101
|
BenMohamed L, Bertrand G, McNamara CD, Gras-Masse H, Hammer J, Wechsler SL, Nesburn AB. Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J Virol 2003; 77:9463-73. [PMID: 12915561 PMCID: PMC187395 DOI: 10.1128/jvi.77.17.9463-9473.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular characterization of the epitope repertoire on herpes simplex virus (HSV) antigens would greatly expand our knowledge of HSV immunity and improve immune interventions against herpesvirus infections. HSV glycoprotein D (gD) is an immunodominant viral coat protein and is considered an excellent vaccine candidate antigen. By using the TEPITOPE prediction algorithm, we have identified and characterized a total of 12 regions within the HSV type 1 (HSV-1) gD bearing potential CD4(+) T-cell epitopes, each 27 to 34 amino acids in length. Immunogenicity studies of the corresponding medium-sized peptides confirmed all previously known gD epitopes and additionally revealed four new immunodominant regions (gD(49-82), gD(146-179), gD(228-257), and gD(332-358)), each containing naturally processed epitopes. These epitopes elicited potent T-cell responses in mice of diverse major histocompatibility complex backgrounds. Each of the four new immunodominant peptide epitopes generated strong CD4(+) Th1 T cells that were biologically active against HSV-1-infected bone marrow-derived dendritic cells. Importantly, immunization of H-2(d) mice with the four newly identified CD4(+) Th1 peptide epitopes but not with four CD4(+) Th2 peptide epitopes induced a robust protective immunity against lethal ocular HSV-1 challenge. These peptide epitopes may prove to be important components of an effective immunoprophylactic strategy against herpes.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Department of Ophthalmology, University of California-Irvine, College of Medicine, Orange, California 92868, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Delcayre A, Peake JS, White DJ, Yuan S, McDonald MK, Liang A, Tan PL, Watson JD. A genome-based functional screening approach to vaccine development that combines in vitro assays and DNA immunization. Vaccine 2003; 21:3259-64. [PMID: 12804856 DOI: 10.1016/s0264-410x(03)00236-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step screening strategy was developed to identify strong immunogenic polypeptides with putative vaccine and/or adjuvant activity. In the first step, a mycobacterial genomic DNA library was screened in vitro to identify plasmids encoding polypeptides that stimulate splenocytes from mycobacteria-immunized mice and T cells from PPD-positive healthy donors to produce interferon-gamma. In the second step, plasmids were selected for their ability to induce protective immunity in a mouse model of tuberculosis following DNA immunization. The potential of this approach is illustrated by the identification of a panel of immunogenic polypeptides that may be used to engineer a new generation of vaccines.
Collapse
Affiliation(s)
- Alain Delcayre
- Genesis Research and Development, 1 Fox Street, Parnell, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Zagursky RJ, Olmsted SB, Russell DP, Wooters JL. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Expert Rev Vaccines 2003; 2:417-36. [PMID: 12903807 DOI: 10.1586/14760584.2.3.417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic sequencing has provided a tremendous amount of information that can be useful in vaccine target identification. The sheer volume of information available necessitates the use of new research disciplines and techniques. Using bioinformatics, researchers sift through available data to identify appropriate candidates for biological analysis. This review provides an overview of available bioinformatic techniques for vaccine candidate identification and a few examples of how these techniques are being applied to specific bacterial pathogens.
Collapse
|
104
|
De Groot AS, Nene V, Hegde NR, Srikumaran S, Rayner J, Martin W. T cell epitope identification for bovine vaccines: an epitope mapping method for BoLA A-11. Int J Parasitol 2003; 33:641-53. [PMID: 12782061 DOI: 10.1016/s0020-7519(03)00051-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
T cell responses play an important role in immunity to parasites and other microbial agents of infectious diseases, therefore a number of T cell-directed vaccines are in development. Computer-driven algorithms that facilitate the discovery of T cell epitopes from protein and genome sequences are now being used to accelerate preclinical studies of human vaccines. Similar tools are not yet available for predicting T cell epitopes for animal vaccines, but there may be sufficient data available to begin the process of compiling the algorithms. We describe the construction of a novel mathematical 'matrix' that describes the properties of bovine major histocompatibility complex (BoLA) system antigen (BoLA) A-11 peptide ligands, developed for use with EpiMatrix, an existing T cell epitope-mapping algorithm. An alternative means of developing BoLA matrices, using the pocket profile method, is also discussed. Matrices such as the one described here may be used to develop T cell epitope-mapping tools for cattle and other ruminants. Epitope-mapping algorithms offer a significant advantage over other methods of epitope selection, such as the screening of synthetic overlapping peptides, because high throughput screening can be performed in silico, followed by ex vivo confirmatory studies. Furthermore, using epitope-mapping algorithms, putative T cell epitopes can be derived directly from genomic sequences, allowing researchers to circumvent labor-intensive cloning steps in the genome-to-vaccine discovery pathway.
Collapse
|
105
|
Abstract
Immune containment of measles virus (MV) infection has long been a focus of interest for investigators. An emerging theme is that MV immunity is conferred by appropriately polarized antiviral CD4+ and CD8+ T cell populations. Recent technological advances permit the analysis of the composition and dynamics of these CD4+ and CD8+ T cell responses at the single cell level, and of the molecular events responsible for their induction. Novel insights into these issues for measles are discussed in the light of their importance for the development of an improved vaccine.
Collapse
Affiliation(s)
- Cécile A C M van Els
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | | |
Collapse
|
106
|
Awram P, Gardner RC, Forster RL, Bellamy AR. The potential of plant viral vectors and transgenic plants for subunit vaccine production. Adv Virus Res 2003; 58:81-124. [PMID: 12205784 DOI: 10.1016/s0065-3527(02)58003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Peter Awram
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
107
|
Computer-Based Design of an HLA-Haplotype and HIV-Clade Independent Cytotoxic T-Lymphocyte (CTL) Assay for Monitoring HIV-Specific Immunity. Mol Med 2002. [DOI: 10.1007/bf03402084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
108
|
Abstract
Tuberculosis (TB) is a devastating disease that kills more than three million people each year. Of these, 0.9 million are co-infected with HIV and numbers of infections and death continue to rise with the global spread of HIV. A new vaccine is desperately needed to control this epidemic that threatens to kill 90 million people over the next 3 decades. Outstanding work in research laboratories, combined with the success of genome sequencing, has resulted in a variety of candidate TB vaccines, many of which are sufficiently promising to advance into clinical trials. This review discusses the array of new candidate TB vaccines and the clinical studies that are currently planned.
Collapse
|
109
|
Yusim K, Kesmir C, Gaschen B, Addo MM, Altfeld M, Brunak S, Chigaev A, Detours V, Korber BT. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J Virol 2002; 76:8757-68. [PMID: 12163596 PMCID: PMC136996 DOI: 10.1128/jvi.76.17.8757-8768.2002] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequences reveal that defined epitopes tend to cluster. Here we integrate the global sequence and immunology databases to systematically explore the relationship between HIV-1 amino acid sequences and CTL epitope distributions. CTL responses to five HIV-1 proteins, Gag p17, Gag p24, reverse transcriptase (RT), Env, and Nef, have been particularly well characterized in the literature to date. Through comparing CTL epitope distributions in these five proteins to global protein sequence alignments, we identified distinct characteristics of HIV amino acid sequences that correlate with CTL epitope localization. First, experimentally defined HIV CTL epitopes are concentrated in relatively conserved regions. Second, the highly variable regions that lack epitopes bear cumulative evidence of past immune escape that may make them relatively refractive to CTLs: a paucity of predicted proteasome processing sites and an enrichment for amino acids that do not serve as C-terminal anchor residues. Finally, CTL epitopes are more highly concentrated in alpha-helical regions of proteins. Based on amino acid sequence characteristics, in a blinded fashion, we predicted regions in HIV regulatory and accessory proteins that would be likely to contain CTL epitopes; these predictions were then validated by comparison to new sets of experimentally defined epitopes in HIV-1 Rev, Tat, Vif, and Vpr.
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545. Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
De Groot AS, Sbai H, Aubin CS, McMurry J, Martin W. Immuno-informatics: Mining genomes for vaccine components. Immunol Cell Biol 2002; 80:255-69. [PMID: 12067413 DOI: 10.1046/j.1440-1711.2002.01092.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequences of more than 60 microbes have been completed in the past decade. Concurrently, a series of new informatics tools, designed to harness this new wealth of information, have been developed. Some of these new tools allow researchers to select regions of microbial genomes that trigger immune responses. These regions, termed epitopes, are ideal components of vaccines. When the new tools are used to search for epitopes, this search is usually coupled with in vitro screening methods; an approach that has been termed computational immunology or immuno-informatics. Researchers are now implementing these combined methods to scan genomic sequences for vaccine components. They are thereby expanding the number of different proteins that can be screened for vaccine development, while narrowing this search to those regions of the proteins that are extremely likely to induce an immune response. As the tools improve, it may soon be feasible to skip over many of the in vitro screening steps, moving directly from genome sequence to vaccine design. The present article reviews the work of several groups engaged in the development of immuno-informatics tools and illustrates the application of these tools to the process of vaccine discovery.
Collapse
Affiliation(s)
- Anne S De Groot
- TB/HIV Research Laboratory, Brown University,Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
111
|
Abstract
Bioinformatics-driven T-cell epitope-identification methods can enhance vaccine target selection significantly. We evaluated three unrelated computational methods to screen Pol, Gag and Env sequences extracted from the Los Alamos HIV database for HLA-A*0201 and HLA-B*3501 T-cell epitope candidates. The hidden Markov model predicted 389 HLA-B*3501-restricted candidates from 374 HIV-1 and 97 HIV-2 sequences. The artificial neural network (ANN) model, and Bioinformatics and Molecular Analysis Section (BIMAS) quantitative matrix predictions for A*0201 yielded 1122 HIV-1 and 548 HIV-2 candidates. The overall sequence coverage of the predicted A*0201 T-cell epitopes was 2.7% (HIV-1)and 3.0% (HIV-2). HLA-B*3501-predicted epitopes covered 0.9% (HIV-1) and 1.4% (HIV-2) of the total sequence. Comparison of 890 ANN- and 397 BIMAS-derived HIV-1 A*0201- restricted epitope candidates showed that only 13-19% of the predicted and 26% of the experimentally confirmed T-cell epitopes were captured by both methods. Extrapolating these results, we estimated that at least 247 predicted HIV-1 epitopes are yet to be discovered as active A*0201-restricted T-cell epitopes. Adequate comparison and combined usage of various predictive bioinformatics methods, rather than uncritical use of any single prediction method, will enable cost-effective and efficient T-cell epitope screening.
Collapse
|
112
|
Abstract
If the end of the 20th century saw the flowering of genomics, the beginning of the 21st century is witnessing an equally rapid blossoming of proteomics. These twin technologies have had a dramatic influence on the study of tuberculosis (TB), and nowhere more so than in the development of new TB vaccines. Only a few years ago, it was generally accepted that clinical trials of new TB vaccines would not take place for at least a decade. However, the first trials are now scheduled to start within months. Much TB vaccine research has thus shifted from developing new vaccines, to selecting the best vaccines for human use from the increasing number of effective new candidates becoming available. This selection is being eased by the improved animal models that have been developed over the past few years and by our increasing understanding of immunity to TB.
Collapse
Affiliation(s)
- T Mark Doherty
- Department of Tuberculosis Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | |
Collapse
|
113
|
Currier JR, deSouza M, Chanbancherd P, Bernstein W, Birx DL, Cox JH. Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -C(W)0304 alleles. J Virol 2002; 76:4971-86. [PMID: 11967314 PMCID: PMC136178 DOI: 10.1128/jvi.76.10.4971-4986.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For this report, the rapid identification and characterization of human immunodeficiency virus type 1 (HIV-1)-derived broadly cross-subtype-reactive CD8 cytotoxic T lymphocyte (CTL) epitopes were performed. Using a gamma interferon (IFN-gamma) Elispot assay-based approach and a panel of recombinant vaccinia viruses expressing gag, env, pol, and nef genes representing the seven most predominant subtypes and one circulating recombinant form of HIV-1, the subtype specificity and cross-subtype reactivity of a CD8 response were directly measured from circulating peripheral blood mononuclear cells (PBMC). Enhanced sensitivity of detection of CD8 responses from cryopreserved PBMC was achieved using autologous vaccinia virus-infected B-lymphoblastoid cell lines as supplemental antigen-presenting cells. Of eleven subjects studied, six exhibited broadly cross-subtype-reactive CD8-mediated IFN-gamma production (at least seven of eight subtypes recognized) to at least one major gene product from HIV-1. Screening of subjects showing broadly cross-subtype-specific responses in the vaccinia virus-based enzyme-linked immunospot (Elispot) assay using a panel of overlapping peptides resulted in the identification of cross-subtype responses down to the 20-mer peptide level in less than 3 days. Three subjects showed broad cross-subtype reactivity in both the IFN-gamma Elispot assay and the standard chromium release cytotoxicity assay. Fine mapping and HLA restriction analysis of the response from three subjects demonstrated that this technique can be used to define epitopes restricted by HLA-A, -B, and -C alleles. In addition, the ability of all three epitopes to be processed from multiple subtypes of their parent proteins and presented in the context of HLA class I molecules following de novo synthesis is shown. While all three minimal epitopes mapped here had previously been defined as HIV-1 epitopes, two are shown to have novel HLA restriction alleles and therefore exhibit degenerate HLA binding capacity. These findings provide biological validation of HLA supertypes in HIV-1 CTL recognition and support earlier studies of cross-subtype CTL responses during HIV-1 infection.
Collapse
|
114
|
De Groot AS, Saint-Aubin C, Bosma A, Sbai H, Rayner J, Martin W. Rapid Determination of HLA B*07 Ligands from the West Nile Virus NY99 Genome. Emerg Infect Dis 2001. [DOI: 10.3201/eid0704.017419] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anne S. De Groot
- Brown University, Providence, Rhode Island, USA;EpiVax, Inc., Providence, Rhode Island, USA
| | | | | | - Hakima Sbai
- Brown University, Providence, Rhode Island, USA
| | | | | |
Collapse
|