101
|
Chiang CL, Yang HC, Luo YH, Chen CJ, Wu HM, Chen YM, Hu YS, Lin CJ, Chung WY, Shiau CY, Guo WY, Chou TY, Pan DHC, Lee CC. Leptomeningeal metastasis in patients with non-small cell lung cancer after stereotactic radiosurgery for brain metastasis. J Neurosurg 2023; 139:385-392. [PMID: 36681978 DOI: 10.3171/2022.11.jns221888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Stereotactic radiosurgery (SRS) is an effective treatment for brain metastases (BMs) in patients with non-small cell lung cancer (NSCLC). However, factors associated with the development of post-SRS leptomeningeal metastasis (LM) remain unclear. The authors analyzed the incidence and risk factors of LM development in patients with NSCLC and BMs after SRS and examined the survival outcomes and prognostic factors after LM development. METHODS This retrospective study included patients with NSCLC treated with SRS for MRI-diagnosed BM from 2002 to 2021. The authors recorded various clinical and demographic data, including age, sex, tumor histology, molecular profile of tumors, extracranial disease status, previous craniotomy, Karnofsky Performance Status, systemic treatments, tumor volume, and number of BMs. The management and survival outcomes after LM diagnosis were also recorded. RESULTS LM developed in 13.7% of patients with NSCLC and BMs after SRS treatment. Large initial tumor volume and more than 5 BM lesions, but not EGFR mutation status and post-SRS treatment, were associated with LM development after SRS. Multivariate analysis revealed that chemotherapy and targeted therapy after LM were associated with better survival in patients with LM after SRS. CONCLUSIONS This study is the first to evaluate the risk factors for LM in a relatively large cohort of patients with NSCLC after SRS. In patients with BMs harboring risk factors for subsequent LM, such as initial tumor volume and number of metastatic lesions, aggressive therapies with high CNS penetrating ability should be considered.
Collapse
Affiliation(s)
- Chi-Lu Chiang
- 1Departments of Chest Medicine
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 3Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Huai-Che Yang
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 4Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hung Luo
- 1Departments of Chest Medicine
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ching-Jen Chen
- 5Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas
| | - Hsiu-Mei Wu
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 6Radiology, and
| | - Yuh-Min Chen
- 1Departments of Chest Medicine
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Yong-Sin Hu
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 6Radiology, and
| | - Chung-Jung Lin
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 6Radiology, and
| | - Wen-Yuh Chung
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 7Kaohsiung Veterans General Hospital, Kaohsiung City
| | | | | | - Teh-Ying Chou
- 3Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
- 10Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei
| | - David Hung-Chi Pan
- 11Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Lee
- 2School of Medicine, National Yang Ming Chiao Tung University, Taipei
- 4Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 9Brain Research Center, National Yang Ming Chiao Tung University, Taipei; and
| |
Collapse
|
102
|
Khatri VM, Mills MN, Oliver DE, Yu HHM, Vogelbaum MA, Forsyth PA, Soliman HH, Han HS, Ahmed KA. Tucatinib and stereotactic radiosurgery in the management of HER2 positive breast cancer brain metastases. J Neurooncol 2023; 164:191-197. [PMID: 37490232 DOI: 10.1007/s11060-023-04402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE HER2-positive breast cancer has a high risk of brain metastasis. Stereotactic radiosurgery (SRS) is standard of care for limited brain metastases. Tucatinib, a HER2-targeted tyrosine kinase inhibitor, has demonstrated intracranial efficacy in the HER2-CLIMB Trial. However, it is unknown whether tucatinib with SRS is safe or effective. METHODS A retrospective analysis of HER2-positive breast cancer treated with SRS and tucatinib for brain metastases management was performed. All patients received tucatinib and SRS for the management of active brain metastases. The primary endpoint was local and distant brain tumor control. Secondary endpoints were intracranial progression free survival (CNS-PFS), systemic PFS, overall survival (OS), and neurotoxicity. RESULTS A total of 135 lesions treated with SRS over 39 treatment sessions in 22 patients were identified. Median follow-up from tucatinib initiation was 20.8 months. Local brain control was 94% at 12-months and 81% at 24-months. Distant brain control was 39% at 12-months and 26% at 24-months. Median survival was 21.2 months, with 12- and 24-month OS rates of 84% and 50%, respectively. Median CNS-PFS was 11.3 months, with 12- and 24-month CNS-PFS rates of 44.9% at both time points. Median systemic PFS was not reached, with 12- and 24-month systemic PFS rates of 86% and 57%, respectively. Symptomatic radiation necrosis occurred in 6 (4%) lesions. No additional unexpected toxicities were noted. CONCLUSIONS SRS in combination with tucatinib, capecitabine, and trastuzumab appears to be a safe and feasible treatment for HER2 + brain metastases. Further prospective evaluation of potential synergistic effects is warranted.
Collapse
Affiliation(s)
- Vaseem M Khatri
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Matthew N Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Daniel E Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Michael A Vogelbaum
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Peter A Forsyth
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Hatem H Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
103
|
Mantica M, Drappatz J, Lieberman F, Hadjipanayis CG, Lunsford LD, Niranjan A. Phase II study of border zone stereotactic radiosurgery with bevacizumab in patients with recurrent or progressive glioblastoma multiforme. J Neurooncol 2023; 164:179-190. [PMID: 37515669 DOI: 10.1007/s11060-023-04398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Recurrent glioblastoma is universally fatal with limited effective treatment options. The aim of this phase 2 study of Border Zone SRS plus bevacizumab was to evaluate OS in patients with recurrent GBM. METHODS Patients with histologically confirmed GBM with recurrent disease who had received prior first-line treatment with fractionated radiotherapy and chemotherapy and eligible for SRS were enrolled. Bevacizumab 10 mg/kg was given day -1, day 14, and then every 14 days until disease progression. 1-14 days before BZ-SRS procedure, patients underwent brain MRI /MRS. MRS with measurement of choline-to-N-acetyl aspartate index (CNI) area ≥ 3 was targeted for SRS. RESULTS From 2015-2017, sixteen of planned 40 patients were enrolled. The median age was 62 (range, 48-74Y). 3/16 (0.188) participants experienced grade 2 toxicity. No AREs were reported. The mOS was 11.73 months compared to 8.74 months (P = 0.324) from date of SRS for the BZ-SRS and institutional historical controls, respectively. PFS-6 and OS-6 were 31.2% (p = 0.00294) and 81.2%(p = 0.058), respectively. Of 13 evaluable for best response: 1 CR (p = 0.077), 4 PR (p = 0.308), 7 SD (p = 0.538), and 1 PD (p = 0.077). 11/16 participants had MRS scans with an estimated probability that MRS changes a treatment plan of 0 (0, 0.285). CONCLUSION BZ-SRS with bevacizumab was feasible and well tolerated. There is no significant survival benefit using BZ-SRS with bevacizumab compared to institutional historical controls. Secondary analysis revealed a trend toward improved PFS-6, but not OS-6 after BZ-SRS. MRS scans did not result in changes to SRS treatment plans.
Collapse
Affiliation(s)
- Megan Mantica
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA.
| | - Jan Drappatz
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Frank Lieberman
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | | | - L Dade Lunsford
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ajay Niranjan
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
104
|
Waltenberger M, Bernhardt D, Diehl C, Gempt J, Meyer B, Straube C, Wiestler B, Wilkens JJ, Zimmer C, Combs SE. Hypofractionated stereotactic radiotherapy (HFSRT) versus single fraction stereotactic radiosurgery (SRS) to the resection cavity of brain metastases after surgical resection (SATURNUS): study protocol for a randomized phase III trial. BMC Cancer 2023; 23:709. [PMID: 37516835 PMCID: PMC10385881 DOI: 10.1186/s12885-023-11202-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The brain is a common site for cancer metastases. In case of large and/or symptomatic brain metastases, neurosurgical resection is performed. Adjuvant radiotherapy is a standard procedure to minimize the risk of local recurrence and is increasingly performed as local stereotactic radiotherapy to the resection cavity. Both hypofractionated stereotactic radiotherapy (HFSRT) and single fraction stereotactic radiosurgery (SRS) can be applied in this case. Although adjuvant stereotactic radiotherapy to the resection cavity is widely used in clinical routine and recommended in international guidelines, the optimal fractionation scheme still remains unclear. The SATURNUS trial prospectively compares adjuvant HFSRT with SRS and seeks to detect the superiority of HFSRT over SRS in terms of local tumor control. METHODS In this single center two-armed randomized phase III trial, adjuvant radiotherapy to the resection cavity of brain metastases with HFSRT (6 - 7 × 5 Gy prescribed to the surrounding isodose) is compared to SRS (1 × 12-20 Gy prescribed to the surrounding isodose). Patients are randomized 1:1 into the two different treatment arms. The primary endpoint of the trial is local control at the resected site at 12 months. The trial is based on the hypothesis that HFSRT is superior to SRS in terms of local tumor control. DISCUSSION Although adjuvant stereotactic radiotherapy after resection of brain metastases is considered standard of care treatment, there is a need for further prospective research to determine the optimal fractionation scheme. To the best of our knowledge, the SATURNUS study is the only randomized phase III study comparing different regimes of postoperative stereotactic radiotherapy to the resection cavity adequately powered to detect the superiority of HFSRT regarding local control. TRIAL REGISTRATION The study was retrospectively registered with ClinicalTrials.gov, number NCT05160818, on December 16, 2021. The trial registry record is available on https://clinicaltrials.gov/study/NCT05160818 . The presented protocol refers to version V1.3 from March 21, 2021.
Collapse
Affiliation(s)
- Maria Waltenberger
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany.
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christian Diehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | | | - Benedikt Wiestler
- Institute of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Claus Zimmer
- Institute of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
105
|
Altan M, Wang Y, Song J, Welsh J, Tang C, Guha-Thakurta N, Blumenschein GR, Carter BW, Wefel JS, Ghia AJ, Yeboa DN, McAleer MF, Chung C, Woodhouse KD, McGovern SL, Wang C, Kim BYS, Weinberg JS, Briere TM, Elamin YY, Le X, Cascone T, Negrao MV, Skoulidis F, Ferrarotto R, Heymach JV, Li J. Nivolumab and ipilimumab with concurrent stereotactic radiosurgery for intracranial metastases from non-small cell lung cancer: analysis of the safety cohort for non-randomized, open-label, phase I/II trial. J Immunother Cancer 2023; 11:e006871. [PMID: 37402581 PMCID: PMC10335483 DOI: 10.1136/jitc-2023-006871] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Up to 20% of patients with non-small cell lung cancer (NSCLC) develop brain metastasis (BM), for which the current standard of care is radiation therapy with or without surgery. There are no prospective data on the safety of stereotactic radiosurgery (SRS) concurrent with immune checkpoint inhibitor therapy for BM. This is the safety cohort of the phase I/II investigator-initiated trial of SRS with nivolumab and ipilimumab for patients with BM from NSCLC. PATIENTS AND METHODS This single-institution study included patients with NSCLC with active BM amenable to SRS. Brain SRS and systemic therapy with nivolumab and ipilimumab were delivered concurrently (within 7 days). The endpoints were safety and 4-month intracranial progression-free survival (PFS). RESULTS Thirteen patients were enrolled in the safety cohort, 10 of whom were evaluable for dose-limiting toxicities (DLTs). Median follow-up was 23 months (range 9.7-24.3 months). The median interval between systemic therapy and radiation therapy was 3 days. Only one patient had a DLT; hence, predefined stopping criteria were not met. In addition to the patient with DLT, three patients had treatment-related grade ≥3 adverse events, including elevated liver function tests, fatigue, nausea, adrenal insufficiency, and myocarditis. One patient had a confirmed influenza infection 7 months after initiation of protocol treatment (outside the DLT assessment window), leading to pneumonia and subsequent death from hemophagocytic lymphohistiocytosis. The estimated 4-month intracranial PFS rate was 70.7%. CONCLUSION Concurrent brain SRS with nivolumab/ipilimumab was safe for patients with active NSCLC BM. Preliminary analyses of treatment efficacy were encouraging for intracranial treatment response.
Collapse
Affiliation(s)
- Mehmet Altan
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nandita Guha-Thakurta
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George R Blumenschein
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amol J Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristina D Woodhouse
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chenyang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tina M Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yasir Y Elamin
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tina Cascone
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcelo V Negrao
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Renata Ferrarotto
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
106
|
Mahgerefteh N, Mozaffari K, Teton Z, Malkhasyan Y, Kim K, Yang I. Incidental Meningiomas: Potential Predictors of Growth and Current State of Management. Neurosurg Clin N Am 2023; 34:347-369. [PMID: 37210125 DOI: 10.1016/j.nec.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rise in availability of neuroimaging has led to an increase in incidentally discovered meningiomas. These tumors are typically asymptomatic and tend to display slow growth. Treatment options include observation with serial monitoring, radiation, and surgery. Although optimal management is unclear, clinicians recommend a conservative approach, which preserves quality of life and limits unnecessary intervention. Several risk factors have been investigated for their potential utility in the development of prognostic models for risk assessment. Herein, the authors review the current literature on incidental meningiomas, focusing their discussion on potential predictive factors for tumor growth and appropriate management practices.
Collapse
Affiliation(s)
- Natalie Mahgerefteh
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Khashayar Mozaffari
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Zoe Teton
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Yelena Malkhasyan
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Kihong Kim
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Department of Radiation Oncology, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Department of Head and Neck Surgery, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Jonsson Comprehensive Cancer Center, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Los Angeles Biomedical Research Institute, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Harbor-UCLA Medical Center, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; David Geffen School of Medicine, Los Angeles, 100 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
107
|
Mishra A, Koffler D, Calugaru E, Rowe N, Viswanatha SD, Begley S, Bajaj V, Schulder M, Goenka A. Let's make size not matter: tumor control and toxicity outcomes of hypofractionated Gamma Knife radiosurgery for large brain metastases. J Neurooncol 2023; 163:587-595. [PMID: 37410346 DOI: 10.1007/s11060-023-04365-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Management of patients with large brain metastases poses a clinical challenge, with poor local control and high risk of adverse radiation events when treated with single-fraction stereotactic radiosurgery (SF-SRS). Hypofractionated SRS (HF-SRS) may be considered, but clinical data remains limited, particularly with Gamma Knife (GK) radiosurgery. We report our experience with GK to deliver mask-based HF-SRS to brain metastases greater than 10 cc in volume and present our control and toxicity outcomes. METHODS Patients who received hypofractionated GK radiosurgery (HF-GKRS) for the treatment of brain metastases greater than 10 cc between January 2017 and June 2022 were retrospectively identified. Local failure (LF) and adverse radiation events of CTCAE grade 2 or higher (ARE) were identified. Clinical, treatment, and radiological information was collected to identify parameters associated with clinical outcomes. RESULTS Ninety lesions (in 78 patients) greater than 10 cc were identified. The median gross tumor volume was 16.0 cc (range 10.1-56.0 cc). Prior surgical resection was performed on 49 lesions (54.4%). Six- and 12-month LF rates were 7.3% and 17.6%; comparable ARE rates were 1.9% and 6.5%. In multivariate analysis, tumor volume larger than 33.5 cc (p = 0.029) and radioresistant histology (p = 0.047) were associated with increased risk of LF (p = 0.018). Target volume was not associated with increased risk of ARE (p = 0.511). CONCLUSIONS We present our institutional experience treating large brain metastases using mask-based HF-GKRS, representing one of the largest studies implementing this platform and technique. Our LF and ARE compare favorably with the literature, suggesting that target volumes less than 33.5 cc demonstrate excellent control rates with low ARE. Further investigation is needed to optimize treatment technique for larger tumors.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Emel Calugaru
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Niara Rowe
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Sirisha Devi Viswanatha
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Sabrina Begley
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Vikram Bajaj
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Michael Schulder
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Anuj Goenka
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA.
| |
Collapse
|
108
|
Begley SL, Goenka A, Schulder M. Brainstem Metastases Treated with Stereotactic Radiosurgery: Masked versus Framed Immobilization. World Neurosurg 2023; 175:e1158-e1165. [PMID: 37116783 DOI: 10.1016/j.wneu.2023.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Patients with brainstem metastases (BSMs) have minimal surgical options due to high-risk anatomy. To review our efficacy treating BSM using Gamma Knife stereotactic radiosurgery (SRS), we compared results on the basis of the utilization of mask-fixation (MF) or frame-fixation (FF). METHODS Data were retrospectively collected for 32 patients. Follow-up data for 49 lesions were analyzed for local control rate (LCR) and objective response rate (ORR). RESULTS Primary cancers included lung, breast, and melanoma; most lesions were pontine. MF was used in 18 patients. Average tumor volume was 0.99 cm3 (0.005-13.3 cm3). Thirty-nine lesions were treated with single-fraction 16 Gy. Ten lesions were treated in 3-5 fractions with mean dose of 22.5 Gy. Mean follow-up was 14.2 months (1.2-48.2 months). One-year LCR was 94.7%. ORR at last follow-up did not differ between MF and FF (P = 0.81). Average reduction of lesion volume at 6 and 12 months did not differ between MF and FF (64% vs. 45%, P = 0.77; 70% vs. 77%, P = 0.78). Failure occurred in a pontine colorectal cancer metastasis mask-immobilized for treatment with 14 Gy. CONCLUSIONS SRS for BSM achieved high LCR despite variability in tumor size and histology with no significant difference between MF and FF. Although trials have historically excluded patients with BSM, our data support SRS as a safe and efficacious treatment. This is the first study showing that MF provides equivalent, successful outcomes when compared with FF for patients with BSM.
Collapse
Affiliation(s)
- Sabrina L Begley
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, USA.
| | - Anuj Goenka
- Department of Radiation Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, USA
| | - Michael Schulder
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, USA
| |
Collapse
|
109
|
Le TA, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107546. [PMID: 37068450 DOI: 10.1016/j.cmpb.2023.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.
Collapse
Affiliation(s)
- Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
110
|
Kowalchuk RO, Niranjan A, Hess J, Antonios JP, Zhang MY, Braunstein S, Ross RB, Pikis S, Deibert CP, Lee CC, Yang HC, Langlois AM, Mathieu D, Peker S, Samanci Y, Rusthoven CG, Chiang V, Wei Z, Lunsford LD, Trifiletti DM, Sheehan JP. Stereotactic radiosurgery and local control of brain metastases from triple-negative breast cancer. J Neurosurg 2023; 138:1608-1614. [PMID: 36433878 DOI: 10.3171/2022.10.jns221900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Stereotactic radiosurgery (SRS) is an effective treatment for intracranial metastatic disease, but its role in triple-negative breast cancer requires further study. Herein, the authors report overall survival (OS) and local tumor control in a multiinstitutional cohort with triple-negative breast cancer metastases treated with SRS. METHODS Patients treated from 2010 to 2019 at 9 institutions were included in this retrospective study if they had biopsy-proven triple-negative breast cancer with intracranial metastatic lesions treated with SRS. Patients were excluded if they had undergone prior SRS, whole-brain radiation therapy, or resection of the metastatic lesions. A retrospective chart review was conducted to determine OS, local control, and treatment efficacy. RESULTS Sixty-eight patients with 315 treated lesions were assessed. Patients had a median Karnofsky Performance Status of 80 (IQR 70-90) and age of 57 years (IQR 48-67 years). Most treated patients had 5 or fewer intracranial lesions, with 34% of patients having a single lesion. Treated lesions were small, having a median volume owf 0.11 cm3 (IQR 0.03-0.60 cm3). Patients were treated with a median margin dose of 18 Gy (IQR 18-20 Gy) to the median 71% isodose line (IQR 50%-84%). Overall, patients had a 1-year OS of 43% and 2-year OS of 20%. Most patients (88%) were followed until death, by which time local tumor progression had occurred in only 7% of cases. Furthermore, 76% of the lesions demonstrated regression. Tumor volume was correlated with local tumor progression (p = 0.012). SRS was very well tolerated, and only 3 patients (5%) developed symptomatic radiation necrosis. CONCLUSIONS SRS is a safe and efficacious treatment for well-selected patients with triple-negative breast cancer, especially for those with a favorable performance status and small- to moderate-volume metastatic lesions.
Collapse
Affiliation(s)
- Roman O Kowalchuk
- 1Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ajay Niranjan
- 2Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Judith Hess
- 3Department of Neurosurgery, Yale New Haven Hospital, New Haven, Connecticut
| | - Joseph P Antonios
- 3Department of Neurosurgery, Yale New Haven Hospital, New Haven, Connecticut
| | - Michael Y Zhang
- 4Department of Radiation Oncology, University of California, San Francisco, California
| | - Steve Braunstein
- 4Department of Radiation Oncology, University of California, San Francisco, California
| | - Richard B Ross
- 5Department of Radiation Oncology, University of Colorado, Boulder, Colorado
| | - Stylianos Pikis
- 6Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia
| | | | - Cheng-Chia Lee
- 8Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 9National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Huai-Che Yang
- 8Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- 9National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Anne-Marie Langlois
- 10Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - David Mathieu
- 10Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Selcuk Peker
- 11Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey; and
| | - Yavuz Samanci
- 11Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey; and
| | - Chad G Rusthoven
- 5Department of Radiation Oncology, University of Colorado, Boulder, Colorado
| | - Veronica Chiang
- 3Department of Neurosurgery, Yale New Haven Hospital, New Haven, Connecticut
| | - Zhishuo Wei
- 2Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - L Dade Lunsford
- 2Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jason P Sheehan
- 6Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
111
|
Peña-Pino I, Chen CC. Stereotactic Radiosurgery as Treatment for Brain Metastases: An Update. Asian J Neurosurg 2023; 18:246-257. [PMID: 37397044 PMCID: PMC10310446 DOI: 10.1055/s-0043-1769754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is a mainstay treatment option for brain metastasis (BM). While guidelines for SRS use have been outlined by professional societies, consideration of these guidelines should be weighed in the context of emerging literature, novel technology platforms, and contemporary treatment paradigms. Here, we review recent advances in prognostic scale development for SRS-treated BM patients and survival outcomes as a function of the number of BM and cumulative intracranial tumor volume. Focus is placed on the role of stereotactic laser thermal ablation in the management of BM that recur after SRS and the management of radiation necrosis. Neoadjuvant SRS prior to surgical resection as a means of minimizing leptomeningeal spread is also discussed.
Collapse
Affiliation(s)
- Isabela Peña-Pino
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
112
|
Gruber I, Stark P, Weidner K, Treutwein M, Koelbl O. Fractionated stereotactic radiotherapy of brain metastases: results of a retrospective study. Radiat Oncol 2023; 18:85. [PMID: 37217924 DOI: 10.1186/s13014-023-02277-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Lasting local control of brain metastases following stereotactic radiotherapy is becoming increasingly relevant since systemic treatment constantly improves the prognosis of patients with extracranial metastases. METHODS 73 patients with 103 brain metastases received hypofractionated stereotactic radiotherapy (FSRT) in 6 fractions of 5 Gy between January 2017 and December 2021 at the University Hospital Regensburg, Germany. The study retrospectively evaluated local progression free survival (LPFS), overall survival (OS) and distant brain progression free survival (DPFS) of patients without prior radiotherapy of the brain. Response rate and brain radiation necrosis were reported. Cox proportional hazard models evaluated prognostic factors of OS and LPFS. RESULTS The median patient age was 61.0 years (Interquartile range, IQR 51.0, 67.5). The most common tumor types were malignant melanoma (34.2%) and non-small cell lung adenocarcinoma (26.0%). The median gross tumor volume (GTV) was 0.9 cm³ (IQR 0.4, 3.6). The median follow-up time of all patients was 36.3 months (95%CI 29.1, 43.4). The median OS was 17.4 months (95%CI 9.9, 24.9). Overall survival rates at 6-, 12-, 18-, 24-, and 30 months were 81.9%, 59.1%, 49.0%, 41.3%, and 37.2%, retrospectively. The mean LPFS was 38.1 months (95%CI 31.4, 44.9), while the median LPFS has not been reached. LPFS rates at 6-, 12-, 18-, 24- and 30 months were 78.9%, 68.7%, 64.3%, 61.6% and 58.7%, retrospectively. Median DPFS of all patients was 7.7 months (95%CI 6.1, 9.3). Six, 12-, 18-, 24- and 30 months DPFS rates were 62.1%, 36.3%, 31.1%, 24.8% and 21.7%. Five brain metastases (4.8%) developed brain radiation necrosis. In multivariate analysis, the number of brain metastases negatively affected LPFS. Non-melanoma and non-renal cell cancer was associated with a higher chance of LPFS in comparison to other cancer. A GTV > 1.5 cm³ translated into a higher risk of death compared to a GTV ≤ 1.5 cm³ and Karnofsky performance score was predictive of OS. CONCLUSIONS FSRT in 6 fractions of 5 Gy seems to be an effective treatment with an acceptable local control for patients with brain metastases although melanoma and renal cell cancer seem to have a worse local control in comparison to other cancer. TRIAL REGISTRATION This study is retrospectively registered.
Collapse
Affiliation(s)
- Isabella Gruber
- Department of Radiation Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Bavarian, Germany.
| | - Philipp Stark
- University of Regensburg, Universitätsstraße 31, Regensburg, Bavarian, Germany
| | - Karin Weidner
- Department of Radiation Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Bavarian, Germany
| | - Marius Treutwein
- Department of Radiation Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Bavarian, Germany
| | - Oliver Koelbl
- Department of Radiation Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Bavarian, Germany
| |
Collapse
|
113
|
Kornhuber C, Ensminger S, Hübsch P, Janich M, Leucht CA, Vordermark D, Dietzel CT. Feasibility of a simultaneously integrated boost concept for hypofractionated stereotactic radiotherapy of unresected brain metastases. Radiat Oncol 2023; 18:88. [PMID: 37217934 DOI: 10.1186/s13014-023-02266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In stereotactic radiotherapy, dose is prescribed to an isodose surrounding the planning target volume (PTV). However, the desired dose inhomogeneity inside the PTV leaves the specific dose distribution to the gross tumor volume (GTV) unspecified. A simultaneously integrated boost (SIB) to the GTV could solve this shortcoming. In a retrospective planning study with 20 unresected brain metastases, a SIB approach was tested against the classical prescription. METHODS For all metastases, the GTV was isotropically enlarged by 3 mm to a PTV. Two plans were generated, one according to the classical 80% concept with 5 times 7 Gy prescribed (on D2%) to the 80% PTV surrounding isodose (with D98%(PTV) ≥ 35 Gy), and the other one following a SIB concept with 5 times 8.5 Gy average GTV dose and with D98%(PTV) ≥ 35 Gy as additional requirement. Plan pairs were compared in terms of homogeneity inside GTV, high dose in PTV rim around GTV, and dose conformity and gradients around PTV using Wilcoxon matched pairs signed rank test. RESULTS The SIB concept was superior to the classical 80% concept concerning dose homogeneity inside GTV: Heterogeneity index of GTV was in the SIB concept (median 0.0513, range 0.0397-0.0757) significantly (p = 0.001) lower than in the 80% concept (median 0.0894, range 0.0447-0.1872). Dose gradients around PTV were not inferior. The other examined measures were comparable. CONCLUSION Our stereotactic SIB concept better defines the dose distribution inside PTV and can be considered for clinical use.
Collapse
Affiliation(s)
- Christine Kornhuber
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| | - Stephan Ensminger
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Patrick Hübsch
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Martin Janich
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Chris Andre Leucht
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Christian T Dietzel
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| |
Collapse
|
114
|
Beddok A, Loi M, Rivin Del Campo E, Dumas JL, Orthuon A, Créhange G, Huguet F. [Limits of dose constraint definition for organs at risk specific to stereotactic radiotherapy]. Cancer Radiother 2023:S1278-3218(23)00067-7. [PMID: 37208260 DOI: 10.1016/j.canrad.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 05/21/2023]
Abstract
Stereotactic radiotherapy is a very hypofractionated radiotherapy (>7.5Gy per fraction), and therefore is more likely to induce late toxicities than conventional normofractionated irradiations. The present study examines four frequent and potentially serious late toxicities: brain radionecrosis, radiation pneumonitis, radiation myelitis, and radiation-induced pelvic toxicities. The critical review focuses on the toxicity scales, the definition of the dose constrained volume, the dosimetric parameters, and the non-dosimetric risk factors. The most commonly used toxicity scales remain: RTOG/EORTC or common terminology criteria for adverse events (CTCAE). The definition of organ-at-risk volume requiring protection is often controversial, which limits the comparability of studies and the possibility of accurate dose constraints. Nevertheless, for the brain, whatever the indication (arteriovenous malformation, benign tumor, metastasis of solid tumors...), the association between the volume of brain receiving 12Gy (V12Gy) and the risk of cerebral radionecrosis is well established for both single and multi-fraction stereotactic irradiation. For the lung, the average dose received by both lungs and the V20 seem to correlate well with the risk of radiation-induced pneumonitis. For the spinal cord, the maximum dose is the most consensual parameter. Clinical trial protocols are useful for nonconsensual dose constraints. Non-dosimetric risk factors should be considered when validating the treatment plan.
Collapse
Affiliation(s)
- A Beddok
- Institut Curie, université PSL, université Paris Saclay, Inserm, Lito U1288, 75005 Orsay, France; Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France.
| | - M Loi
- Radiotherapy Department, University of Florence, Florence, Italie
| | - E Rivin Del Campo
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France; Faculté de médecine, Sorbonne Université, 75013 Paris, France
| | - J-L Dumas
- Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| | - A Orthuon
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France
| | - G Créhange
- Institut Curie, université PSL, université Paris Saclay, Inserm, Lito U1288, 75005 Orsay, France; Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| | - F Huguet
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France; Faculté de médecine, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
115
|
Johannwerner L, Werner EM, Blanck O, Janssen S, Cremers F, Yu NY, Rades D. Radiation Necrosis Following Stereotactic Radiosurgery or Fractionated Stereotactic Radiotherapy with High Biologically Effective Doses for Large Brain Metastases. BIOLOGY 2023; 12:biology12050655. [PMID: 37237469 DOI: 10.3390/biology12050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21-30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19-20 Gy) and patients treated with FSRT (30-48 Gy in 3-12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
Collapse
Affiliation(s)
- Leonie Johannwerner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Elisa M Werner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Saphir Radiosurgery Center Northern Germany, 24105 Kiel, Germany
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, 30161 Hannover, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Dirk Rades
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| |
Collapse
|
116
|
Vaios EJ, Winter SF, Shih HA, Dietrich J, Peters KB, Floyd SR, Kirkpatrick JP, Reitman ZJ. Novel Mechanisms and Future Opportunities for the Management of Radiation Necrosis in Patients Treated for Brain Metastases in the Era of Immunotherapy. Cancers (Basel) 2023; 15:2432. [PMID: 37173897 PMCID: PMC10177360 DOI: 10.3390/cancers15092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine B. Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
117
|
Hall JC, Chang SD, Gephart MH, Pollom E, Butler S. Stereotactic Radiosurgery for Brain Metastases in Patients With a Heterozygous Germline Ataxia Telangiectasia Mutated Gene. Cureus 2023; 15:e37712. [PMID: 37206490 PMCID: PMC10191388 DOI: 10.7759/cureus.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Germline mutations in the ataxia telangiectasia mutated (ATM) gene are associated with increased radiation sensitivity. Present literature lacks consensus on whether patients with heterozygous germline ATM mutations may be at greater risk of radiation-associated toxicities when treated with radiation therapy (RT), and there is little data considering more modern and conformal RT techniques such as stereotactic radiosurgery (SRS). Our report presents two cases of patients with heterozygous germline ATM mutations treated with SRS for brain metastases. One patient developed grade 3 radiation necrosis (RN) of an irradiated 16.3 cm3 resection cavity, but did not develop RN at other sites of punctate brain metastases treated with SRS. Similarly, the second report describes a patient who did not develop RN at any of the 31 irradiated sites of sub-centimeter (all ≤5 mm) brain metastases. The described cases demonstrate that some patients with germline ATM variants can safely undergo SRS for smaller brain metastases; however, clinical caution should be considered for patients with larger targets or a history of prior radiation toxicity. Given these findings and the lingering uncertainty surrounding the degree of radiosensitivity across ATM variants, future research is needed to determine whether more conservative dose-volume limits would potentially mitigate the risk of RN when treating larger brain metastases in this radiosensitive population.
Collapse
Affiliation(s)
- Jennifer C Hall
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Erqi Pollom
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Santino Butler
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
118
|
Shiue K, Sahgal A, Lo SS. Precision Radiation for Brain Metastases With a Focus on Hypofractionated Stereotactic Radiosurgery. Semin Radiat Oncol 2023; 33:114-128. [PMID: 36990629 DOI: 10.1016/j.semradonc.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
There are multiple published randomized controlled trials supporting single-fraction stereotactic radiosurgery (SF-SRS) for patients presenting with 1 to 4 brain metastases, with the benefit of minimizing radiation-induced neurocognitive sequelae as compared to whole brain radiotherapy . More recently, the dogma of SF-SRS as the only means of delivering an SRS treatment has been challenged by hypofractionated SRS (HF-SRS). The ability to deliver 25-35 Gy in 3-5 HF-SRS fractions is a direct consequence of the evolution of radiation technologies to allow image guidance, specialized treatment planning, robotic delivery and/or patient positioning corrections in all 6 degrees-of-freedom, and frameless head immobilization. The intent is to mitigate the potentially devastating complication of radiation necrosis and improve rates of local control for larger metastases. This narrative review provides an overview of outcomes specific to HF-SRS in addition to the more recent developments of staged SRS, preoperative SRS, and hippocampal avoidance-whole brain radiotherapy with simultaneous integrated boost.
Collapse
|
119
|
Thomson HM, Fortin Ensign SP, Edmonds VS, Sharma A, Butterfield RJ, Schild SE, Ashman JB, Zimmerman RS, Patel NP, Bryce AH, Vora SA, Sio TT, Porter AB. Clinical Outcomes of Stereotactic Radiosurgery-Related Radiation
Necrosis in Patients with Intracranial Metastasis from Melanoma. Clin Med Insights Oncol 2023; 17:11795549231161878. [PMID: 36968334 PMCID: PMC10034291 DOI: 10.1177/11795549231161878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2023] [Indexed: 03/24/2023] Open
Abstract
Background: Radiation necrosis (RN) is a clinically relevant complication of stereotactic
radiosurgery (SRS) for intracranial metastasis (ICM) treatments. Radiation
necrosis development is variable following SRS. It remains unclear if risk
factors for and clinical outcomes following RN may be different for melanoma
patients. We reviewed patients with ICM from metastatic melanoma to
understand the potential impact of RN in this patient population. Methods: Patients who received SRS for ICM from melanoma at Mayo Clinic Arizona
between 2013 and 2018 were retrospectively reviewed. Data collected included
demographics, tumor characteristics, radiation parameters, prior surgical
and systemic treatments, and patient outcomes. Radiation necrosis was
diagnosed by clinical evaluation including brain magnetic resonance imaging
(MRI) and, in some cases, tissue evaluation. Results: Radiation necrosis was diagnosed in 7 (27%) of 26 patients at 1.6 to 38
months following initial SRS. Almost 92% of all patients received systemic
therapy and 35% had surgical resection prior to SRS. Patients with RN
trended toward having larger ICM and a prior history of surgical resection,
although statistical significance was not reached. Among patients with
resection, those who developed RN had a longer period between surgery and
SRS start (mean 44 vs 33 days). Clinical improvement following treatment for
RN was noted in 2 (29%) patients. Conclusions: Radiation necrosis is relatively common following SRS for treatment of ICM
from metastatic melanoma and clinical outcomes are poor. Further studies
aimed at mitigating RN development and identifying novel approaches for
treatment are warranted.
Collapse
Affiliation(s)
- Holly M Thomson
- Department of Internal Medicine, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Akanksha Sharma
- Department of Neurology, Pacific
Neurosciences Institute and John Wayne Cancer Center, Santa Monica, CA, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Naresh P Patel
- Department of Neurosurgery, Mayo
Clinic, Phoenix, AZ, USA
| | - Alan H Bryce
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Alyx B Porter
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
- Department of Neurology, College of
Medicine, Mayo Clinic, Phoenix, AZ, USA
- Alyx B Porter, Department of Neurology,
College of Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
120
|
Leu J, Akerman M, Mendez C, Lischalk JW, Carpenter T, Ebling D, Haas JA, Witten M, Barbaro M, Duic P, Tessler L, Repka MC. Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure. Front Oncol 2023; 13:1132777. [PMID: 37091181 PMCID: PMC10113671 DOI: 10.3389/fonc.2023.1132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionBrain metastases are the most common intracranial tumor diagnosed in adults. In patients treated with stereotactic radiosurgery, the incidence of post-treatment radionecrosis appears to be rising, which has been attributed to improved patient survival as well as novel systemic treatments. The impacts of concomitant immunotherapy and the interval between diagnosis and treatment on patient outcomes are unclear.MethodsThis single institution, retrospective study consisted of patients who received single or multi-fraction stereotactic radiosurgery for intact brain metastases. Exclusion criteria included neurosurgical resection prior to treatment and treatment of non-malignant histologies or primary central nervous system malignancies. A univariate screen was implemented to determine which factors were associated with radionecrosis. The chi-square test or Fisher’s exact test was used to compare the two groups for categorical variables, and the two-sample t-test or Mann-Whitney test was used for continuous data. Those factors that appeared to be associated with radionecrosis on univariate analyses were included in a multivariable model. Univariable and multivariable Cox proportional hazards models were used to assess potential predictors of time to local failure and time to regional failure.ResultsA total of 107 evaluable patients with a total of 256 individual brain metastases were identified. The majority of metastases were non-small cell lung cancer (58.98%), followed by breast cancer (16.02%). Multivariable analyses demonstrated increased risk of radionecrosis with increasing MRI maximum axial dimension (OR 1.10, p=0.0123) and a history of previous whole brain radiation therapy (OR 3.48, p=0.0243). Receipt of stereotactic radiosurgery with concurrent immunotherapy was associated with a decreased risk of local failure (HR 0.31, p=0.0159). Time interval between diagnostic MRI and first treatment, time interval between CT simulation and first treatment, and concurrent immunotherapy had no impact on incidence of radionecrosis or regional failure.DiscussionAn optimal time interval between diagnosis and treatment for intact brain metastases that minimizes radionecrosis and maximizes local and regional control could not be identified. Concurrent immunotherapy does not appear to increase the risk of radionecrosis and may improve local control. These data further support the safety and synergistic efficacy of stereotactic radiosurgery with concurrent immunotherapy.
Collapse
Affiliation(s)
- Justin Leu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Meredith Akerman
- Division of Health Services Research, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Christopher Mendez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Todd Carpenter
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - David Ebling
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan A. Haas
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Matthew Witten
- Department of Medical Physics, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Marissa Barbaro
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Paul Duic
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Lee Tessler
- Department of Neurosurgery, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Michael C. Repka
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Michael C. Repka,
| |
Collapse
|
121
|
Abdulhaleem M, Johnston H, D'Agostino R, Lanier C, Cramer CK, Triozzi P, Lo HW, Xing F, Li W, Whitlow C, White JJ, Tatter SB, Laxton AW, Su J, Chan MD, Ruiz J. Patterns of Failure Outcomes for Combination of Stereotactic Radiosurgery and Immunotherapy for Melanoma Brain Metastases. NEUROSURGERY PRACTICE 2023; 4:e00026. [PMID: 39959719 PMCID: PMC11809996 DOI: 10.1227/neuprac.0000000000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 02/18/2025]
Abstract
BACKGROUND Previous series have demonstrated central nervous system activity for immune checkpoint inhibitors (ICIs) and shown improved local control between stereotactic radiosurgery (SRS) and ICI for lung cancer brain metastases. OBJECTIVE To assess whether the addition of ICI to SRS for melanoma brain metastasis improves outcomes when compared with historical control group treated in the era before ICI availability. METHODS In this single institution retrospective series, outcomes of 24 patients with melanoma receiving concurrent ICI and SRS were compared with 111 historical controls treated before ICI era. Overall survival (OS) was estimated using the Kaplan-Meier method. Cumulative incidence of local and distant failures was estimated using a competing risk model that accounted for baseline differences using propensity score adjustments. RESULTS The median OS time was improved in patients receiving ICI compared with the historical control group (17.6 vs 6.6 months, hazard ratio [HR] = 0.056, P = .0005). Cumulative incidence at 1 year for local failure in the historical control and ICI groups was approximately 12.5% and 6.5%, respectively (HR = 0.25, P = .19), while cumulative incidence of distant brain failure in the historical control and ICI groups was approximately 48% and 28%, respectively (HR = 0.326, P = .015). CONCLUSION Distant brain failure and OS were improved in patients receiving concurrent ICI with SRS compared with historical controls. Local failure trended in the same direction; however, owing to small sample size, this did not reach statistical significance. While these data remain to be validated, they suggest that patients with brain metastasis may benefit from concurrent use of ICI with SRS.
Collapse
Affiliation(s)
- Mohammed Abdulhaleem
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah Johnston
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Claire Lanier
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christina K. Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pierre Triozzi
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jaclyn J. White
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael. D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jimmy Ruiz
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
122
|
Zhang Q, Hamilton D, Conway P, Xie SJ, Haghighi N, Lasocki A. Radiation necrosis and therapeutic outcomes in patients treated with linear accelerator-based hypofractionated stereotactic radiosurgery for intact intracranial metastases. J Med Imaging Radiat Oncol 2023; 67:308-319. [PMID: 36847751 DOI: 10.1111/1754-9485.13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Balancing disease control and treatment-related toxicities can be challenging when treating higher-risk brain metastases (BMs) that are larger in size or eloquent anatomical locations. Hypofractionated stereotactic radiosurgery (hfSRS) is expected to offer superior or equal efficacy with lower toxicity profile compared with single-fraction SRS (sfSRS). We report the efficacy and toxicity profiles of hfSRS in a consecutive cohort of patients to support this predicted benefit from hfSRS for high-risk BMs. METHODS We retrospectively analysed 185 consecutive individual lesions from 152 patients with intact BMs treated with hfSRS between 1 July 2016 and 31 October 2019 and followed up to 30 April 2022 with serial brain magnetic resonance imaging (MRI). The primary endpoint was the event of radiation necrosis (RN). Local control (LC) rate and distant brain failure (DBF) were reported as secondary outcomes. Kaplan-Meier method was used to report the cumulative incidence of RN and overall survival and the incidence of DBF. Potential risk factors for RN were assessed using univariable Cox regression analysis. RESULTS The median follow-up was 38.0 months, and the median survival post-SRS was 9.5 months. The cumulative incidence rate of RN was 13.2% (95% CI: 7.0-24.7%), and 18.1% of patients with confirmed RN were symptomatic. Higher mean dose delivered to planning target volume (PTV) (HR 1.22, 95% CI: 1.05-1.42, P = 0.01), higher mean BED10 (biological equivalent dose assuming a tissue α / β $$ \alpha /\beta $$ ratio of 10) (HR 1.12, 95% CI: 1.04-1.2, P < 0.001), and higher mean BED2 (HR 1.02, 95% CI: 1-1.04, P = 0.04) delivered to the lesion was associated with increased risk of RN. LC rate was 86% and the cumulative incidence of DBF was 36% with a median onset of 28.4 months. CONCLUSIONS Our results support the predicted radiobiological benefit of the use of hfSRS in high-risk BMs to limit treatment-related toxicity with low risk for symptomatic RN comparable with lower risk population receiving sfSRS while achieving satisfactory local disease control.
Collapse
Affiliation(s)
- Qichen Zhang
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Icon Cancer Centre Gold Coast University Hospital, Queensland, Gold Coast, Australia
| | - Daniel Hamilton
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,MetaMelb Research Group, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Conway
- Icon Cancer Centre Richmond, Victoria, Melbourne, Australia
| | - Sophia Jing Xie
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Victoria, Melbourne, Australia
| | - Neda Haghighi
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
123
|
Brain Metastasis Growth Kinetics: A Novel Prognosticator for Stereotactic Radiotherapy. Clin Oncol (R Coll Radiol) 2023; 35:e328-e335. [PMID: 36890037 DOI: 10.1016/j.clon.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
AIMS The rate of size change in brain metastasis may have clinical implications on tumour biology and prognosis for patients who receive stereotactic radiotherapy (SRT). We analysed the prognostic value of brain metastasis size kinetics and propose a model for patients with brain metastases treated with linac-based SRT in predicting overall survival. MATERIALS AND METHODS We analysed the patients receiving linac-based SRT between 2010 and 2020. Patient and oncological factors, including the changes in sizes of brain metastasis between the diagnostic and stereotactic magnetic resonance imaging, were collected. The associations between prognostic factors and overall survival were assessed using Cox regression with least absolute selection and shrinkage operator (LASSO) checked by 500 bootstrap replications. Our prognostic score was calculated by evaluating the most statistically significant factors. Patients were grouped and compared according to our proposed score, Score Index for Radiosurgery in Brain Metastases (SIR) and Basic Score for Brain Metastases (BS-BM). RESULTS In total, 85 patients were included. We developed the prognostic model based on the most important predictors of overall survival: growth kinetics, i.e. percentage change in brain metastasis size per day between the diagnostic and stereotactic magnetic resonance imaging (hazard ratio per 1% increase, 1.32; 95% confidence interval 1.06-1.65), extracranial oligometastatic diseases (≤5 involvements) (hazard ratio 0.28; 95% confidence interval 0.16-0.52) and the presence of neurological symptoms (hazard ratio 2.99; 95% confidence interval 1.54-5.81). Patients with scores 0, 1, 2 and 3 had a median overall survival of 44.4 (95% confidence interval 9.6-not reached), 20.4 (95% confidence interval 15.6-40.8), 12.0 (95% confidence interval 7.2-22.8) and 2.4 (95% confidence interval 1.2-not reached) years, respectively. The optimism-corrected c-indices for our proposed model, SIR and BS-BM were 0.65, 0.58 and 0.54, respectively. CONCLUSIONS Brain metastasis growth kinetics is a valuable metric for survival outcomes of SRT. Our model is useful in identifying patients with brain metastasis treated with SRT with different overall survival.
Collapse
|
124
|
Scorsetti M, Navarria P, Cozzi L, Clerici E, Bellu L, Franceschini D, Marzo AM, Franzese C, Torri V, Reggiori G, Lobefalo F, Raspagliesi L, Attuati L, Pessina F, Franzini A, Picozzi P, Tomatis S. Radiosurgery of limited brain metastases from primary solid tumor: results of the randomized phase III trial (NCT02355613) comparing treatments executed with a specialized or a C-arm linac-based platform. Radiat Oncol 2023; 18:28. [PMID: 36750848 PMCID: PMC9906937 DOI: 10.1186/s13014-023-02216-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Comparative prospective data regarding different radiosurgery (SRS) modalities for treating brain metastases (BMs) from solid tumors are not available. To investigate with a single institute phase III randomized trial whether SRS executed with linac (Arm-B) is superior to a dedicated multi-source gamma-ray stereotactic platform (Arm-A). METHODS Adults patients with 1-4 BMs from solid tumors up to 30 mm in maximum diameter were randomly assigned to arms A and B. The primary endpoint was cumulative incidence of symptomatic (grade 2-3) radionecrosis (CIRN). Secondary endpoints were local progression cumulative incidence (CILP), distant brain failure, disease-free survival (DFS), and overall survival (OS). RESULTS A total of 251 patients were randomly assigned to Arm-A (121) or Arm-B (130). The 1-year RN cumulative incidence was 6.7% in whole cohort, 3.8% (95% CI 1.9-7.4%) in Arm-B, and 9.3% (95% CI 6.2-13.8%) in the Arm-A (p = 0.43). CIRN was influenced by target volume irradiated only for the Arm-A (p << 0.001; HR 1.36 [95% CI 1.25-1.48]). Symptomatic RN occurred in 56 cases at a median time of 10.3 months (range 1.15-54.8 months), 27 in the Arm-B at a median time of 15.9 months (range 4.9-54.8 months), and 29 in the Arm-A at a median time of 6.9 months (1.2-32.3 months), without statistically significant differences between the two arms. No statistically significant differences were recorded between the two arms in CILP, BDF, DFS or OS. The mean beam-on time to deliver SRS was 49.0 ± 36.2 min in Arm-A, and 3.1 ± 1.6 min in Arm-B. CONCLUSIONS Given the technical differences between the treatment platforms investigated in this single-institution study, linac-based SRS (Arm-B) did not lead to significantly lower grade 2-3 RN rates versus the multi-source gamma-ray system (Arm-A) in a population of patients with limited brain metastases of small volume. No significant difference in local control was observed between both arms. For Arm-B, the treatment delivery time was significantly lower than for Arm-A. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT02355613.
Collapse
Affiliation(s)
- Marta Scorsetti
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luca Cozzi
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan Italy
| | - Elena Clerici
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Luisa Bellu
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Davide Franceschini
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Antonio Marco Marzo
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Ciro Franzese
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan Italy
| | - Valter Torri
- grid.4527.40000000106678902Oncology Department, IRCCS Istituto Mario Negri, Milan, Italy
| | - Giacomo Reggiori
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Francesca Lobefalo
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| | - Luca Raspagliesi
- grid.417728.f0000 0004 1756 8807Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Luca Attuati
- grid.417728.f0000 0004 1756 8807Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Federico Pessina
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan Italy
| | - Andrea Franzini
- grid.417728.f0000 0004 1756 8807Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Piero Picozzi
- grid.417728.f0000 0004 1756 8807Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan Italy
| | - Stefano Tomatis
- grid.417728.f0000 0004 1756 8807Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan Italy
| |
Collapse
|
125
|
Kuperman VY, Altundal Y. Novel approach for the evaluation of dose conformity in radiotherapy. Med Phys 2023; 50:1086-1095. [PMID: 36272439 DOI: 10.1002/mp.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We describe a new approach to evaluate conformity of dose distributions in radiotherapy. METHODS The suggested conformity factor λ is defined by using existing conformity indices and expansion of the planning target volume (PTV). If the average distance ( d ¯ $\bar d$ ) between the PTV and reference isodose surface and an arbitrarily selected PTV expansion margin ( d e x p ${d_{exp}}$ ) are both much smaller than the size of the PTV, then λ approximately equals the ratio d ¯ d e x p $\frac{{\bar d}}{{{d_{exp}}}}$ . We use λ to analyze several cases of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). RESULTS In the case of SRS with a single target or multiple targets, treatment plans produced with the help of volumetric modulated arc therapy (VMAT) have smaller λ than plans produced by using dynamic conformal arcs (DCA). Likewise, it is demonstrated that in the case of SBRT, λ is reduced by employing VMAT instead of DCA. It is also shown that if the distance between the reference isodose surface and surface of the PTV is fixed, λ varies less with variations in PTV volume compared to frequently used conformity indices. CONCLUSIONS The described conformity factor λ can be applied clinically to compare and rank treatment plans for lesions of different sizes. It is suggested that conditions λ < 1 $\lambda < 1$ and λ > 1 can be employed as "pass" and "fail" criteria, respectively, for dose conformity assessment with appropriate choice of d e x p ${d_{exp}}$ .
Collapse
Affiliation(s)
- Vadim Y Kuperman
- Florida Cancer Specialists & Research Institute, Hudson, Florida, USA
| | - Yücel Altundal
- Florida Cancer Specialists & Research Institute, Hudson, Florida, USA
| |
Collapse
|
126
|
Ahamed S, Singh N, Suryadevara A, Suvarna P. Monitor unit restrained hybrid approach using conformal arcs for radiosurgery of solitary brain metastasis. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
127
|
Dosimetric Impact of Lesion Number, Size, and Volume on Mean Brain Dose with Stereotactic Radiosurgery for Multiple Brain Metastases. Cancers (Basel) 2023; 15:cancers15030780. [PMID: 36765738 PMCID: PMC9913147 DOI: 10.3390/cancers15030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.
Collapse
|
128
|
Terlizzi M, Limkin E, Sellami N, Louvel G, Blanchard P. Is single fraction the future of stereotactic body radiation therapy (SBRT)? A critical appraisal of the current literature. Clin Transl Radiat Oncol 2023; 39:100584. [PMID: 36816840 PMCID: PMC9931895 DOI: 10.1016/j.ctro.2023.100584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
Stereotactic Body Radiation Therapy (SBRT) is a standard of care for many localizations but the question of the optimal fractionation remains a matter of concern. If single fraction sessions are routinely used for intracranial targets, their utilization for mobile extracranial lesions is a source of debate and apprehension. Single session treatments improve patient comfort, provide a medico-economic benefit, and have proven useful in the context of the SARS-CoV 2 pandemic. However, both technical and radiobiological uncertainties remain. Experience from intracranial radiosurgery has shown that the size of the target, its proximity to organs at risk, tumor histology, and the volume of normal tissue irradiated are all determining factors in the choice of fractionation. The literature on the use of single fraction for extracranial sites is still scarce. Only primary and secondary pulmonary tumors have been evaluated in prospective randomized trials, allowing the integration of these fractionation schemes in daily practice, for highly selected cases and in trained teams. The level of evidence for the other organs is mainly based on dose escalation or retrospective trials and calls for caution, with further studies being needed before routine use in clinical practice.
Collapse
|
129
|
Lehrer EJ, Kowalchuk RO, Gurewitz J, Bernstein K, Kondziolka D, Niranjan A, Wei Z, Lunsford LD, Fakhoury KR, Rusthoven CG, Mathieu D, Trudel C, Malouff TD, Ruiz-Garcia H, Bonney P, Hwang L, Yu C, Zada G, Patel S, Deibert CP, Picozzi P, Franzini A, Attuati L, Prasad RN, Raval RR, Palmer JD, Lee CC, Yang HC, Harmsen WS, Jones BM, Sharma S, Ahluwalia MS, Sheehan JP, Trifiletti DM. Concurrent Administration of Immune Checkpoint Inhibitors and Single Fraction Stereotactic Radiosurgery in Patients With Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma Brain Metastases is Not Associated With an Increased Risk of Radiation Necrosis Over Nonconcurrent Treatment: An International Multicenter Study of 657 Patients. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00057-3. [PMID: 36690161 DOI: 10.1016/j.ijrobp.2023.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) and immune checkpoint inhibitors (ICI) are highly effective treatments for brain metastases, particularly when these therapies are administered concurrently. However, there are limited data reporting the risk of radiation necrosis (RN) in this setting. METHODS AND MATERIALS Patients with brain metastases from primary non-small cell lung cancer, renal cell carcinoma, or melanoma treated with SRS and ICI were considered. Time-to-event analyses were conducted for any grade RN and symptomatic RN (SRN) with death incorporated as a competing risk. As a secondary analysis, recursive partitioning analysis (RPA) was used for model development, and a loop of potential models was analyzed, with the highest-fidelity model selected. Brain V12 Gy thresholds identified on RPA were then incorporated into the competing risks analysis. Concurrent SRS and ICI administration. RESULTS Six hundred fifty-seven patients with 4182 brain metastases across 11 international institutions were analyzed. The median follow-up for all patients was 13.4 months. The median follow-up was 12.8 months and 14.1 months for the concurrent and nonconcurrent groups, respectively (P = .03). The median patient age was 66 years, and the median Karnofsky Performance Status was 90. In patients with any grade RN, 1- and 2-year rates were 6.4% and 9.9%, respectively. In patients with SRN, 1- and 2-year rates were 4.8% and 7.2%, respectively. On RPA, the highest-fidelity models consistently identified V12 Gy as the dominant variable predictive of RN. Three risk groups were identified by V12 Gy: (1) < 12 cm3; (2) 20 cm3 ≥ V12 Gy ≥ 12 cm3; (3) V12 Gy > 20 cm3. In patients with any grade RN, 1-year rates were 3.7% (V12 Gy < 12 cm3), 10.3% (20 cm3 ≥ V12 Gy ≥ 12 cm3), and 12.6% (V12 Gy > 20 cm3); the 2-year rates were 7.5% (V12 Gy < 12 cm3), 13.8% (20 cm3 ≥ V12 Gy ≥ 12 cm3), and 15.4% (V12 Gy > 20 cm3) (P < 0.001). In patients with any SRN, 1-year rates were 2.4% (V12 Gy < 12 cm3), 8.9% (20 cm3 ≥ V12 Gy ≥ 12 cm3), and 10.3% (V12 Gy > 20 cm3); the 2-year rates were 4.4% (V12 Gy < 12 cm3), 12.4% (20 cm3 ≥ V12 Gy ≥ 12 cm3), and 13.1% (V12 Gy > 20 cm3; P < 0.001). There were no statistically significant differences in rates of any grade RN or SRN when accounting for therapy timing for all patients and by V12 risk group identified on RPA. CONCLUSIONS The use of SRS and ICI results in a low risk of any grade RN and SRN. This risk is not increased with concurrent administration. Therefore, ICI can safely be administered within 4-weeks of SRS. Three risk groups based on V12 Gy were identified, which clinicians may consider to further reduce rates of RN.
Collapse
Affiliation(s)
- Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Roman O Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minneapolis
| | - Jason Gurewitz
- Department of Radiation Oncology, NYU Langone Medical Center, New York, New York
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Medical Center, New York, New York
| | - Douglas Kondziolka
- Department of Neurosurgery, NYU Langone Medical Center, New York, New York
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zhishuo Wei
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kareem R Fakhoury
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Quebec, Canada
| | - Claire Trudel
- Department of Medicine, Université de Sherbrooke, Centre de recherche du CHUS, Quebec, Canada
| | - Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Phillip Bonney
- Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Lindsay Hwang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Cheng Yu
- Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, California
| | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | | - Piero Picozzi
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS, Rozzano (Mi), Italy
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS, Rozzano (Mi), Italy
| | - Luca Attuati
- Department of Neurosurgery, Humanitas Research Hospital-IRCCS, Rozzano (Mi), Italy
| | - Rahul N Prasad
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raju R Raval
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taiwan
| | | | - Brianna M Jones
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
130
|
Huang YH, Yang HC, Chiang CL, Wu HM, Luo YH, Hu YS, Lin CJ, Chung WY, Shiau CY, Guo WY, Lee CC. Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010236. [PMID: 36676186 PMCID: PMC9864800 DOI: 10.3390/life13010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
(1) Background: Surgical resection for the removal of brain metastases often fails to prevent tumor recurrence within the surgical cavity; hence, researchers are divided as to the benefits of radiation treatment following surgical resection. This retrospective study assessed the effects of post-operative stereotactic radiosurgery (SRS) on local tumor control and overall survival. (2) Methods: This study examined the demographics, original tumor characteristics, and surgical outcomes of 97 patients who underwent Gamma Knife Radiosurgery (GKRS) treatment (103 brain metastases). Kaplan-Meier plots and Cox regression were used to correlate clinical features to tumor control and overall survival. (3) Results: The overall tumor control rate was 75.0% and overall 12-month survival was 89.6%. Tumor control rates in the radiation group versus the non-radiation group were as follows: 12 months (83.1% vs. 57.7%) and 24 months (66.1% vs. 50.5%). During the 2-year follow-up period after SRS, the intracranial response rate was higher in the post-craniotomy radiation group than in the non-radiation group (p = 0.027). Cox regression multivariate analysis determined that post-craniotomy irradiation of the surgical cavity is predictive of tumor control (p = 0.035). However, EGFR mutation was not predictive of overall survival or tumor control. (4) Conclusions: Irradiating the surgical cavity after surgery can enhance local tumor control; however, it does not have a significant effect on overall survival.
Collapse
Affiliation(s)
- Yi-Han Huang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chi-Lu Chiang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yong-Sin Hu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Yuh Chung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Ying Shiau
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-28712121
| |
Collapse
|
131
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Thiery A, Cebula H, Noel G, Antoni D. Acute toxicities and cumulative dose to the brain of repeated sessions of stereotactic radiotherapy (SRT) for brain metastases: a retrospective study of 184 patients. Radiat Oncol 2023; 18:7. [PMID: 36627646 PMCID: PMC9830690 DOI: 10.1186/s13014-022-02194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Stereotactic radiation therapy (SRT) is a focal treatment for brain metastases (BMs); thus, 20 to 40% of patients will require salvage treatment after an initial SRT session, either because of local or distant failure. SRT is not exempt from acute toxicity, and the acute toxicities of repeated SRT are not well known. The objective of this study was to analyze the acute toxicities of repeated courses of SRT and to determine whether repeated SRT could lead to cumulative brain doses equivalent to those of whole-brain radiotherapy (WBRT). MATERIAL AND METHODS Between 2010 and 2020, data from 184 patients treated for 915 BMs via two to six SRT sessions for local or distant BM recurrence without previous or intercurrent WBRT were retrospectively reviewed. Patients were seen via consultations during SRT, and the delivered dose, the use of corticosteroid therapy and neurological symptoms were recorded and rated according to the CTCAEv4. The dosimetric characteristics of 79% of BMs were collected, and summation plans of 76.6% of BMs were created. RESULTS 36% of patients developed acute toxicity during at least one session. No grade three or four toxicity was registered, and grade one or two cephalalgy was the most frequently reported symptom. There was no significant difference in the occurrence of acute toxicity between consecutive SRT sessions. In the multivariate analysis, acute toxicity was associated with the use of corticosteroid therapy before irradiation (OR = 2.6; p = 0.01), BMV grade (high vs. low grade OR = 5.17; p = 0.02), and number of SRT sessions (3 SRT vs. 2 SRT: OR = 2.64; p = 0.01). The median volume equivalent to the WBRT dose (VWBRT) was 47.9 ml. In the multivariate analysis, the VWBRT was significantly associated with the total GTV (p < 0.001) and number of BMs (p < 0.001). Even for patients treated for more than ten cumulated BMs, the median BED to the brain was very low compared to the dose delivered during WBRT. CONCLUSION Repeated SRT for local or distant recurrent BM is well tolerated, without grade three or four toxicity, and does not cause more acute neurological toxicity with repeated SRT sessions. Moreover, even for patients treated for more than ten BMs, the VWBRT is low.
Collapse
Affiliation(s)
- L. Kuntz
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - C. Le Fèvre
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Jarnet
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Keller
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - P. Meyer
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Thiery
- grid.512000.6Medical Information Department, Institut de Cancérologie Strasbourg Europe (ICANS), 3 rue de la Porte de L’Hôpital, 67065 Strasbourg Cedex, France
| | - H. Cebula
- grid.412220.70000 0001 2177 138XDepartment of Neurosurgery, University Hospitals of Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France
| | - G. Noel
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Antoni
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| |
Collapse
|
132
|
DeVries DA, Tang T, Alqaidy G, Albweady A, Leung A, Laba J, Lagerwaard F, Zindler J, Hajdok G, Ward AD. Dual-center validation of using magnetic resonance imaging radiomics to predict stereotactic radiosurgery outcomes. Neurooncol Adv 2023; 5:vdad064. [PMID: 37358938 PMCID: PMC10289521 DOI: 10.1093/noajnl/vdad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Background MRI radiomic features and machine learning have been used to predict brain metastasis (BM) stereotactic radiosurgery (SRS) outcomes. Previous studies used only single-center datasets, representing a significant barrier to clinical translation and further research. This study, therefore, presents the first dual-center validation of these techniques. Methods SRS datasets were acquired from 2 centers (n = 123 BMs and n = 117 BMs). Each dataset contained 8 clinical features, 107 pretreatment T1w contrast-enhanced MRI radiomic features, and post-SRS BM progression endpoints determined from follow-up MRI. Random decision forest models were used with clinical and/or radiomic features to predict progression. 250 bootstrap repetitions were used for single-center experiments. Results Training a model with one center's dataset and testing it with the other center's dataset required using a set of features important for outcome prediction at both centers, and achieved area under the receiver operating characteristic curve (AUC) values up to 0.70. A model training methodology developed using the first center's dataset was locked and externally validated with the second center's dataset, achieving a bootstrap-corrected AUC of 0.80. Lastly, models trained on pooled data from both centers offered balanced accuracy across centers with an overall bootstrap-corrected AUC of 0.78. Conclusions Using the presented validated methodology, radiomic models trained at a single center can be used externally, though they must utilize features important across all centers. These models' accuracies are inferior to those of models trained using each individual center's data. Pooling data across centers shows accurate and balanced performance, though further validation is required.
Collapse
Affiliation(s)
- David A DeVries
- Department of Medical Biophysics, Western University, London, ON, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, ON, Canada
| | - Terence Tang
- Department of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
| | - Ghada Alqaidy
- Radiodiagnostic and Medical Imaging Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Ali Albweady
- Department of Radiology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Andrew Leung
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Joanna Laba
- Department of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Jaap Zindler
- Department of Radiation Oncology, Haaglanden Medical Centre, Den Haag, The Netherlands
- Holland Proton Therapy Centre, Delft, The Netherlands
| | - George Hajdok
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, Western University, London, ON, Canada
- Gerald C. Baines Centre, London Health Sciences Centre, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
133
|
Natural history of lung squamous cell brain metastases in patients treated with radiosurgery: a thirty-year experience at a tertiary medical center. J Neurooncol 2023; 161:135-146. [PMID: 36469189 DOI: 10.1007/s11060-022-04153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study we report our 30-year experience in stereotactic radiosurgery (SRS) treatment of lung squamous cell carcinoma (LUSC) brain metastases (BMs). It will serve to provide detailed longitudinal outcomes and predictors of efficacy in treating LUSC-BMs with SRS. METHOD We retrospectively reviewed 51 patients and 109 tumors treated with SRS at our center between 1993 and 2022. Patient demographics, PDL1 genotype, immunotherapy use and mortality cause were recorded. Radiological and clinical outcomes were followed at 1-3-month intervals post-SRS. Cox-regression analysis and Kaplan-Meier survival curves were performed in statistical analysis. RESULTS We included 37 male and 14 female patients (median age 62.7 years at BM diagnosis). Median overall survival (OS) time was 6.9 months, 6-month OS rate was 62.1%, and Karnofsky performance scale (KPS) was the only independent predictor. Median time for local control maintenance was 7.6 months, 6-month local control rate was 69.1%, with TKI as the only independent predictor. Median time to distant failure was 5.13 months, 6-month distant failure rate was 51.1%, and factors with significant impact included gender (p = 0.002), presence of extracranial metastases (p < 0.001), use of immunotherapy(p < 0.001), PDL1 genotype (p = 0.034), and total intracranial metastases number (p = 0.008). However, no definitive benefits of immunotherapy were identified in patients with higher PDL1 mutational tumors. CONCLUSION In this study we defined the natural history of disease progression and outcomes in SRS-treated LUSC-BM patients. We also identified predictors of OS and tumor control among these patients. The findings of this study will serve as a guide when counseling these patients for SRS.
Collapse
|
134
|
Vetlova ER, Banov SM, Golanov AV, Pronin IN, Antipina NA, Galkin MV. [Results of hypofractionated stereotactic radiotherapy for resected and intact large brain metastases]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:67-75. [PMID: 38054229 DOI: 10.17116/neiro20238706167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Post-resection or isolated hypofractionated stereotactic radiotherapy (HF-SRT) is a therapeutic option for large brain metastases (>2 cm, LBMs). OBJECTIVE To compare the results of post-resection or isolated HF-SRT in patients with LBMs. MATERIAL AND METHODS A prospective study included 115 patients with 129 intact LBMs and 133 patients with 149 resected LBMs who underwent HF-SRT. Median baseline focal size was 22.5 and 28 mm, median target volume - 8.3 and 23.7 cm3, respectively. RESULTS Median follow-up was 13.9 months, median overall survival - 19.1 months. After 12 months, local recurrences developed in 17 and 31% of patients, respectively (p=0.0078). Local recurrence after 12 months developed in 23% of patients with residual tumor in postoperative cavity compared to 16% of patients after total resection (p=0.0073). After 12 months, incidence of leptomeningeal progression was 27 and 11%, respectively (p=0.033), incidence of symptomatic radiation-induced necrosis - 4 and 23%, respectively (p=0.0006). CONCLUSION Post-resection HF-SRT demonstrated better local control and less severe symptomatic radiation-induced necrosis compared to patients with intact LBMs. Incidence of leptomeningeal progression is significantly higher after resection of LBMs.
Collapse
Affiliation(s)
- E R Vetlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S M Banov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - M V Galkin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
135
|
Susko MS, Raleigh DR. Radiotherapy for Meningioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:95-106. [PMID: 37432622 DOI: 10.1007/978-3-031-29750-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Meningiomas are the most common primary intracranial brain tumor, and have a heterogeneous biology and an unmet need for targeted treatment options. Existing treatments for meningiomas are limited to surgery, radiotherapy, or a combination of these depending on clinical and histopathological features. Treatment recommendations for meningioma patients take into consideration radiologic features, tumor size and location, and medical comorbidities, all of which may influence the ability to undergo complete resection. Ultimately, outcomes for meningioma patients are dictated by extent of resection and histopathologic factors, such as World Health Organization (WHO) grade and proliferation index. Radiotherapy is a critical component of meningioma treatment as either a definitive intervention using stereotactic radiosurgery or external beam radiotherapy, or in the adjuvant setting for residual disease or for adverse pathologic factors, such as high WHO grade. In this chapter, we provide a comprehensive review of radiotherapy treatment modalities, therapeutic considerations, radiation planning, and clinical outcomes for meningioma patients.
Collapse
Affiliation(s)
- Matthew S Susko
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
136
|
Rossi S, Marinello A, Pagliaro A, Franceschini D, Navarria P, Finocchiaro G, Toschi L, Scorsetti M, Santoro A. Current treatment approaches for brain metastases in ALK/ ROS1/ NTRK-positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2023; 23:29-41. [PMID: 36548111 DOI: 10.1080/14737140.2023.2162044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oncogene-addicted non-small cell lung cancer (NSCLC) patients present a high incidence of CNS metastases either at diagnosis or during the course of the disease. In this case, patients present with worse prognosis and are often excluded from clinical trials unless brain metastases are pre-treated or clinically stable. AREAS COVERED As a result of the discovery of several oncogenic drivers in ALK/ROS1/NTRK-positive NSCLC, targeted agents have been tested in several trials. We evaluate and compare the intracranial efficacy of available targeted agents in ALK/ROS1/NTRK-positive NSCLC based on subgroup analysis from pivotal trials. EXPERT OPINION Last-generation ALK inhibitors have shown slightly superior intracranial activity but pivotal trials do not consider the same endpoints for intracranial efficacy, therefore data are not comparable. Local treatments for BM including surgical resection, stereotactic radiosurgery (SRS) and WBRT, should be integrated with systemic therapies basing on specific criteria like presence of oligoprogression or symptomatic progression.
Collapse
Affiliation(s)
- Sabrina Rossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Arianna Marinello
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Arianna Pagliaro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giovanna Finocchiaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Toschi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
137
|
Carpenter DJ, Fairchild AT, Adamson JD, Fecci PE, Sampson JH, Herndon JE, Torok JA, Mullikin TC, Kim GJ, Reitman ZJ, Kirkpatrick JP, Floyd SR. Outcomes in Patients with Intact and Resected Brain Metastasis Treated with 5-Fraction Stereotactic Radiosurgery. Adv Radiat Oncol 2022; 8:101166. [PMID: 36845614 PMCID: PMC9943776 DOI: 10.1016/j.adro.2022.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Hypofractionated stereotactic radiosurgery (HF-SRS) with or without surgical resection is potentially a preferred treatment for larger or symptomatic brain metastases (BMs). Herein, we report clinical outcomes and predictive factors following HF-SRS. Methods and Materials Patients undergoing HF-SRS for intact (iHF-SRS) or resected (rHF-SRS) BMs from 2008 to 2018 were retrospectively identified. Linear accelerator-based image-guided HF-SRS consisted of 5 fractions at 5, 5.5, or 6 Gy per fraction. Time to local progression (LP), time to distant brain progression (DBP), and overall survival (OS) were calculated. Cox models assessed effect of clinical factors on OS. Fine and Gray's cumulative incidence model for competing events examined effect of factors on LP and DBP. The occurrence of leptomeningeal disease (LMD) was determined. Logistic regression examined predictors of LMD. Results Among 445 patients, median age was 63.5 years; 87% had Karnofsky performance status ≥70. Fifty-three % of patients underwent surgical resection, and 75% received 5 Gy per fraction. Patients with resected BMs had higher Karnofsky performance status (90-100, 41 vs 30%), less extracranial disease (absent, 25 vs 13%), and fewer BMs (multiple, 32 vs 67%). Median diameter of the dominant BM was 3.0 cm (interquartile range, 1.8-3.6 cm) for intact BMs and 4.6 cm (interquartile range, 3.9-5.5 cm) for resected BMs. Median OS was 5.1 months (95% confidence interval [CI], 4.3-6.0) following iHF-SRS and 12.8 months (95% CI, 10.8-16.2) following rHF-SRS (P < .01). Cumulative LP incidence was 14.5% at 18 months (95% CI, 11.4-18.0%), significantly associated with greater total GTV (hazard ratio, 1.12; 95% CI, 1.05-1.20) following iFR-SRS, and with recurrent versus newly diagnosed BMs across all patients (hazard ratio, 2.28; 95% CI, 1.01-5.15). Cumulative DBP incidence was significantly greater following rHF-SRS than iHF-SRS (P = .01), with respective 24-month rates of 50.0 (95% CI, 43.3-56.3) and 35.7% (95% CI, 29.2-42.2). LMD (57 events total; 33% nodular, 67% diffuse) was observed in 17.1% of rHF-SRS and 8.1% of iHF-SRS cases (odds ratio, 2.46; 95% CI, 1.34-4.53). Any radionecrosis and grade 2+ radionecrosis events were observed in 14 and 8% of cases, respectively. Conclusions HF-SRS demonstrated favorable rates of LC and radionecrosis in postoperative and intact settings. Corresponding LMD and RN rates were comparable to those of other studies.
Collapse
Affiliation(s)
- David J. Carpenter
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,Corresponding author: Scott Floyd, MD, PhD
| | | | - Justus D. Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter E. Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - John H. Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - James E. Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Jordan A. Torok
- Department of Radiation Oncology, St. Clair Hospital Cancer Center, Pittsburgh, Pennsylvania
| | - Trey C. Mullikin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Grace J. Kim
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
138
|
Loftus JP, Shepard M, Liang Y, Yu A, Karlovits SM, Wegner RE. A Comparison of Single Fraction and Multi Fraction Radiosurgery on the Gamma Knife ICON: A Single Institution Review. Adv Radiat Oncol 2022; 8:101161. [PMID: 36845616 PMCID: PMC9943766 DOI: 10.1016/j.adro.2022.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Brain metastases are a common development in patients with malignant solid tumors. Stereotactic radiosurgery (SRS) has a long track record of effectively and safely treating these patients, with some limitations to the use of single fraction SRS based on size and volume. In this study, we reviewed outcomes of patients treated using SRS and fractionated SRS (fSRS) to compare predictors and outcomes of those treatments. Methods and Materials Two hundred patients treated with SRS or fSRS for intact brain metastases were included. We tabulated baseline characteristics and performed a logistic regression to identify predictors of fSRS. Cox regression was used to identify predictors of survival. Kaplan-Meier analysis was used to calculate survival, local failure, and distant failure rates. A receiver operating characteristic curve was generated to determine timepoint from planning to treatment associated with local failure. Results The only predictor of fSRS was tumor volume >2.061 cm3. There was no difference in local failure, toxicity, or survival by fractionation of biologically effective dose. Predictors of worse survival were age, extracranial disease, history of whole brain radiation therapy, and volume. Receiver operating characteristic analysis identified 10 days as potential factor in local failure. At 1 year, local control was 96.48 and 76.92% for those patients treated before or after that interval, respectively (P = .0005). Conclusions Fractionated SRS is a safe and effective alternative for patients with larger volume tumors not suitable for single fraction SRS. Care should be taken to treat these patients expeditiously as a delay was shown to affect local control in this study.
Collapse
Affiliation(s)
- Joseph P. Loftus
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Matthew Shepard
- Allegheny Health Network, Department of Neurosurgery, Monroeville, Pennsylvania
| | - Yun Liang
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Alexander Yu
- Allegheny Health Network, Department of Neurosurgery, Monroeville, Pennsylvania
| | - Stephen M. Karlovits
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Rodney E. Wegner
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
- Corresponding author: Rodney E. Wegner, MD
| |
Collapse
|
139
|
AI-assisted clinical decision making (CDM) for dose prescription in radiosurgery of brain metastases using three-path three-dimensional CNN. Clin Transl Radiat Oncol 2022; 39:100565. [PMID: 36594076 PMCID: PMC9804100 DOI: 10.1016/j.ctro.2022.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose AI modeling physicians' clinical decision-making (CDM) can improve the efficiency and accuracy of clinical practice or serve as a surrogate to provide initial consultations to patients seeking secondary opinions. In this study, we developed an AI network to model radiotherapy CDM and used dose prescription as an example to demonstrate its feasibility. Materials/Methods 152 patients with brain metastases treated by radiosurgery from 2017 to 2021 were included. CT images and tumor and organ-at-risk (OAR) contours were exported. Eight relevant clinical parameters were extracted and digitized, including age, numbers of lesions, performance status (ECOG), presence of symptoms, arrangement with surgery (pre- or post-surgery radiation therapy), re-treatment, primary cancer type, and metastasis to other sites. A 3D convolutional neural network (CNN) architecture was built using three encoding paths with the same kernel and filters to capture the different image and contour features. Specifically, one path was built to capture the tumor feature, including the size and location of the tumor, another path was built to capture the relative spatial relationship between the tumor and OARs, and the third path was built to capture the clinical parameters. The model combines information from three paths to predict dose prescription. The actual prescription in the patient record was used as ground truth for model training. The model performance was assessed by 19-fold-cross-validation, with each fold consisting of randomly selected 128 training, 16 validation, and 8 testing subjects. Result The dose prescriptions of 152 patient cases included 48 cases with 1 × 24 Gy, 48 cases with 1 × 20-22 Gy, 32 cases with 3 × 9 Gy, and 24 cases with 5 × 6 Gy prescribed by 8 physicians. The AI model prescribed correctly for 124 (82 %) cases, including 44 (92 %) cases with 1 × 24 Gy, 36 (75 %) cases with 1 × 20-22 Gy, 25 (78 %) cases with 3 × 9 Gy, and 19 (79 %) cases with 5 × 6 Gy. Analysis of the failed cases showed the potential cause of practice variations across individual physicians, which were not accounted for in the model trained by the group data. Including clinical parameters improved the overall prediction accuracy by 20 %. Conclusion To our best knowledge, this is the first study to demonstrate the feasibility of AI in predicting dose prescription in CDM in radiation therapy. Such CDM models can serve as vital tools to address healthcare disparities by providing preliminary consultations to patients in underdeveloped areas or as a valuable quality assurance (QA) tool for physicians to cross-check intra- and inter-institution practices.
Collapse
|
140
|
A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers (Basel) 2022; 14:cancers14246264. [PMID: 36551750 PMCID: PMC9777318 DOI: 10.3390/cancers14246264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation necrosis represents a potentially devastating complication after radiation therapy in brain tumors. The establishment of the diagnosis and especially the differentiation from progression and pseudoprogression with its therapeutic implications requires interdisciplinary consent and monitoring. Herein, we want to provide an overview of the diagnostic modalities, therapeutic possibilities and an outlook on future developments to tackle this challenging topic. The aim of this report is to provide an overview of the current morphological, functional, metabolic and evolving imaging tools described in the literature in order to (I) identify the best criteria to distinguish radionecrosis from tumor recurrence after the radio-oncological treatment of malignant gliomas and cerebral metastases, (II) analyze the therapeutic possibilities and (III) give an outlook on future developments to tackle this challenging topic. Additionally, we provide the experience of a tertiary tumor center with this important issue in neuro-oncology and provide an institutional pathway dealing with this problem.
Collapse
|
141
|
McKenzie G, Gaskins J, Rattani A, Oliver A, Southall W, Nakamura F, Yusuf M, Mistry A, Williams B, Woo S. Radiosurgery fractionation and post-treatment hemorrhage development for intact melanoma brain metastases. J Neurooncol 2022; 160:591-599. [DOI: 10.1007/s11060-022-04178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
|
142
|
Hartford AC, Gill GS, Ravi D, Tosteson TD, Li Z, Russo G, Eskey CJ, Jarvis LA, Simmons NE, Evans LT, Williams BB, Gladstone DJ, Roberts DW, Buckey JC. Sensitizing brain metastases to stereotactic radiosurgery using hyperbaric oxygen: A proof-of-principle study. Radiother Oncol 2022; 177:179-184. [PMID: 36404528 PMCID: PMC10827304 DOI: 10.1016/j.radonc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Increased oxygen levels may enhance the radiosensitivity of brain metastases treated with stereotactic radiosurgery (SRS). This project administered hyperbaric oxygen (HBO) prior to SRS to assess feasibility, safety, and response. METHODS 38 patients were studied, 19 with 25 brain metastases treated with HBO prior to SRS, and 19 historical controls with 27 metastases, matched for histology, GPA, resection status, and lesion size. Outcomes included time from HBO to SRS, quality-of-life (QOL) measures, local control, distant (brain) metastases, radionecrosis, and overall survival. RESULTS The average time from HBO chamber to SRS beam-on was 8.3 ± 1.7 minutes. Solicited adverse events (AEs) were comparable between HBO and control patients; no grade III or IV serious AEs were observed. Radionecrosis-free survival (RNFS), radionecrosis-free survival before whole-brain radiation therapy (WBRT) (RNBWFS), local recurrence-free survival before WBRT (LRBWFS), distant recurrence-free survival before WBRT (DRBWFS), and overall survival (OS) were not significantly different for HBO patients and controls on Kaplan-Meier analysis, though at 1-year estimated survival rates trended in favor of SRS + HBO: RNFS - 83% vs 60%; RNBWFS - 78% vs 60%; LRBWFS - 95% vs 78%; DRBWFS - 61% vs 57%; and OS - 73% vs 56%. Multivariate Cox models indicated no significant association between HBO treatment and hazards of RN, local or distant recurrence, or mortality; however, these did show statistically significant associations (p < 0.05) for: local recurrence with higher volume, radionecrosis with tumor resection, overall survival with resection, and overall survival with higher GPA. CONCLUSION Addition of HBO to SRS for brain metastases is feasible without evident decrement in radiation necrosis and other clinical outcomes.
Collapse
Affiliation(s)
- Alan C Hartford
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Gobind S Gill
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Divya Ravi
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Tor D Tosteson
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Zhongze Li
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Gregory Russo
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Clifford J Eskey
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Lesley A Jarvis
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Nathan E Simmons
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Linton T Evans
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Benjamin B Williams
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - David J Gladstone
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - David W Roberts
- Dartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Jay C Buckey
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
143
|
A Review of the Role of Stereotactic Radiosurgery and Immunotherapy in the Management of Primary Central Nervous System Tumors. Biomedicines 2022; 10:biomedicines10112977. [PMID: 36428546 PMCID: PMC9687865 DOI: 10.3390/biomedicines10112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Stereotactic radiosurgery (SRS) and immune checkpoint inhibitors (ICIs) are widely used in the management of brain metastases. These therapies are commonly administered concurrently; as SRS may enhance anti-tumor immunity and responsiveness to ICIs. However, the use of ICIs with and without SRS in the management of primary brain tumors remains a controversial topic. Meningiomas are the most common nonmalignant and extra-parenchymal brain tumor, which often respond well to surgery and radiotherapy. However, higher grade meningiomas tend to be resistant to these treatments, and the use of chemotherapy and targeted agents in this setting have yielded disappointing results. Thus, there is heightened interest in the utilization of ICIs. Glioblastoma is the most common malignant primary intraparenchymal brain tumor. It is associated with a grim prognosis with a median overall survival of approximately 20 months, despite optimal therapy. While SRS in the adjuvant setting, and ICI in the recurrent setting, have failed to demonstrate a survival benefit, SRS in the preoperative setting has the potential to enhance anti-tumor immunity and responsiveness to ICIs. Thus, these treatments represent an attractive option to add to the armamentarium of meningioma and glioblastoma management. In this review, we provide a detailed overview of the evidence supporting the use of ICIs and SRS in each of these settings.
Collapse
|
144
|
Lanier CM, Pearce J, Isom S, Xing F, Lo HW, Whitlow CT, Ruiz J, White JJ, Laxton AW, Tatter SB, Cramer CK, Chan MD. Long term survivors of stereotactic radiosurgery for brain metastases: do distant brain failures reach a plateau and what factors are associated with a brain metastasis velocity of zero? J Neurooncol 2022; 160:643-648. [DOI: 10.1007/s11060-022-04183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
|
145
|
Huang SH, Wu YW, Shueng PW, Wang SY, Tsai MC, Liu YH, Chuang WP, Lin HH, Tien HJ, Yeh HP, Hsieh CH. Case report: Stereotactic body radiation therapy with 12 Gy for silencing refractory ventricular tachycardia. Front Cardiovasc Med 2022; 9:973105. [PMID: 36407435 PMCID: PMC9669661 DOI: 10.3389/fcvm.2022.973105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Encouraging results have been reported for the treatment of ventricular tachycardia (VT) with stereotactic body radiation therapy (SBRT) with 25 Gy. SBRT with 12 Gy for refractory VT was designed to reduce long-term cardiac toxicity. METHODS Stereotactic body radiation therapy-VT simulation, planning, and treatment were performed using standard techniques. A patient was treated with a marginal dose of 12 Gy in a single fraction to the planning target volume (PTV). The goal was for at least ≥ 95% of the PTV to be covered by at least 95% of 12 Gy radiation. RESULTS From April 2021 through June 2022, a patient with refractory VT underwent treatment. The volume for PTV was 65.8 cm3. The mean radiation dose administered to the heart (the heart volume excluding the PTV) was 2.2 Gy. No acute or late toxicity was observed after SBRT. Six months after SBRT, the patient experienced new monomorphic right ventricular outflow tract (RVOT) VT. Interestingly, the substrate of the left ventricular basal to middle posteroseptal wall before SBRT was turned into scar zones with a local voltage < 0.5 mV. Catheter ablation to treat RVOT VT was performed, and the situation remains stable to date. CONCLUSION This study reports the first patient with refractory VT successfully treated with 12.0 Gy SBRT, suggesting that 12 Gy is a potential dose to treat refractory VT. Further investigations and enrollment of more patients are warranted to assess the long-term efficacy and side effects of this treatment.
Collapse
Affiliation(s)
- Shan-Hui Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Wei Shueng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Meng-Chieh Tsai
- Division of Radiology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuan-Hung Liu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electronic Engineering, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Wen-Po Chuang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Heng-Hsu Lin
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Ju Tien
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Pei Yeh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsi Hsieh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Head and Neck Cancer Surveillance and Research Group, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
146
|
Lehrer EJ, Kowalchuk RO, Ruiz-Garcia H, Merrell KW, Brown PD, Palmer JD, Burri SH, Sheehan JP, Quninoes-Hinojosa A, Trifiletti DM. Preoperative stereotactic radiosurgery in the management of brain metastases and gliomas. Front Surg 2022; 9:972727. [PMID: 36353610 PMCID: PMC9637863 DOI: 10.3389/fsurg.2022.972727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roman O. Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Kenneth W. Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stuart H. Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, NC, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States,Correspondence: Daniel M. Trifiletti
| |
Collapse
|
147
|
Alvi MA, Asher AL, Michalopoulos GD, Grills IS, Warnick RE, McInerney J, Chiang VL, Attia A, Timmerman R, Chang E, Kavanagh BD, Andrews DW, Walter K, Bydon M, Sheehan JP. Factors associated with progression and mortality among patients undergoing stereotactic radiosurgery for intracranial metastasis: results from a national real-world registry. J Neurosurg 2022; 137:985-998. [PMID: 35171833 DOI: 10.3171/2021.10.jns211410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Stereotactic radiosurgery (SRS) has been increasingly employed in recent years to treat intracranial metastatic lesions. However, there is still a need for optimization of treatment paradigms to provide better local control and prevent progressive intracranial disease. In the current study, the authors utilized a national collaborative registry to investigate the outcomes of patients with intracranial metastatic disease who underwent SRS and to determine factors associated with lesion treatment response, overall progression, and mortality. METHODS The NeuroPoint Alliance SRS registry was queried for all patients with intracranial metastatic lesions undergoing single- or multifraction SRS at participating institutions between 2016 and 2020. The main outcomes of interest included lesion response (lesion-level analysis), progression using Response Assessment for Neuro-Oncology criteria, and mortality (patient-level analysis). Kaplan-Meier analysis was used to report time to progression and overall survival, and multivariable Cox proportional hazards analysis was used to investigate factors associated with lesion response, progression, and mortality. RESULTS A total of 501 patients (1447 intracranial metastatic lesions) who underwent SRS and had available follow-up were included in the current analyses. The most common primary tumor was lung cancer (49.5%, n = 248), followed by breast (15.4%, n = 77) and melanoma (12.2%, n = 61). Most patients had a single lesion (44.9%, n = 225), 29.3% (n = 147) had 2 or 3 lesions, and 25.7% (n = 129) had > 3 lesions. The mean sum of baseline measurements of the lesions according to Response Evaluation Criteria in Solid Tumors (RECIST) was 35.54 mm (SD 25.94). At follow-up, 671 lesions (46.4%) had a complete response, 631 (43.6%) had a partial response (≥ 30% decrease in longest diameter) or were stable (< 30% decrease but < 20% increase), and 145 (10%) showed progression (> 20% increase in longest diameter). On multivariable Cox proportional hazards analysis, melanoma-associated lesions (HR 0.48, 95% CI 0.34-0.67; p < 0.001) and larger lesion size (HR 0.94, 95% CI 0.93-0.96; p < 0.001) showed lower odds of lesion regression, while a higher biologically effective dose was associated with higher odds (HR 1.001, 95% CI 1.0001-1.00023; p < 0.001). A total of 237 patients (47.3%) had overall progression (local failure or intracranial progressive disease), with a median time to progression of 10.03 months after the index SRS. Factors found to be associated with increased hazards of progression included male sex (HR 1.48, 95% CI 1.108-1.99; p = 0.008), while administration of immunotherapy (before or after SRS) was found to be associated with lower hazards of overall progression (HR 0.62, 95% CI 0.460-0.85; p = 0.003). A total of 121 patients (23.95%) died during the follow-up period, with a median survival of 19.4 months from the time of initial SRS. A higher recursive partitioning analysis score (HR 21.3485, 95% CI 1.53202-3.6285; p < 0.001) was found to be associated with higher hazards of mortality, while single-fraction treatment compared with hypofractionated treatment (HR 0.082, 95% CI 0.011-0.61; p = 0.015), administration of immunotherapy (HR 0.385, 95% CI 0.233-0.64; p < 0.001), and presence of single compared with > 3 lesions (HR 0.427, 95% CI 0.187-0.98; p = 0.044) were found to be associated with lower risk of mortality. CONCLUSIONS The comparability of results between this study and those of previously published clinical trials affirms the value of multicenter databases with real-world data collected without predetermined research purpose.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- 1Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- 2Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Anthony L Asher
- 3Neuroscience Institute, Carolinas Healthcare System and Carolina Neurosurgery & Spine Associates, Charlotte, North Carolina
| | - Giorgos D Michalopoulos
- 1Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- 2Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Inga S Grills
- 4Department of Neurological Surgery, Beaumont Health System, Royal Oak, Michigan
| | - Ronald E Warnick
- 5Department of Neurosurgery, The Jewish Hospital, Cincinnati, Ohio
| | - James McInerney
- 6Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Veronica L Chiang
- 7Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Albert Attia
- 8Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert Timmerman
- 9Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Eric Chang
- 10Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brian D Kavanagh
- 11Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - David W Andrews
- 12Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kevin Walter
- 13Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York; and
| | - Mohamad Bydon
- 1Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- 2Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jason P Sheehan
- 14Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
148
|
Devlin L, Grocutt L, Hunter B, Chemu H, Duffton A, McDonald A, Macleod N, McLoone P, O'Cathail SM. The in-silico feasibility of dose escalated, hypofractionated radiotherapy for rectal cancer. Clin Transl Radiat Oncol 2022; 36:24-30. [PMID: 35756193 PMCID: PMC9218294 DOI: 10.1016/j.ctro.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background and purpose Short course radiotherapy (SCRT) has a low biological prescription dose. Rectal cancer has a dose response relationship and moderate α/β ratio (∼5). We hypothesise hypofractionated dose escalation has radiobiological advantages. We assessed in-silico dose escalation to the primary tumour using a simultaneous integrated boost (SIB) technique. Materials and methods Patients who had received 25 Gy/5# were enrolled. GTV was macroscopic tumour including lumen. CTVA was GTV + 10 mm. CTVB included elective nodes. PTV_Low was created from CTVF (CTVA + CTVB) + 7 mm. PTV_High (SIB) was GTV + 5 mm margin. OAR were as per RTOG guidelines. Each patient had 4 plans created at increasing dose levels (27.5 Gy, 30 Gy, 32.5 Gy and 35 Gy) to PTV_High. PTV_Low was 25 Gy/5#.5 test plans were created for each patient in Eclipse™ v15.5 and consisted of 2 VMAT full arcs (6 MV), Varian Truebeam (2.7). Planning objectives were set in the Photon optimiser (PO) and recalculated using Acuros v15.5. A priori feasibility was defined as 90% of plans achieving the planning objectives at 32.5 Gy dose level (EqD2 53.4 Gy). Results 20 SCRT patients median age 70, F (n = 5), M (n = 15). Rectum level; low (n = 12), mid (n = 3) and upper (n = 5). 100 plans were analysed. Mean volume of PTV_High was 130 cm3 (SD 81.5) and PTV_Low 769.6 cm3 (SD 241.1). 100% plans complied with mandatory planning dose metrics for each structure at the 25 Gy/5# plan and each dose level. Conclusion Hypofractionated dose escalation to the primary tumour up to 35 Gy/5# is technically feasible in rectal cancer radiotherapy.
Collapse
Affiliation(s)
- Lynsey Devlin
- Department of Radiotherapy, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
- CRUK RadNet Glasgow, University of Glasgow, Glasgow, United Kingdom
| | - Laura Grocutt
- CRUK RadNet Glasgow, University of Glasgow, Glasgow, United Kingdom
- Department of Radiotherapy Physics, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Bianca Hunter
- Department of Radiotherapy Physics, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Hiwot Chemu
- Department of Clinical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Aileen Duffton
- Department of Radiotherapy, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alec McDonald
- Department of Clinical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Nicholas Macleod
- Department of Clinical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Philip McLoone
- Institute of Health & Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Sean M. O'Cathail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
149
|
Gupta A, Yadav BS, Ballari N, Das N, Robert N. LINAC-based stereotactic radiosurgery/radiotherapy for brain metastases in patients with breast cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:351-359. [DOI: 10.1017/s1460396921000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:Brain metastases (BM) are common in patients with HER2-positive and triple-negative breast cancer. In this study we aim to report clinical outcomes with LINAC-based stereotactic radiosurgery/radiotherapy (SRS/SRT) for BM in patients of breast cancer.Methods:Clinical and dosimetric records of breast cancer patients treated for BM at our institute between May, 2015 and December, 2019 were retrospectively reviewed. Patients of previously treated or newly diagnosed breast cancer with at least a radiological diagnosis of BM; 1–4 in number, ≤3·5 cm in maximum dimension, with a Karnofsky Performance Score of ≥60 were taken up for treatment with SRS. SRT was generally considered if a tumour was >3·5 cm in diameter, near a critical or eloquent structure, or if the proximity of moderately sized tumours would lead to dose bridging in a single-fraction SRS plan. The median prescribed SRS dose was 15 Gy (range 7–24 Gy) and SRT dose was 27 Gy in 3 fractions.Clinical assessment and MR imaging was done at 6 weeks post-SRS and then every 3 months thereafter. Intracranial progression-free survival (PFS) and overall survival (OS) were calculated using Kaplan–Meier method and subgroups were compared using log rank test.Results:Total, 40 tumours were treated in 31 patients. The median tumour diameter was 2·3 cm (range 1·0–4·6 cm). SRS and SRT were delivered in 27 and 4 patients, respectively. SRS/SRT was given as a boost to whole brain radiotherapy (WBRT) in four patients and as salvage for progression after WBRT in six patients. In general, nine patients underwent prior surgery. The median follow-up was 7·9 months (0·2–34 months). Twenty (64·5%) patients developed local recurrence, 10 (32·3%) patients developed distant intracranial relapse and 7 patients had both local and distant intracranial relapse. The estimated local control at 6 months and 1 year was 48 and 35%, respectively. Median intracranial progression free survival (PFS) was 3·73 months (range 0·2–25 months). Median intracranial PFS was 3·02 months in patients who received SRS alone or as boost after WBRT, while it was 4·27 months in those who received SRS as salvage after WBRT (p = 0·793). No difference in intracranial PFS was observed with or without prior surgery (p = 0·410). Median overall survival (OS) was 21·7 months (range 0·2–34 months) for the entire cohort. Patients who received prior WBRT had a poor OS (13·31 months) as compared to SRS alone (21·4 months; p = 0·699).Conclusion:In patients with BM after breast cancer SRS alone, WBRT + SRS and surgery + SRS had comparable PFS and OS.
Collapse
|
150
|
Yan M, Holden L, Wang M, Soliman H, Myrehaug S, Tseng CL, Detsky J, Ruschin M, Tjong M, Atenafu EG, Das S, Lipsman N, Heyn C, Sahgal A, Husain Z. Gamma knife icon based hypofractionated stereotactic radiosurgery (GKI-HSRS) for brain metastases: impact of dose and volume. J Neurooncol 2022; 159:705-712. [PMID: 35999435 DOI: 10.1007/s11060-022-04115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gamma Knife Icon-based hypofractionated stereotactic radiosurgery (GKI-HSRS) is a novel technical paradigm in the treatment of brain metastases that allows for both the dosimetric benefits of the GKI stereotactic radiosurgery (SRS) platform as well as the biologic benefits of fractionation. We report mature local control and adverse radiation effect (ARE) outcomes following 5 fraction GKI-HSRS for intact brain metastases. METHODS Patients with intact brain metastases treated with 5-fraction GKI-HSRS were retrospectively reviewed. Survival, local control, and adverse radiation effect rates were determined. Univariable and multivariable regression (MVA) were performed on potential predictive factors. RESULTS Two hundred and ninety-nine metastases in 146 patients were identified. The median clinical follow-up was 10.7 months (range 0.5-47.6). The median total dose and prescription isodose was 27.5 Gy (range, 20-27.5) in 5 daily fractions and 52% (range, 45-93), respectively. The median overall survival (OS) was 12.7 months, and the 1-year local failure rate was 15.2%. MVA identified a total dose of 27.5 Gy vs. ≤ 25 Gy (hazard ratio [HR] 0.59, p = 0.042), and prior chemotherapy exposure (HR 1.99, p = 0.015), as significant predictors of LC. The 1-year ARE rate was 10.8% and the symptomatic ARE rate was 1.8%. MVA identified a gross tumor volume of ≥ 4.5 cc (HR 7.29, p < 0.001) as a significant predictor of symptomatic ARE. CONCLUSION Moderate total doses in 5 daily fractions of GKI-HSRS were associated with high rates of LC and a low incidence of symptomatic ARE.
Collapse
Affiliation(s)
- Michael Yan
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Lori Holden
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Michael Wang
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Medical Physics, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Michael Tjong
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Sunit Das
- Department of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Chinthaka Heyn
- Department of Radiology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada. .,Sunnybrook Health Sciences Center, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|