, Poland
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +48-12-424-7180
| | - Olga Kruszelnicka
- Department of Coronary Artery Disease, the John Paul II Hospital, 31-202 Cracow, Poland; E-Mail:
| | - Jarosław Rycaj
- Department of Cardiology, Congenital Heart Defects and Electrotherapy, Silesian Center for Heart Diseases in Zabrze, 41-800 Zabrze, Medical University of Silesia, Poland; E-Mail:
| | - Urszula Godula-Stuglik
- Department of Pediatrics in Zabrze, 41-800 Zabrze, Medical University of Silesia, Poland; E-Mail:
| | - Stefanie M. Bode-Böger
- Institute for Clinical Pharmacology, Otto-von-Guericke University, 39120 Magdeburg, Germany; E-Mails: (J.M.-L.); (S.M.B.-B.)
| |
Collapse
|
118
|
Lin JL, Yu HC, Chao JL, Wang C, Cheng MY. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae. Yeast 2012; 29:537-46. [PMID: 23233232 DOI: 10.1002/yea.2934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022] Open
Abstract
BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism.
Collapse
Affiliation(s)
- Jyun-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
119
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
120
|
Chen XM, Hu CP, Li YJ, Jiang JL. Cardiovascular risk in autoimmune disorders: role of asymmetric dimethylarginine. Eur J Pharmacol 2012; 696:5-11. [PMID: 23026371 DOI: 10.1016/j.ejphar.2012.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
Mounting evidence indicates that cardiovascular events are a main cause of excessive mortality of autoimmune disorders like type I diabetes mellitus and rheumatic diseases. Inflammation and endothelial dysfunction, independent predictors to cardiovascular disease, are hallmarks of autoimmunity. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, can cause or contribute to the inflammatory syndrome and endothelial dysfunction. Recently, elevated ADMA levels have been demonstrated in many autoimmune diseases, suggesting that ADMA might play an important role for the associated manifestations of cardiovascular disease. In the review, we discuss the role of ADMA in the excessive cardiovascular morbidity and mortality associated with autoimmune diseases.
Collapse
Affiliation(s)
- Xu-Meng Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha 410078, China
| | | | | | | |
Collapse
|
121
|
Nandi M, Kelly P, Torondel B, Wang Z, Starr A, Ma Y, Cunningham P, Stidwill R, Leiper J. Genetic and pharmacological inhibition of dimethylarginine dimethylaminohydrolase 1 is protective in endotoxic shock. Arterioscler Thromb Vasc Biol 2012; 32:2589-97. [PMID: 22995517 DOI: 10.1161/atvbaha.112.300232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The overproduction of vascular NO contributes toward the circulatory collapse observed in patients with septic shock. Dimethylarginine dimethylaminohydrolase (DDAH), which has 2 isoforms, metabolizes asymmetrically methylated arginines (asymmetric mono- or di-methylarginine), endogenously produced NO synthase inhibitors. We wished to investigate whether reducing DDAH1 activity, using genetic and pharmacological approaches, is protective during lipopolysaccharide-induced endotoxic shock. METHODS AND RESULTS Experiments were conducted in DDAH1 heterozygous knockout mice (DDAH1(+/-)) or naive rats treated with a synthetic pharmacological DDAH inhibitor (L-257). We demonstrate for the first time that L-257 is DDAH1 selective using recombinant human DDAH proteins. DDAH1 mRNA was expressed in aortic but not macrophage cDNA, and consistent with this expression profile, L-257 selectively inhibited NO production from lipopolysaccharide-treated aorta but not macrophages, in culture. Conscious and anesthetized cardiovascular hemodynamics were monitored using implanted radiotelemetry devices or invasive catheters, respectively. Lipopolysaccharide was administered intravenously to model endotoxemia, and all animals presented with circulatory shock. DDAH1(+/-) mice or L-257-treated rats displayed attenuation in the rate of developed hypotension compared with wild-type littermates or vehicle control animals, respectively. CONCLUSIONS Pharmacological and genetic reduction of DDAH1 activity is protective against the vascular changes observed during endotoxic shock.
Collapse
Affiliation(s)
- Manasi Nandi
- Pharmacology and Therapeutics Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, Franklin-Wilkins Bldg, 150 Stamford St, London SE1 9NH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One 2012; 7:e42106. [PMID: 22879910 PMCID: PMC3411732 DOI: 10.1371/journal.pone.0042106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/02/2012] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.
Collapse
|
123
|
Dillon MBC, Bachovchin DA, Brown SJ, Finn MG, Rosen H, Cravatt BF, Mowen KA. Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol 2012; 7:1198-204. [PMID: 22506763 DOI: 10.1021/cb300024c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine using S-adenosylmethionine (SAM) as a methyl-donor. The PRMT family is widely expressed and has been implicated in biological functions such as RNA splicing, transcriptional control, signal transduction, and DNA repair. Therefore, specific inhibitors of individual PRMTs have potentially significant research and therapeutic value. In particular, PRMT1 is responsible for >85% of arginine methyltransferase activity, but currently available inhibitors of PRMT1 lack specificity, efficacy, and bioavailability. To address this limitation, we developed a high-throughput screening assay for PRMT1 that utilizes a hyper-reactive cysteine within the active site, which is lacking in almost all other PRMTs. This assay, which monitors the kinetics of the fluorescence polarization signal increase upon PRMT1 labeling by a rhodamine-containing cysteine-reactive probe, successfully identified two novel inhibitors selective for PRMT1 over other SAM-dependent methyltransferases.
Collapse
Affiliation(s)
- Myles B. C. Dillon
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Daniel A. Bachovchin
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Steven J. Brown
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - M. G. Finn
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Hugh Rosen
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Kerri A. Mowen
- Department
of Chemical Physiology and ‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
124
|
CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem J 2012; 444:323-31. [PMID: 22428544 DOI: 10.1042/bj20112033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdle's disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen levels in PRMT4 (native)- and VLD (methylation deficient mutant)-transfected skeletal muscle cells respectively. This demonstrated that PRMT4 expression and the associated methyltransferase activity is necessary for the gene expression programme involved in glycogen metabolism and human glycogen storage diseases.
Collapse
|
125
|
Abstract
Tudor domain proteins function as molecular adaptors, binding methylated arginine or lysine residues on their substrates to promote physical interactions and the assembly of macromolecular complexes. Here, we discuss the emerging roles of Tudor domain proteins during development, most notably in the Piwi-interacting RNA pathway, but also in other aspects of RNA metabolism, the DNA damage response and chromatin modification.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117604
| |
Collapse
|
126
|
Trivedi MS, Deth RC. Role of a redox-based methylation switch in mRNA life cycle (pre- and post-transcriptional maturation) and protein turnover: implications in neurological disorders. Front Neurosci 2012; 6:92. [PMID: 22740813 PMCID: PMC3382963 DOI: 10.3389/fnins.2012.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022] Open
Abstract
Homeostatic synaptic scaling in response to neuronal stimulus or activation, and due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions (Turrigiano and Nelson, 2004). Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia, etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic; Cajigas et al., 2010). This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation, and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition, and behavior (Cajigas et al., 2010). Thus a regulatory switch, which controls the lifespan, maturation, and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at (1) the pre-transcription level, by regulating precursor-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and (2) the post-transcription level by modulating the regulatory functions of ribonucleoproteins and RNA binding proteins in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione anti-oxidant levels (Lertratanangkoon et al., 1997), the redox status of neurons might be the central regulatory switch for methylation-based changes in mRNA processing, protein expression, and turnover. Lastly, we also describe experimental methods and techniques which might help researchers to evaluate the suggested hypothesis.
Collapse
Affiliation(s)
- Malav S Trivedi
- Department of Pharmaceutical Sciences, Northeastern University Boston, MA, USA
| | | |
Collapse
|
127
|
Lee YH, Ma H, Tan TZ, Ng SS, Soong R, Mori S, Fu XY, Zernicka-Goetz M, Wu Q. Protein arginine methyltransferase 6 regulates embryonic stem cell identity. Stem Cells Dev 2012; 21:2613-22. [PMID: 22455726 DOI: 10.1089/scd.2011.0330] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone arginine methylation has emerged as an important histone modification involved in gene regulation. Protein arginine methyltransferase (PRMT) 4 and 5 have been shown to play essential roles in early embryonic development and in embryonic stem (ES) cells. Recently, it has been reported that PRMT6-mediated di-methylation of histone H3 at arginine 2 (H3R2me2) can antagonize tri-methylation of histone H3 at lysine 4 (H3K4me3), which marks active genes. However, whether PRMT6 and PRMT6-mediated H3R2me2 play crucial roles in early embryonic development and ES cell identity remain unclear. Here, we have investigated their roles using gain and loss of function studies with mouse ES cells as a model system. We report that Prmt6 and histone H3R2 methylation levels increased when ES cells are induced to differentiate. Consistently, we find that differentiation of ES cells upon upregulation of Prmt6 is associated with decreased expression of pluripotency genes and increased expression of differentiation markers. We also observe that elevation of Prmt6 increases the methylation level of histone H3R2 and decreases H3K4me, Chd1, and Wdr5 levels at the promoter regions of Oct4 and Nanog. Surprisingly, knockdown of Prmt6 also leads to downregulation of pluripotency genes and induction of expression of differentiation markers suggesting that Prmt6 is important for ES cell pluripotency and self-renewal. Our results indicate that a critical level of Prmt6 and histone H3R2me must be maintained in mouse ES cells to sustain their pluripotency.
Collapse
Affiliation(s)
- Yun Hwa Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ahmad A, Cao X. Plant PRMTs broaden the scope of arginine methylation. J Genet Genomics 2012; 39:195-208. [PMID: 22624881 DOI: 10.1016/j.jgg.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 01/22/2023]
Abstract
Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins, involved in a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction, and DNA repair. Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants. Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth, flowering time, circadian cycle, and response to high medium salinity and ABA. In this review, we highlight recent advances in the field of post-translational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road #5, Beijing 100101, China
| | | |
Collapse
|
129
|
Tissue-specific and age-dependent expression of protein arginine methyltransferases (PRMTs) in male rat tissues. Biogerontology 2012; 13:329-36. [DOI: 10.1007/s10522-012-9379-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
130
|
Jung GA, Shin BS, Jang YS, Sohn JB, Woo SR, Kim JE, Choi G, Lee KM, Min BH, Lee KH, Park GH. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase. Exp Mol Med 2012; 43:550-60. [PMID: 21778808 DOI: 10.3858/emm.2011.43.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.
Collapse
Affiliation(s)
- Gyung Ah Jung
- Department of Biochemistry, BK 21 Program, College of Medicine, Korea University, Seoul
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Musiyenko A, Majumdar T, Andrews J, Adams B, Barik S. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cell Microbiol 2012; 14:882-901. [PMID: 22309152 DOI: 10.1111/j.1462-5822.2012.01763.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg(2+)-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca(2+) -dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined.
Collapse
Affiliation(s)
- Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA
| | | | | | | | | |
Collapse
|
132
|
Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA. PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 2012; 139:1083-94. [PMID: 22318224 DOI: 10.1242/dev.076182] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
133
|
Erce MA, Pang CNI, Hart-Smith G, Wilkins MR. The methylproteome and the intracellular methylation network. Proteomics 2012; 12:564-86. [DOI: 10.1002/pmic.201100397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
|
134
|
Blackwell E, Ceman S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 2012; 79:163-75. [PMID: 22345066 DOI: 10.1002/mrd.22024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
Arginine methylation is a post-translational modification that regulates protein function. RNA-binding proteins are an important class of cell-function mediators, some of which are methylated on arginine. Early studies of RNA-binding proteins and arginine methylation are briefly introduced, and the enzymes that mediate this post-translational modification are described. We review the most common RNA-binding domains and briefly discuss how they associate with RNAs. We address the following groups of RNA-binding proteins: hnRNP, Sm, Piwi, Vasa, FMRP, and HuD. hnRNPs were the first RNA-binding proteins found to be methylated on arginine. The Sm proteins function in RNA processing and germ cell specification. The Piwi proteins are largely germ cell specific and are also required for germ cell production, as is Vasa. FMRP participates in germ cell formation in Drosophila, but is more widely known for its neuronal function. Similarly, HuD plays a role in nervous system development and function. We review the effects of arginine methylation on the function of each protein, then conclude by addressing remaining questions and future directions of arginine methylation as an important and emerging area of regulation.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, Neuroscience Program and College of Medicine, University of Illinois, Urbana-Champaign, Illlinois, USA
| | | |
Collapse
|
135
|
Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J Biol Chem 2012; 287:7859-70. [PMID: 22241471 DOI: 10.1074/jbc.m111.336271] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-N(G)-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N(G)-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N(G)-monomethylarginine, not asymmetric ω-N(G),N(G)-dimethylarginine or symmetric ω-N(G),N(G')-dimethylarginine, under the conditions tested.
Collapse
Affiliation(s)
- Cecilia I Zurita-Lopez
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
136
|
Campbell M, Chang PC, Huerta S, Izumiya C, Davis R, Tepper CG, Kim KY, Shevchenko B, Wang DH, Jung JU, Luciw PA, Kung HJ, Izumiya Y. Protein arginine methyltransferase 1-directed methylation of Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen. J Biol Chem 2011; 287:5806-18. [PMID: 22179613 DOI: 10.1074/jbc.m111.289496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a multifunctional protein with roles in gene regulation and maintenance of viral latency. Post-translational modification of LANA is important for functional diversification. Here, we report that LANA is subject to arginine methylation by protein arginine methyltransferase 1 in vitro and in vivo. The major arginine methylation site in LANA was mapped to arginine 20. This site was mutated to either phenylalanine (bulky hydrophobic, constitutive methylated mimetic) or lysine (positively charged, non-arginine methylatable) residues. The significance of the methylation in LANA function was examined in both the isolated form and in the context of the viral genome through the generation of recombinant KSHV. In addition, authentic LANA binding sites on the KSHV episome in naturally infected cells were identified using a whole genome KSHV tiling array. Although mutation of the methylation site resulted in no significant difference in KSHV LANA subcellular localization, we found that the methylation mimetic mutation resulted in augmented histone binding in vitro and increased LANA occupancy at identified LANA target promoters in vivo. Moreover, a cell line carrying the methylation mimetic mutant KSHV showed reduced viral gene expression relative to controls both in latency and in the course of reactivation. These results suggest that residue 20 is important for modulation of a subset of LANA functions and properties of this residue, including the hydrophobic character induced by arginine methylation, may contribute to the observed effects.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Cheng Y, Frazier M, Lu F, Cao X, Redinbo MR. Crystal structure of the plant epigenetic protein arginine methyltransferase 10. J Mol Biol 2011; 414:106-22. [PMID: 21986201 PMCID: PMC3217299 DOI: 10.1016/j.jmb.2011.09.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/20/2011] [Accepted: 09/24/2011] [Indexed: 01/07/2023]
Abstract
Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12-20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Frazier
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Falong Lu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Matthew R. Redinbo
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Correspondence: Matthew R. Redinbo, Ph.D., Department of Chemistry, Campus Box 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. Tel.:919-843-8910, Fax: 919-962-2388,
| |
Collapse
|
138
|
Obianyo O, Causey CP, Jones JE, Thompson PR. Activity-based protein profiling of protein arginine methyltransferase 1. ACS Chem Biol 2011; 6:1127-35. [PMID: 21838253 DOI: 10.1021/cb2001473] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. PRMT1 is the founding member of the PRMT family, and this isozyme is responsible for methylating ∼85% of the arginine residues in mammalian cells. Additionally, PRMT1 activity is aberrantly upregulated in heart disease and cancer. As a part of a program to develop isozyme-specific PRMT inhibitors, we recently described the design and synthesis of C21, a chloroacetamidine bearing histone H4 tail analogue that acts as an irreversible PRMT1 inhibitor. Given the covalent nature of the interaction, we set out to develop activity-based probes (ABPs) that could be used to characterize the physiological roles of PRMT1. Herein, we report the design, synthesis, and characterization of fluorescein-conjugated C21 (F-C21) and biotin-conjugated C21 (B-C21) as PRMT1-specific ABPs. Additionally, we provide the first evidence that PRMT1 activity is negatively regulated in a spatial and temporal fashion.
Collapse
Affiliation(s)
- Obiamaka Obianyo
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Corey P. Causey
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Justin E. Jones
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paul R. Thompson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
139
|
Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 2011; 36:633-41. [PMID: 21975038 DOI: 10.1016/j.tibs.2011.09.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/03/2023]
Abstract
Arginine methylation governs important cellular processes that impact growth and proliferation, as well as differentiation and development. Through their ability to catalyze symmetric or asymmetric methylation of histone and non-histone proteins, members of the protein arginine methyltransferase (PRMT) family regulate chromatin structure and expression of a wide spectrum of target genes. Unlike other PRMTs, PRMT5 works in concert with a variety of cellular proteins including ATP-dependent chromatin remodelers and co-repressors to induce epigenetic silencing. Recent work also implicates PRMT5 in the control of growth-promoting and pro-survival pathways, which demonstrates its versatility as an enzyme involved in both epigenetic regulation of anti-cancer target genes and organelle biogenesis. These studies not only provide insight into the molecular mechanisms by which PRMT5 contributes to growth control, but also justify therapeutic targeting of PRMT5.
Collapse
|
140
|
Lee JH, Park GH, Lee YK, Park JH. Changes in the arginine methylation of organ proteins during the development of diabetes mellitus. Diabetes Res Clin Pract 2011; 94:111-8. [PMID: 21855157 DOI: 10.1016/j.diabres.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/23/2011] [Accepted: 07/04/2011] [Indexed: 10/17/2022]
Abstract
AIM In this study, we examined changes in asymmetric dimethylarginine (ADMA), dimethylarginine dimethylaminohydrolase (DDAH), nitric oxide synthesis (NOS), and the arginine methylation of organ proteins during the development of diabetes in mice. METHODS Db/db mice developed significant obesity and fasting hyperglycemia during diabetogenesis. During diabetogenesis, the expression of ADMA and nNOS was increased, while that of DDAH1 and protein-arginine methyltransferase 1 (PRMT1) was decreased. Additionally, arginine methylation in the liver and adipose tissue was altered during diabetogenesis. RESULTS Changes were evident at 75, 60, and 52 kDa in liver tissue and at 38 and 25 kDa in adipose tissue. Collectively, DDAH and ADMA are closely associated with the development of obesity and diabetes, and the arginine methylation levels of certain proteins were changed during diabetes development. CONCLUSION Protein arginine methylation plays a role in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Department of Plastic and Reconstructive Surgery, Eulji University School of Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
141
|
Fronz K, Güttinger S, Burkert K, Kühn U, Stöhr N, Schierhorn A, Wahle E. Arginine methylation of the nuclear poly(a) binding protein weakens the interaction with its nuclear import receptor, transportin. J Biol Chem 2011; 286:32986-94. [PMID: 21808065 PMCID: PMC3190935 DOI: 10.1074/jbc.m111.273912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown. Part of the methylated domain serves as nuclear localization signal, binding the import receptor transportin. Here we report that arginine methylation weakens the affinity of PABPN1 for transportin. Recombinant, unmethylated PABPN1 binds more strongly to transportin than its methylated counterpart from mammalian tissue, and in vitro methylation reduces the affinity. Transportin and RNA compete for binding to PABPN1. Methylation favors RNA binding. Transportin also inhibits in vitro methylation of the protein. Finally, a peptide corresponding to the nuclear localization signal of PABPN1 competes with transportin-dependent nuclear import of the protein in a permeabilized cell assay and does so less efficiently when it is methylated. We hypothesize that transportin binding might delay methylation of PABPN1 until after nuclear import. In the nucleus, arginine methylation may favor the transition of PABPN1 to the competing ligand RNA and serve to reduce the risk of the protein being reexported to the cytoplasm by transportin.
Collapse
Affiliation(s)
- Katharina Fronz
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stefan Güttinger
- the Institute of Biochemistry, Swiss Federal Institute of Technology (ETH Zürich), Schafmattstrasse 18, 8093 Zürich, Switzerland, and
| | - Kerstin Burkert
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- the Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Angelika Schierhorn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
142
|
Chen C, Nott TJ, Jin J, Pawson T. Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 2011; 12:629-42. [PMID: 21915143 DOI: 10.1038/nrm3185] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins can be modified by post-translational modifications such as phosphorylation, methylation, acetylation and ubiquitylation, creating binding sites for specific protein domains. Methylation has pivotal roles in the formation of complexes that are involved in cellular regulation, including in the generation of small RNAs. Arginine methylation was discovered half a century ago, but the ability of methylarginine sites to serve as binding motifs for members of the Tudor protein family, and the functional significance of the protein-protein interactions that are mediated by Tudor domains, has only recently been appreciated. Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.
Collapse
Affiliation(s)
- Chen Chen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
143
|
Ansong C, Tolić N, Purvine SO, Porwollik S, Jones M, Yoon H, Payne SH, Martin JL, Burnet MC, Monroe ME, Venepally P, Smith RD, Peterson SN, Heffron F, McClelland M, Adkins JN. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium. BMC Genomics 2011; 12:433. [PMID: 21867535 PMCID: PMC3174948 DOI: 10.1186/1471-2164-12-433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022] Open
Abstract
Background Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. Results We experimentally annotated the bacterial pathogen Salmonella Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in Salmonella and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in Salmonella pathogenesis. We also characterized post-translational features in the Salmonella genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our in vivo proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function. Conclusion This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of Salmonella as a resource for systems analysis.
Collapse
Affiliation(s)
- Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Blackwell E, Ceman S. A new regulatory function of the region proximal to the RGG box in the fragile X mental retardation protein. J Cell Sci 2011; 124:3060-5. [PMID: 21868366 DOI: 10.1242/jcs.086751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is required for normal cognition. FMRP has two autosomal paralogs, which although similar to FMRP, cannot compensate for the loss of FMRP expression in brain. The arginine- and glycine-rich region of FMRP (the RGG box) is unique; it is the high-affinity RNA-binding motif in FMRP and is encoded by exon 15. Alternative splicing occurs in the 5' end of exon 15, which is predicted to affect the structure of the distally encoded RGG box. Here, we provide evidence that isoform 3, which removes 25 amino acids from the 5' end of exon 15, has an altered conformation that reduces binding of a specific antibody and renders the RGG box unable to efficiently associate with polyribosomes. Isoform 3 is also compromised in its ability to form granules and to associate with a key messenger ribonucleoprotein Yb1 (also known as p50, NSEP1 and YBX1). Significantly, these functions are similarly compromised when the RGG box is absent from FMRP, suggesting an important regulatory role of the N-terminal region encoded by exon 15.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
145
|
Ahmad A, Dong Y, Cao X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS One 2011; 6:e22664. [PMID: 21853042 PMCID: PMC3154905 DOI: 10.1371/journal.pone.0022664] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs), the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Dong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
146
|
Feng Y, Xie N, Jin M, Stahley MR, Stivers JT, Zheng YG. A transient kinetic analysis of PRMT1 catalysis. Biochemistry 2011; 50:7033-44. [PMID: 21736313 DOI: 10.1021/bi200456u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-translational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well-studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well-defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.
Collapse
Affiliation(s)
- You Feng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | | | | | | |
Collapse
|
147
|
Yan X, Denman RB. Conformational-dependent and independent RNA binding to the fragile x mental retardation protein. J Nucleic Acids 2011; 2011:246127. [PMID: 21772992 PMCID: PMC3136132 DOI: 10.4061/2011/246127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/16/2011] [Indexed: 01/13/2023] Open
Abstract
The interaction between the fragile X mental retardation protein (FMRP) and BC1 RNA has been the subject of controversy. We probed the parameters of RNA binding to FMRP in several ways. Nondenaturing agarose gel analysis showed that BC1 RNA transcripts produced by in vitro transcription contain a population of conformers, which can be modulated by preannealing. Accordingly, FMRP differentially binds to the annealed and unannealed conformer populations. Using partial RNase digestion, we demonstrate that annealed BC1 RNA contains a unique conformer that FMRP likely binds. We further demonstrate that this interaction is 100-fold weaker than that the binding of eEF-1A mRNA and FMRP, and that preannealing is not a general requirement for FMRP's interaction with RNA. In addition, binding does not require the N-terminal 204 amino acids of FMRP, methylated arginine residues and can be recapitulated by both fragile X paralogs. Altogether, our data continue to support a model in which BC1 RNA functions independently of FMRP.
Collapse
Affiliation(s)
- Xin Yan
- CSI/IBR Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Robert B. Denman
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
148
|
Wang R, Zheng W, Yu H, Deng H, Luo M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues. J Am Chem Soc 2011; 133:7648-51. [PMID: 21539310 PMCID: PMC3104021 DOI: 10.1021/ja2006719] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elucidating physiological and pathogenic functions of protein methyltransferases (PMTs) relies on knowing their substrate profiles. S-adenosyl-L-methionine (SAM) is the sole methyl-donor cofactor of PMTs. Recently, SAM analogues have emerged as novel small-molecule tools to efficiently label PMT substrates. Here we reported the development of a clickable SAM analogue cofactor, 4-propargyloxy-but-2-enyl SAM, and its implementation to label substrates of human protein arginine methyltransferase 1 (PRMT1). In the system, the SAM analogue cofactor, coupled with matched PRMT1 mutants rather than native PRMT1, was shown to label PRMT1 substrates. The transferable 4-propargyloxy-but-2-enyl moiety of the SAM analogue further allowed corresponding modified substrates to be characterized through a subsequent click chemical ligation with an azido-based probe. The SAM analogue, in combination with a rational protein-engineering approach, thus shows potential to label and identify PMT targets in the context of a complex cellular mixture.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| | - Weihong Zheng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Haiqiang Yu
- Proteomics Resource Center, Rockefeller University, New York, NY 10065
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY 10065
- School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| |
Collapse
|
149
|
Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol Res 2011; 64:187-94. [PMID: 21635951 DOI: 10.1016/j.phrs.2011.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 01/21/2023]
Abstract
Accelerated atherosclerosis and microvascular complications are the leading causes of coronary heart disease, end-stage renal failure, acquired blindness and a variety of neuropathy, which could account for disabilities and high mortality rates in patients with diabetes. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic vascular complications have now become one of the most challenging health problems. Nitric oxide (NO) is a pleiotropic molecule critical to a number of physiological and pathological processes in humans. NO not only inhibits the inflammatory-proliferative reactions in vascular wall cells, but also exerts anti-thrombogenic and endothelial cell protective properties, all of which could potentially be exploited as a therapeutic option for the treatment of vascular complications in diabetes. However, high amounts of NO produced by inducible NO synthase (iNOS) and/or peroxynitrite (ONOO(-)), a reactive intermediate of NO with superoxide anion are involved in pro-inflammatory reactions and tissue damage as well. This implies that NO is a janus-faced molecule and acts as a double-edged sword in vascular complications in diabetes. Further, NO is synthesized from l-arginine via the action of NO synthase (NOS), while NOS is blocked by endogenous l-arginine analogues such as asymmetric dimethylarginine (ADMA), a naturally occurring amino acid which is found in the plasma and various tissues. These findings suggest that amounts of NO locally produced, oxidative stress conditions and level of ADMA could determine the beneficial and detrimental effects of NO on vascular complications in diabetes. In this paper, we review the janus-faced aspects of NO in diabetic microangiopathy.
Collapse
|
150
|
Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng YG. Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem 2011; 286:20323-34. [PMID: 21502321 DOI: 10.1074/jbc.m110.207258] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H4 undergoes extensive post-translational modifications (PTMs) at its N-terminal tail. Many of these PTMs profoundly affect the on and off status of gene transcription. The molecular mechanism by which histone PTMs modulate genetic and epigenetic processes is not fully understood. In particular, how a PTM mark affects the presence and level of other histone modification marks needs to be addressed and is essential for better understanding the molecular basis of histone code hypothesis. To dissect the interplaying relationship between different histone modification marks, we investigated how individual lysine acetylations and their different combinations at the H4 tail affect Arg-3 methylation in cis. Our data reveal that the effect of lysine acetylation on arginine methylation depends on the site of acetylation and the type of methylation. Although certain acetylations present a repressive impact on PRMT1-mediated methylation (type I methylation), lysine acetylation generally is correlated with enhanced methylation by PRMT5 (type II dimethylation). In particular, Lys-5 acetylation decreases the activity of PRMT1 but increases that of PRMT5. Furthermore, circular dichroism study and computer simulation demonstrate that hyperacetylation increases the content of ordered secondary structures at the H4 tail region. These findings provide new insights into the regulatory mechanism of Arg-3 methylation by H4 acetylation and unravel the complex intercommunications that exist between different the PTM marks in cis. The divergent activities of PRMT1 and PRMT5 with respect to different acetyl-H4 substrates suggest that type I and type II protein-arginine methyltransferases use distinct molecular determinants for substrate recognition and catalysis.
Collapse
Affiliation(s)
- You Feng
- Department of Chemistry and Biology, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia 30302, USA
| | | | | | | | | | | | | |
Collapse
|