101
|
Davies AJ, Lee AM, Taylor C, Clear AJ, Goff LK, Iqbal S, Cuthbert-Heavens D, Calaminici M, Norton AJ, Lister TA, Fitzgibbon J. A limited role for TP53 mutation in the transformation of follicular lymphoma to diffuse large B-cell lymphoma. Leukemia 2005; 19:1459-65. [PMID: 15902285 DOI: 10.1038/sj.leu.2403802] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of TP53 mutation in transformation of follicular lymphoma (FL) to diffuse large B-cell lymphoma (t-FL) was examined in a panel of 91 lymph node biopsies derived from 29 patients pre- and post-transformation. The entire TP53 coding sequence was screened and immunocytochemistry performed to determine expression of p53 and its key regulator MDM2. A total of 10 mutations were detected in eight patients (28%), although none were present at FL diagnosis. Mutations were not detected solely at the time of transformation; in three patients, mutated TP53 arose in at least one antecedent FL sample (6 months, 2.5 years and 4 years prior to transformation). Loss of heterozygosity at the TP53 locus occurred in 2/20 informative patients (only in t-FL samples). p53 staining was positive in 82% (9/11) of available biopsies with a missense mutation, and negative in 71% (45/63) with wtTP53. MDM2 expression was significantly higher in t-FL samples (mean 72% positive; 95% confidence interval (95% CI) 68-76%) than FL (mean 58% positive; 95% CI 54-62%) (P<0.001) but did not correlate with TP53 status. TP53 mutation has only a limited role in the transformation of FL, exerting a heterogeneous influence upon phenotypic change. In contrast, dysregulation of MDM2 is frequent and may provide a more rational therapeutic target..
Collapse
Affiliation(s)
- A J Davies
- Cancer Research UK Medical Oncology Unit, Bart's and The Royal London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Falke D, Fisher MH, Juliano RL. Selective transcription of p53 target genes by zinc finger-p53 DNA binding domain chimeras. ACTA ACUST UNITED AC 2005; 1681:15-27. [PMID: 15566940 DOI: 10.1016/j.bbaexp.2004.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/21/2004] [Accepted: 09/22/2004] [Indexed: 11/26/2022]
Abstract
Active p53 stimulates the transcription of a number of key genes, including the pro-apoptotic gene bax, as well as p21, a cell cycle regulator. In this study we constructed novel chimeric zinc finger-p53 DNA binding domain (DBD) transcription factors designed to bind to the promoters of specific p53 regulated genes. In order to selectively increase the expression of Bax, we coupled a pre-selected three-zinc finger (Zif) peptide targeted to a sequence in the bax promoter to a minimal p53 DBD. This chimeric protein could increase reporter gene transcription from a minimal bax promoter (up to 10-fold) but not from a minimal p21 promoter in p53-deficient Saos-2 cells. However, fusion proteins carrying longer p53 DBDs displayed entirely different selectivity and potency. Thus, Zif-p53 DBD chimeras containing N- and C-terminal extensions of the minimal DBD could increase transcription driven by a minimal p21 promoter up to 800-fold. These chimeras preferred the minimal p21 promoter up to 500-fold over the minimal bax promoter. Additionally, endogenous p21 message and protein levels were increased in cells expressing the p21 selective Zif-p53 DBD chimera and expression of the chimeric proteins resulted in partial cell cycle arrest. Cell fractionation experiments indicated that the Zifs enhanced nuclear localization of the Zif-p53 DBD chimera. These studies suggest that it is possible to create chimeric transcription factors able to strongly and selectively activate genes downstream of p53.
Collapse
Affiliation(s)
- D Falke
- Department of Pharmacology, CB# 7365, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, 27599-7365, USA
| | | | | |
Collapse
|
103
|
Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 2004; 40:2667-75. [PMID: 15571950 DOI: 10.1016/j.ejca.2004.08.021] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 08/21/2004] [Indexed: 02/04/2023]
Abstract
This Review describes advances in the characterisation of breast tumour phenotypes using DNA microarrays and the identification of five subtypes of breast cancer with significant clinical implications.
Collapse
Affiliation(s)
- Therese Sørlie
- Department of Genetics, Institute for Cancer research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| |
Collapse
|
104
|
Le NTV, Richardson DR. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. Blood 2004; 104:2967-75. [PMID: 15251988 DOI: 10.1182/blood-2004-05-1866] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractIron (Fe) is critical for proliferation, but its precise role in cell cycle progression remains unclear. In this study, we examined the mechanisms involved by assessing the effects of Fe chelators on the expression of molecules that play key roles in this process. In initial studies, gene arrays were used to assess gene expression after incubating cells with 2 Fe chelators, namely, desferrioxamine (DFO) and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), or the DNA-damaging agent, actinomycin D. From the genes assessed, only the N-myc downstream-regulated gene 1 (Ndrg1) was specifically up-regulated by Fe chelation. Although the function of Ndrg1 is unclear, previous studies showed it markedly slows tumor growth and acts as a potent metastasis suppressor. Incubation of cells with chelators markedly increased Ndrg1 mRNA and protein expression, but this was not found with their Fe complexes or when the Fe-binding site had been inactivated. Increased Ndrg1 expression following Fe chelation was related to the permeability and antiproliferative activity of chelators and could be reversed by Fe repletion. Moreover, Ndrg1 up-regulation after chelation occurred at the transcriptional level and was mediated by hypoxia inducible factor-1α (HIF-1α)-dependent and -independent mechanisms. Our investigation suggests Ndrg1 is a novel link between Fe metabolism and the control of proliferation.
Collapse
Affiliation(s)
- Nghia T V Le
- Children's Cancer Institute Australia for Medical Research, The Iron Metabolism and Chelation Program, PO Box 81, High St, Randwick, Sydney, New South Wales, 2031 Australia
| | | |
Collapse
|
105
|
Arora A, Siddiqui IA, Shukla Y. Modulation of p53 in 7,12-dimethylbenz[ a]anthracene–induced skin tumors by diallyl sulfide in Swiss albino mice. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1459.3.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Allium vegetables have been shown to have beneficial health effects against several chronic diseases including cancer. Diallyl sulfide (DAS), an organosulfur compound present in garlic, is well known for its chemopreventive properties in several tumor models. The pharmacologic role of DAS in prevention and treatment of cancer is well documented in the literature, but its molecular mechanism of action is not yet well defined. In the present study, modulation in p53 expression by topical application of DAS was recorded in 7,12-dimethylbenz[a]anthracene (DMBA)–induced skin tumors in Swiss albino mice. Western blot analysis and immunohistochemical protein detection, combined with multivariable flow cytometry, show that DAS application induces the expression of the wild-type (wt) p53 and down-regulates the expression of mutant (mut) p53. Immunoblotting analysis of tumors showed significant increase in levels of wtp53 by DAS application, whereas for mutp53 the DMBA-induced levels of protein were found to reduce to near normal levels with DAS application. The quantitative analysis of immunostained skin/tumor sections using image analysis and quantitative stereology showed 66.6% and 54.2% increases in wtp53 levels and 53.4% and 44.3% decreases in mutp53 levels in animals where DAS was applied 1 hour prior to or 1 hour after DMBA application, respectively. Flow cytometric analysis further confirmed modulation of wtp53 and mutp53 protein in DAS-supplemented tumors. The increase in the expression of wt tumor suppressor gene protein p53 was accompanied by elevation of the levels of cyclin-dependent kinase inhibitor p21/waf1. The percentage increase in the levels of p21/waf1 was found to be 72.9% and 61.3%, respectively, in DAS-supplemented groups before and after administration. These results thus show that DAS is a potential chemopreventive agent capable of modulating and regulating the tumor suppressor p53 along with its downstream effective molecule, p21/waf1. Thus, DAS can be a potential chemopreventive agent against skin tumor development.
Collapse
Affiliation(s)
- Annu Arora
- Environmental Carcinogenesis Division, Industrial Toxicology Research Center, Lucknow, India
| | - Imtiaz A. Siddiqui
- Environmental Carcinogenesis Division, Industrial Toxicology Research Center, Lucknow, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis Division, Industrial Toxicology Research Center, Lucknow, India
| |
Collapse
|
106
|
Rorie CJ, Weissman BE. The Ews/Fli-1 Fusion Gene Changes the Status of p53 in Neuroblastoma Tumor Cell Lines. Cancer Res 2004; 64:7288-95. [PMID: 15492248 DOI: 10.1158/0008-5472.can-04-1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.
Collapse
Affiliation(s)
- Checo J Rorie
- Curriculum in Toxicology and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
107
|
Wu G, Yan S. Determination of sensitive positions to mutations in human p53 protein. Biochem Biophys Res Commun 2004; 321:313-9. [PMID: 15358177 DOI: 10.1016/j.bbrc.2004.06.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Over last several years, we demonstrated that the mutations are more likely to occur at randomly unpredictable amino acid pairs in a protein. We therefore can in principle predict the amino acid pairs sensitive to the future mutations in a protein. However, we still need to predict the positions at which the sensitive amino acid pairs are located in a protein. In this study, we use a probabilistic approach to analyze the effect of 191 mutations in human p53 protein and can approximately estimate the sensitive positions to mutations in human p53 protein.
Collapse
Affiliation(s)
- Guang Wu
- Computational Mutagen Project, DreamSciTech Consulting Co. Ltd., 301, Building 12, Nanyou A-zone, Jiannan Road, Shenzhen, Guangdong Province, CN-518054, China.
| | | |
Collapse
|
108
|
Glazko GV, Koonin EV, Rogozin IB. Mutation hotspots in the p53 gene in tumors of different origin: correlation with evolutionary conservation and signs of positive selection. ACTA ACUST UNITED AC 2004; 1679:95-106. [PMID: 15297143 DOI: 10.1016/j.bbaexp.2004.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 04/28/2004] [Accepted: 05/14/2004] [Indexed: 01/13/2023]
Abstract
We present a classification analysis of the mutation spectra of the p53 gene and construct maps of hotspots for the germline (Li-Fraumein syndrome), different types of tumors and their derived cell lines. While spectra from solid tumors share common hotspots with the germline spectrum, they also contain unique sets of somatic hotspots that are not observed in the germline. All these hotspots correspond to amino acid replacements in the DNA-binding interface of p53. The mutation spectra of lymphomas and cell lines derived from lymphomas and lung cancers contained few hotspots compared to solid tumors. Thus, the distribution of hotspots in the p53 gene appears to depend on the tumor type and cell growth conditions; this specificity is missed by the bulk hotspot analysis. A negative correlation was detected between the amino acid replacement propensity in tumors and evolutionary variability: the hotspots are located in the positions that are highly conserved in p53 and its paralogs, p63 and p73. In all the mutation spectra, substitutions leading to amino acid replacements strongly dominate over silent substitutions, indicating that functional sites evolving under strong purifying selection are subject to intensive positive selection in p53-dependent tumors. These results are compatible with the gain-of-function concept of the role of p53 in tumorigenesis.
Collapse
Affiliation(s)
- Galina V Glazko
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
109
|
Khodarev NN, Labay E, Darga T, Yu J, Mauceri H, Gupta N, Kataoka Y, Weichselbaum RR. Endothelial cells co-cultured with wild-type and dominant/negative p53-transfected glioblastoma cells exhibit differential sensitivity to radiation-induced apoptosis. Int J Cancer 2004; 109:214-9. [PMID: 14750172 DOI: 10.1002/ijc.11728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We performed expressional profiling of isogenic glioblastoma cell lines U87-Lux8 and U87-175.4. These cell lines differ in that U87-Lux8 expresses wild-type p53 and U87-175.4 expresses a dominant-negative p53 (175(His) mutation). DNA array analysis and real-time PCR measurements demonstrated that basal expression and response to irradiation were different in these isogenic glioblastoma cell lines. These differences included genes involved in growth regulation and genes associated with cell-to-cell and cell/ECM communications. Co-cultivation of U87-175.4 and U87-Lux8 with HUVE cells demonstrated that U87-175.4 cells suppress the angiogenic phenotype of HUVEC and increase their sensitivity to radiation-induced apoptosis compared to co-culture of U87-Lux8/HUVEC. These data suggest that blockade of p53 function may alter the communication between tumor cells and endothelial cells such that endothelial cells exhibit an increase in radiosensitivity. These findings may have important implications for the treatment of glioblastoma tumors and other human cancers.
Collapse
Affiliation(s)
- Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Ishikawa T, Zhang SSM, Qin X, Takahashi Y, Oda H, Nakatsuru Y, Ide F. DNA repair and cancer: lessons from mutant mouse models. Cancer Sci 2004; 95:112-7. [PMID: 14965359 PMCID: PMC11158213 DOI: 10.1111/j.1349-7006.2004.tb03190.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage, if the repair process, especially nucleotide excision repair (NER), is compromised or the lesion is repaired by some other error-prone mechanism, causes mutation and ultimately contributes to neoplastic transformation. Impairment of components of the DNA damage response pathway (e.g., p53) is also implicated in carcinogenesis. We currently have considerable knowledge of the role of DNA repair genes as tumor suppressors, both clinically and experimentally. The deleterious clinical consequences of inherited defects in DNA repair system are apparent from several human cancer predisposition syndromes (e.g., NER-compromised xeroderma pigmentosum [XP] and p53-deficient Li-Fraumeni syndrome). However, experimental studies to support the clinical evidence are hampered by the lack of powerful animal models. Here, we review in vivo experimental data suggesting the protective function of DNA repair machinery in chemical carcinogenesis. We specifically focus on the three DNA repair genes, O(6)-methylguanine-DNA methyltransferase gene (MGMT ), XP group A gene (XPA) and p53. First, mice overexpressing MGMT display substantial resistance to nitrosamine-induced hepatocarcinogenesis. In addition, a reduction of spontaneous liver tumors and longer survival times were evident. However, there are no known mutations in the human MGMT and therefore no associated cancer syndrome. Secondly, XPA mutant mice are indeed prone to spontaneous and carcinogen-induced tumorigenesis in internal organs (which are not exposed to sunlight). The concomitant loss of p53 resulted in accelerated onset of carcinogenesis. Finally, p53 null mice are predisposed to brain tumors upon transplacental exposure to a carcinogen. Accumulated evidence in these three mutant mouse models firmly supports the notion that the DNA repair system is vital for protection against cancer.
Collapse
Affiliation(s)
- Takatoshi Ishikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
111
|
Ide F, Kitada M, Sakashita H, Kusama K, Tanaka K, Ishikawa T. p53 haploinsufficiency profoundly accelerates the onset of tongue tumors in mice lacking the xeroderma pigmentosum group A gene. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1729-33. [PMID: 14578172 DOI: 10.1016/s0002-9440(10)63531-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mice lacking the xeroderma pigmentosum group A gene (XPA-/- mice), which have a complete deficiency in nucleotide excision repair (NER), are highly predisposed to tongue squamous cell carcinoma (SCC) when exposed to 4-nitroquinoline 1-oxide (4NQO). To explore the effects of the interaction of the NER machinery with p53 in oral tumorigenesis, we generated an XPA-/- mouse strain carrying mutant alleles for p53. This mouse model of 4NQO carcinogenesis demonstrated that despite the same tumor frequency, XPA-/-p53+/- mice reached 100% SCC incidence at 25 weeks compared with 50 weeks for XPA-/-p53+/+ littermates. XPA-/-p53-/- mice succumbed to spontaneous thymic lymphomas before the development of tongue tumors (before 13 weeks of age). SCC originated in XPA-/-p53+/- mice maintained the p53+/- genotype and the retained wild-type p53 allele appeared to be structurally intact. Only one of 20 XPA-/-p53+/+ SCC showed a missense mutation of p53. Collectively, the accelerated tongue tumor growth may be a consequence of haploinsufficiency but not of mutation of p53 in the context of NER deficiency.
Collapse
Affiliation(s)
- Fumio Ide
- Department of Oral Pathology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | | | | | | | | | | |
Collapse
|
112
|
Maruyama T, Park LC, Shinohara T, Goto M. DNA Hybridization in Nanostructural Molecular Assemblies Enables Detection of Gene Mutations without a Fluorescent Probe. Biomacromolecules 2003; 5:49-53. [PMID: 14715007 DOI: 10.1021/bm034047z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed a simple single nucleotide polymorphisms (SNPs) analysis utilizing DNA hybridization in nanostructural molecular assemblies. The novel technique enables the detection of a single-base mismatch in a DNA sequence without a fluorescent probe. This report describes for the first time that DNA hybridization occurs in the nanostructural molecular assemblies (termed reverse micelles) formed in an organic medium. The restricted nanospace in the reverse micelles amplifies the differences in the hybridization rate between mismatched and perfectly matched DNA probes. For a model system, we hybridized a 20-mer based on the p53 gene sequence to 20-mer complementary oligonucleotides with various types of mismatches. Without any DNA labeling or electrochemical apparatus, we successfully detected the various oligonucleotide mismatches by simply measuring the UV absorbance at 260 nm.
Collapse
Affiliation(s)
- Tatsuo Maruyama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
113
|
Cable PL, Wilson CA, Calzone FJ, Rauscher FJ, Scully R, Livingston DM, Li L, Blackwell CB, Futreal PA, Afshari CA. Novel consensus DNA-binding sequence for BRCA1 protein complexes. Mol Carcinog 2003; 38:85-96. [PMID: 14502648 DOI: 10.1002/mc.10148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increasing evidence continues to emerge supporting the early hypothesis that BRCA1 might be involved in transcriptional processes. BRCA1 physically associates with more than 15 different proteins involved in transcription and is paradoxically involved in both transcriptional activation and repression. However, the underlying mechanism by which BRCA1 affects the gene expression of various genes remains speculative. In this study, we provide evidence that BRCA1 protein complexes interact with specific DNA sequences. We provide data showing that the upstream stimulatory factor 2 (USF2) physically associates with BRCA1 and is a component of this DNA-binding complex. Interestingly, these DNA-binding complexes are downregulated in breast cancer cell lines containing wild-type BRCA1, providing a critical link between modulations of BRCA1 function in sporadic breast cancers that do not involve germline BRCA1 mutations. The functional specificity of BRCA1 tumor suppression for breast and ovarian tissues is supported by our experiments, which demonstrate that BRCA1 DNA-binding complexes are modulated by serum and estrogen. Finally, functional analysis indicates that missense mutations in BRCA1 that lead to subsequent cancer susceptibility may result in improper gene activation. In summary, these findings establish a role for endogenous BRCA1 protein complexes in transcription via a defined DNA-binding sequence and indicate that one function of BRCA1 is to co-regulate the expression of genes involved in various cellular processes.
Collapse
Affiliation(s)
- P LouAnn Cable
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Neurofibromatosis 1, an inherited disorder that affects 1/3500 individuals worldwide, predisposes to the development of benign and malignant peripheral nerve sheath tumors. The disorder results from inactivation of one of the NFI genes. The second NFI gene is typically inactivated in Schwann cells during tumor formation. This article reviews the different types of genetic alterations in NFI in both constitutional and tumor tissues and genetic alterations of other genes that may affect tumorigenesis. These studies have provided insight into the genetic basis of both the variable expression of the disorder and of benign and malignant peripheral nerve sheath tumorigenesis.
Collapse
Affiliation(s)
- Karen Stephens
- Departments of Medicine and Laboratory Medicine, University of Washington, 1959 NE Pacific St., Rm I-204, Box 357720, Seattle, WA 98195-7720, USA.
| |
Collapse
|
115
|
Rogozin IB, Pavlov YI. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 2003; 544:65-85. [PMID: 12888108 DOI: 10.1016/s1383-5742(03)00032-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutation frequencies vary significantly along nucleotide sequences such that mutations often concentrate at certain positions called hotspots. Mutation hotspots in DNA reflect intrinsic properties of the mutation process, such as sequence specificity, that manifests itself at the level of interaction between mutagens, DNA, and the action of the repair and replication machineries. The hotspots might also reflect structural and functional features of the respective DNA sequences. When mutations in a gene are identified using a particular experimental system, resulting hotspots could reflect the properties of the gene product and the mutant selection scheme. Analysis of the nucleotide sequence context of hotspots can provide information on the molecular mechanisms of mutagenesis. However, the determinants of mutation frequency and specificity are complex, and there are many analytical methods for their study. Here we review computational approaches for analyzing mutation spectra (distribution of mutations along the target genes) that include many mutable (detectable) positions. The following methods are reviewed: derivation of a consensus sequence, application of regression approaches to correlate nucleotide sequence features with mutation frequency, mutation hotspot prediction, analysis of oligonucleotide composition of regions containing mutations, pairwise comparison of mutation spectra, analysis of multiple spectra, and analysis of "context-free" characteristics. The advantages and pitfalls of these methods are discussed and illustrated by examples from the literature. The most reliable analyses were obtained when several methods were combined and information from theoretical analysis and experimental observations was considered simultaneously. Simple, robust approaches should be used with small samples of mutations, whereas combinations of simple and complex approaches may be required for large samples. We discuss several well-documented studies where analysis of mutation spectra has substantially contributed to the current understanding of molecular mechanisms of mutagenesis. The nucleotide sequence context of mutational hotspots is a fingerprint of interactions between DNA and DNA repair, replication, and modification enzymes, and the analysis of hotspot context provides evidence of such interactions.
Collapse
Affiliation(s)
- Igor B Rogozin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
116
|
Wu G, Yan S. Determination of amino acid pairs in human p53 protein sensitive to mutations/variants by means of a random approach. J Mol Model 2003; 9:337-41. [PMID: 14517612 DOI: 10.1007/s00894-003-0155-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 06/30/2003] [Indexed: 11/29/2022]
Abstract
This is the continuation of our studies using random approaches to analyse the p53 protein family. In this data-based theoretical analysis, we use the random approach to analyse the amino acid pairs in human p53 protein in order to determine which amino acid pairs are more sensitive to 190 human p53 mutations/variants. The rationale of this study is based on our hypothesis and findings that a harmful mutation is more likely to occur at randomly unpredictable amino acid pairs, and a harmless mutation is more likely to occur at randomly predictable amino acid pairs. This is because we argue that the randomly predictable amino acid pairs should not be deliberately evolved, whereas the randomly unpredictable amino acid pairs should be deliberately evolved with a connection to protein function. The results show, for example, that 93.16% of 190 mutations/variants occur at randomly unpredictable amino acid pairs. Thus, the randomly unpredictable amino acid pairs are more sensitive to mutations/variants in human p53 protein. The results also suggest that the human p53 protein has a tendency for the occurrence of mutation/variants.
Collapse
Affiliation(s)
- Guang Wu
- Dream Science and Technology Consulting Co. Ltd., Shenzhen City, Guangdong Province, China.
| | | |
Collapse
|
117
|
Kovar H, Pospisilova S, Jug G, Printz D, Gadner H. Response of Ewing tumor cells to forced and activated p53 expression. Oncogene 2003; 22:3193-204. [PMID: 12761489 DOI: 10.1038/sj.onc.1206391] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The EWS-FLI1 transcription factor is consistently expressed in 85% of Ewing tumors (EFT). In heterologous cells, EWS-FLI1 induces p53-dependent cell cycle arrest or apoptosis. It has been speculated that the p53 tumor suppressor pathway may be generally compromised in EFT despite only rare p53 mutations. In order to test for functional integrity of this pathway, we have investigated a series of EFT cell lines that differ from each other with respect to their endogenous p53 and INK4A gene status for their response to ectopic p53 expression and to stimulation of endogenous p53 activity by X-ray treatment. Significant interindividual and intratumoral variations in the apoptotic propensity of EFT cell lines to transient expression of ectopic p53 were observed, which was independent of the level of p53 expression. In cell lines with a low apoptotic incidence, apoptosis was delayed and the surviving fraction showed a prolonged growth arrest. Complete resistance to p53-induced apoptosis in two cell lines established from the same patient was associated with a high BCL2/BAX ratio and low levels of APAF1. Sensitivity to X-rays showed a trend towards a higher apoptotic rate in wild-type (wt) p53 expressing than in p53 mutant cells. However, one wt p53-expressing EFT cell line was completely refractory to irradiation-stimulated cell death despite high apoptotic responsiveness to ectopic p53. No difference in Ser15 phosphorylation and the transcriptional activation of p53 targets was observed in wt p53 EFT cell lines irrespective of the induction of cell death or growth arrest. All together, our results demonstrate that despite significant variability in the outcome, cell death or cell cycle arrest, the p53 downstream pathway and the DNA damage signaling pathway are functionally intact in EFT.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
118
|
Serpi R, Vähäkangas K. Benzo(a)pyrene-induced changes in p53 and related proteins in mouse skin. PHARMACOLOGY & TOXICOLOGY 2003; 92:242-5. [PMID: 12753412 DOI: 10.1034/j.1600-0773.2003.920507.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Raisa Serpi
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | |
Collapse
|
119
|
Hwang SJ, Lozano G, Amos CI, Strong LC. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet 2003; 72:975-83. [PMID: 12610779 PMCID: PMC1180359 DOI: 10.1086/374567] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 01/23/2003] [Indexed: 01/03/2023] Open
Abstract
To characterize cancer risk in heterozygous p53 mutation carriers, we analyzed cancer incidence in 56 germline p53 mutation carriers and 3,201 noncarriers from 107 kindreds ascertained through patients with childhood soft-tissue sarcoma who were treated at the University of Texas M. D. Anderson Cancer Center. We systematically followed members in these kindreds for cancer incidence for >20 years and evaluated their p53 gene status. We found seven kindreds with germline p53 mutations that include both missense and truncation mutation types. Kaplan-Meier analysis showed similar cancer risks between 21 missense and 35 truncation p53 mutation carriers (log-rank chi(2)=0.04; P=.84). We found a significantly higher cancer risk in female carriers than in male carriers (log-rank chi(2)=12.1; P<.001), a difference not explained by an excess of sex-specific cancer. The calculated standardized incidence ratio (SIR) showed that mutation carriers had a risk for all types of cancer that was much higher than that for the general population (SIR = 41.1; 95% confidence interval [CI] 29.9-55.0) whereas noncarriers had a risk for all types of cancer that was similar to that in the general population (SIR = 0.9; 95% CI 0.8-1.0). The calculated SIRs showed a >100-fold higher risk of sarcoma, female breast cancer, and hematologic malignancies for the p53 mutation carriers and agreed with the findings of an earlier segregation analysis based on the same cohort. These results quantitatively illustrated the spectrum of cancer risk in germline p53 mutation carriers and will provide valuable reference for the evaluation and treatment of patients with cancer.
Collapse
Affiliation(s)
- Shih-Jen Hwang
- Section of Clinical Cancer Genetics, Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
120
|
Brenner C, Le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol 2003; 23:73-80. [PMID: 12757259 DOI: 10.1023/a:1022541009662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mitochondria are potent integrators/coordinators of apoptosis signaling pathways. Indeed, under physiological conditions, the initiation of apoptosis leads to the accumulation of second messengers that converge on mitochondria. In response, these organelles undergo a membrane permeabilization, presumably due to the opening of protein channels, culminating in the release of proapoptotic proteins into the cytosol. Under pathological conditions, a failure of mitochondrial membrane permeabilization (MMP) can result in an inhibition of apoptosis and enhanced resistance to chemotherapy. Several non-mutually exclusive mechanisms may account for a defect in the execution or regulation of MMP. These include (i) alterations in gene transcription, (ii) gene mutations resulting in protein inactivation, and (iii) defects of intracellular localization. This may concern structural proteins of the permeability transition pore complex, as well as MMP regulatory proteins, such as Bax/Bcl-2 family members, p53, and cyclophilin D. Analysis of these mechanisms should improve our understanding of the basic function of mitochondria in apoptosis and help elaborate new strategies to correct MMP failure from a therapeutic perspective.
Collapse
Affiliation(s)
- Catherine Brenner
- CNRS UPRESA 8087, Université de Versailles/St Quentin, LGBC Buffon, 45 Avenue des Etats-Unis, 78035 Versailles, France.
| | | | | |
Collapse
|
121
|
Liu YW, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K. Effects of reactive oxygen species on cell proliferation and death in HeLa cells and its MDR1-overexpressing derivative cell line. Biol Pharm Bull 2003; 26:278-81. [PMID: 12576695 DOI: 10.1248/bpb.26.278] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, the effects of H2O2, a typical reactive oxygen species (ROS), on cell proliferation or death were examined using the human cervical carcinoma cell line HeLa and its MDR1-overexpressing subline, Hvr100-6, which was established by stepwise exposure to vinblastine. It was confirmed that the growth of HeLa cells was enhanced by H2O2 at relatively low concentrations in a concentration-dependent manner, and the growth enhancement was suppressed by antioxidants. Doxorubicin and daunorubicin also enhanced the growth of HeLa cells at concentrations lower than IC50 values, and the antioxidants suppressed this effect, being consistent with the fact that both anticancer drugs generate ROS. The growth enhancement by H2O2 or doxorubicin and daunorubicin was not observed in Hvr100-6 cells. In addition, it was suggested that antioxidants had no effect on MDR1 mRNA expression in HeLa and Hvr100-6 cells, and thereby hardly reverse multidrug resistance in tumor cells.
Collapse
Affiliation(s)
- Yu-Wen Liu
- Department of Hospital Pharmacy, School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Sakaeda T, Nakamura T, Okumura K. MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol Pharm Bull 2002; 25:1391-400. [PMID: 12419946 DOI: 10.1248/bpb.25.1391] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multidrug resistant transporter MDR1/P-glycoprotein, the gene product of MDR1, is a glycosylated membrane protein of 170 kDa, belonging to the ATP-binding cassette superfamily of membrane transporters. MDR1 acts as an energy-dependent efflux pump that exports its substrates out of cells. MDR1 was originally isolated from resistant tumor cells as part of the mechanism of multidrug resistance, but over the last decade, it has been elucidated that human MDR1 is also expressed throughout the body to confer intrinsic resistance to the tissues by exporting unnecessary or toxic exogeneous substances or metabolites. A number of structurally unrelated drugs are substrates for MDR1, and MDR1 and other transporters are recognized as an important class of proteins for regulating pharmacokinetics and pharmacodynamics. In 2000, Hoffmeyer et al. performed a systemic screening for MDR1 polymorphisms and detected 15 single nucleotide polymorphisms (SNPs). They also indicated that a polymorphism in exon 26 at position 3435 (C3435T), a silent mutation, affected the expression level of MDR1 protein in duodenum, and thereby the intestinal absorption of digoxin. To date, the genotype frequencies of C3435T have been investigated extensively using a larger population and interethnic difference has been elucidated, and a total of 28 SNPs have been found at 27 positions on the MDR1 gene. Clinical studies on MDR1 genotype-related MDR1 expression and pharmacokinetics have also been performed around the world; however, results were not always consistent with Hoffmeyer's report. In this review, published reports are summarized for the future individualization of pharmacotherapy based on MDR1 genotyping. In addition, recent investigations have raised the possibility that MDR1 and related transporters play a fundamental role in regulating apoptosis and immunology, and in fact, there are reports of MDR1-related susceptibility to inflammatory bowel disease, HIV infection and renal cell carcinoma. Herein, these issues are also summarized, and the current status of the knowledge in the area of pharmacogenomics of other transporters is briefly introduced.
Collapse
Affiliation(s)
- Toshiyuki Sakaeda
- Department of Hospital Pharmacy, School of Medicine, Kobe University
| | | | | |
Collapse
|
123
|
Sakaeda T, Nakamura T, Hirai M, Kimura T, Wada A, Yagami T, Kobayashi H, Nagata S, Okamura N, Yoshikawa T, Shirakawa T, Gotoh A, Matsuo M, Okumura K. MDR1 up-regulated by apoptotic stimuli suppresses apoptotic signaling. Pharm Res 2002; 19:1323-9. [PMID: 12403069 DOI: 10.1023/a:1020302825511] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Recently, MDR1 (P-glycoprotein) and related transporters have been suggested to play a fundamental role in regulating apoptosis, but little information is available concerning the role of MDR1. Here, the effect of apoptotic stimuli on the MDR1 mRNA and apoptotic signaling was examined in MDR1-overexpressing cells. METHODS The expression levels of mRNA for MDR1, MRP1, MRP2, p53, p21, Bax, and Bcl-2 were measured by real time quantitative polymerase chain reaction in HeLa and its MDR1-overexpressing sublines. The effects of apoptotic stimuli by cisplatin (CDDP) on their levels were also assessed as well as on caspase 3, 8, and 9 activities. RESULTS MDR1 was rapidly upregulated when the cells were exposed to apoptotic stimuli by CDDP. The increase in Bax mRNA to Bcl-2 mRNA ratio after treatment with CDDP was suppressed in MDR1-overexpressing cells. The increases in caspase 3 and 9 activities after treatment with CDDP were suppressed in MDR1-overexpression cells. CONCLUSION MDR1 is upregulated by apoptotic stimuli suppressed apoptotic signaling presumably via the mitochondrial pathway.
Collapse
Affiliation(s)
- Toshiyuki Sakaeda
- Department of Hospital Pharmacy, School of Medicine, Kobe University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|