101
|
Enhanced Wort Fermentation with De Novo Lager Hybrids Adapted to High-Ethanol Environments. Appl Environ Microbiol 2018; 84:AEM.02302-17. [PMID: 29196294 DOI: 10.1128/aem.02302-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Interspecific hybridization is a valuable tool for developing and improving brewing yeast in a number of industry-relevant aspects. However, the genomes of newly formed hybrids can be unstable. Here, we exploited this trait by adapting four brewing yeast strains, three of which were de novo interspecific lager hybrids with different ploidy levels, to high ethanol concentrations in an attempt to generate variant strains with improved fermentation performance in high-gravity wort. Through a batch fermentation-based adaptation process and selection based on a two-step screening process, we obtained eight variant strains which we compared to the wild-type strains in 2-liter-scale wort fermentations replicating industrial conditions. The results revealed that the adapted variants outperformed the strains from which they were derived, and the majority also possessed several desirable brewing-relevant traits, such as increased ester formation and ethanol tolerance, as well as decreased diacetyl formation. The variants obtained from the polyploid hybrids appeared to show greater improvements in fermentation performance than those derived from diploid strains. Interestingly, it was not only the hybrid strains, but also the Saccharomyces cerevisiae parent strain, that appeared to adapt and showed considerable changes in genome size. Genome sequencing and ploidy analysis revealed that changes had occurred at both the chromosome and single nucleotide levels in all variants. Our study demonstrates the possibility of improving de novo lager yeast hybrids through adaptive evolution by generating stable and superior variants that possess traits relevant to industrial lager beer fermentation.IMPORTANCE Recent studies have shown that hybridization is a valuable tool for creating new and diverse strains of lager yeast. Adaptive evolution is another strain development tool that can be applied in order to improve upon desirable traits. Here, we apply adaptive evolution to newly created lager yeast hybrids by subjecting them to environments containing high ethanol levels. We isolated and characterized a number of adapted variants which possess improved fermentation properties and ethanol tolerance. Genome analysis revealed substantial changes in the variants compared to the original strains. These improved variant strains were produced without any genetic modification and are suitable for industrial lager beer fermentations.
Collapse
|
102
|
Bonciani T, De Vero L, Mezzetti F, Fay JC, Giudici P. A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production. Appl Microbiol Biotechnol 2018; 102:2269-2278. [PMID: 29356870 DOI: 10.1007/s00253-018-8773-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.
Collapse
Affiliation(s)
- Tommaso Bonciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Luciana De Vero
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| | - Francesco Mezzetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Justin C Fay
- Department of Biology, University of Rochester, 319 Hutchison Hall, Rochester, NY, USA
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
103
|
The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains. Int J Food Microbiol 2017; 258:1-11. [DOI: 10.1016/j.ijfoodmicro.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
|
104
|
Mendoza LM, Neef A, Vignolo G, Belloch C. Yeast diversity during the fermentation of Andean chicha : A comparison of high-throughput sequencing and culture-dependent approaches. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
105
|
Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance. Folia Microbiol (Praha) 2017; 63:155-168. [PMID: 28887734 DOI: 10.1007/s12223-017-0546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.
Collapse
|
106
|
Wine yeasts identification by MALDI-TOF MS: Optimization of the preanalytical steps and development of an extensible open-source platform for processing and analysis of an in-house MS database. Int J Food Microbiol 2017; 254:1-10. [DOI: 10.1016/j.ijfoodmicro.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
|
107
|
Padilla B, Zulian L, Ferreres À, Pastor R, Esteve-Zarzoso B, Beltran G, Mas A. Sequential Inoculation of Native Non- Saccharomyces and Saccharomyces cerevisiae Strains for Wine Making. Front Microbiol 2017; 8:1293. [PMID: 28769887 PMCID: PMC5513938 DOI: 10.3389/fmicb.2017.01293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
The use of non-Saccharomyces yeast for wine making is becoming a common trend in many innovative wineries. The application is normally aimed at increasing aromas, glycerol, reducing acidity, and other improvements. This manuscript focuses on the reproduction of the native microbiota from the vineyard in the inoculum. Thus, native selected yeasts (Hanseniaspora uvarum, Metschnikowia pulcherrima, Torulaspora delbrueckii, Starmerella bacillaris species and three different strains of Saccharomyces cerevisiae) were inoculated sequentially, or only S. cerevisiae (three native strains together or one commercial) was used. Inoculations were performed both in laboratory conditions with synthetic must (400 mL) as well as in industrial conditions (2000 kg of grapes) in red winemaking in two different varieties, Grenache and Carignan. The results showed that all the inoculated S. cerevisiae strains were found at the end of the vinifications, and when non-Saccharomyces yeasts were inoculated, they were found in appreciable populations at mid-fermentation. The final wines produced could be clearly differentiated by sensory analysis and were of similar quality, in terms of sensory analysis panelists' appreciation.
Collapse
Affiliation(s)
- Beatriz Padilla
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Laura Zulian
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Àngela Ferreres
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Rosa Pastor
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
108
|
Vigentini I, Barrera Cardenas S, Valdetara F, Faccincani M, Panont CA, Picozzi C, Foschino R. Use of Native Yeast Strains for In-Bottle Fermentation to Face the Uniformity in Sparkling Wine Production. Front Microbiol 2017; 8:1225. [PMID: 28713352 PMCID: PMC5491622 DOI: 10.3389/fmicb.2017.01225] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The in-bottle fermentation of sparkling wines is currently triggered by few commercialized Saccharomyces cerevisiae strains. This lack of diversity in tirage yeast cultures leads to a prevalent uniformity in sensory profiles of the end products. The aim of this study has been to exploit the natural multiplicity of yeast populations in order to introduce variability in sparkling wines throughout the re-fermentation step. A collection of 133 S. cerevisiae strains were screened on the basis of technological criteria (fermenting power and vigor, SO2 tolerance, alcohol tolerance, flocculence) and qualitative features (acetic acid, glycerol and H2S productions). These activities allowed the selection of yeasts capable of dominating the in-bottle fermentation in actual cellar conditions: in particular, the performances of FX and FY strains (isolated in Franciacorta area), and OX and OY strains (isolated in Oltrepò Pavese area), were compared to those of habitually used starter cultures (IOC18-2007, EC1118, Lalvin DV10), by involving nine wineries belonging to the two Consortia of Appellation of Origin. The microbiological analyses of samples have revealed that the indigenous strains showed an increased latency period and a higher cultivability along the aging time than the commercial starter cultures do. Results of chemical analyses and sensory evaluation of the samples after 18 months sur lies have shown that significant differences (p < 0.05) were present among the strains for alcoholic strength, carbon dioxide overpressure and pleasantness, whereas they were not observed for residual sugars content, titratable acidity or volatile acidity. Indigenous S. cerevisiae exhibited comparable values respect to the commercial starter cultures. The ANOVA has also proven that the base wine formulation is a key factor, by significantly affecting (p < 0.01) some oenological parameters of wine, like alcoholic strength, volatile acidity, carbon dioxide overpressure, titratable acidity and dry extract. The use of native yeast strains for the re-fermentation step can be considered a convenient way for introducing differentiation to the final product without modifying the traditional technology. In a perspective of "precision enology," where the wine is designed on specific vine cultivars and microorganisms, this work underlines that exploring yeast biodiversity is a strategic activity to improve the production.
Collapse
Affiliation(s)
- Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Shirley Barrera Cardenas
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Federica Valdetara
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | | | - Carlo A Panont
- Consorzio Tutela Vini Oltrepò PaveseTorrazza Coste, Italy
| | - Claudia Picozzi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
109
|
Belda I, Ruiz J, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Benito S, Santos A. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 2017; 257:183-191. [PMID: 28668728 DOI: 10.1016/j.ijfoodmicro.2017.06.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023]
Abstract
In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Beata Beisert
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Eva Navascués
- Agrovin, S.A., Alcázar de San Juan, 13600 Ciudad Real, Spain; Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Calderón
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Santiago Benito
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
110
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
111
|
Krogerus K, Seppänen-Laakso T, Castillo S, Gibson B. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb Cell Fact 2017; 16:66. [PMID: 28431563 PMCID: PMC5399851 DOI: 10.1186/s12934-017-0679-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity. RESULTS Here we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn't produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose. CONCLUSIONS Our study demonstrates the possibility of constructing complex yeast hybrids that possess traits that are relevant to industrial lager beer fermentation and that are derived from several parent strains. Yeast lipid composition was also shown to have a central role in determining ethanol and cold tolerance in brewing strains.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, 00076 Espoo, Finland
| | | | - Sandra Castillo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| |
Collapse
|
112
|
Kong Y, Wu Q, Xu Y. Comparative studies on the fermentation performance of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor during solid-state or submerged fermentation. J Appl Microbiol 2017; 122:964-973. [PMID: 27981792 DOI: 10.1111/jam.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/09/2016] [Accepted: 11/20/2016] [Indexed: 11/26/2022]
Abstract
AIM To explore the metabolic characteristic of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor fermentation. METHODS AND RESULTS Inter-delta amplification analysis was used to differentiate the S. cerevisiae strains at strain level. Twelve biotypes (I-XII) were identified among the 72 S. cerevisiae strains preselected. A comparison was conducted between solid-state fermentation (SSF) and submerged fermentation (SmF) with S. cerevisiae strains had different genotype, with a focus on the production of ethanol and the volatile compounds. The degree of ethanol ranged from 28·0 to 45·2 g l-1 in SmF and from 14·8 to 25·6 g kg-1 in SSF, and SSF was found to be more suitable for the production of ethanol with higher yield coefficient of all the S. cerevisiae strains. The metabolite profiles of each yeast strain showed obvious distinction in the two fermentations. The highest amounts of ethyl acetate in SmF and SSF were found in genotype VII (328·2 μg l-1 ) and genotype V (672 μg kg-1 ), respectively. In addition, the generation of some volatile compounds could be strictly related to the strain used. Compound β-damascenone was only detected in genotypes I, II, X and XII in the two fermentation processes. Furthermore, laboratory scale fermentations were clearly divided into SSF and SmF in hierarchical cluster analysis regardless of the inoculated yeast strains, indicating that the mode of fermentation was more important than the yeast strains inoculated. CONCLUSION The autochthonous S. cerevisiae strains in Chinese light-fragrant liquor vary considerably in terms of their volatiles profiles during SSF and SmF. SIGNIFICANCE AND IMPACT OF THE STUDY This work facilitates a better understanding of the fermentative mechanism in the SSF process for light-fragrant liquor production.
Collapse
Affiliation(s)
- Y Kong
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Q Wu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
113
|
Ilieva F, Kostadinović Veličkovska S, Dimovska V, Mirhosseini H, Spasov H. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties. Food Chem 2017; 216:309-15. [PMID: 27596425 DOI: 10.1016/j.foodchem.2016.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines.
Collapse
Affiliation(s)
- Fidanka Ilieva
- Department of Wine and Beer Technology, University of Food Technologies, Marica 26, Plovdiv, Bulgaria; Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | | | - Violeta Dimovska
- Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | - Hamed Mirhosseini
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Selangor, Malaysia
| | - Hristo Spasov
- Department of Wine and Beer Technology, University of Food Technologies, Marica 26, Plovdiv, Bulgaria
| |
Collapse
|
114
|
Jacques N, Mallet S, Laaghouiti F, Tinsley CR, Casaregola S. Specific populations of the yeastGeotrichum candidumrevealed by molecular typing. Yeast 2016; 34:165-178. [DOI: 10.1002/yea.3223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Noémie Jacques
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Sandrine Mallet
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Fatima Laaghouiti
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Colin R. Tinsley
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Serge Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures; Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
115
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
116
|
Petruzzi L, Bevilacqua A, Corbo MR, Speranza B, Capozzi V, Sinigaglia M. A Focus on Quality and Safety Traits of Saccharomyces cerevisiae Isolated from Uva di Troia Grape Variety. J Food Sci 2016; 82:124-133. [PMID: 27871123 DOI: 10.1111/1750-3841.13549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/11/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to study Saccharomyces cerevisiae strains isolated from vineyards of the autochthonous grape variety "Uva di Troia" located in different geographical areas of Apulian region (Southern Italy). Four hundred isolates were studied in relation to H2 S production, β-glucosidase activity, and pigments adsorption from grape skin. Thus, 81 isolates were selected, identified through the amplification of the interdelta region, and grouped in 19 biotypes (from I to XIX). The enological performances were assessed to determine the content of residual sugars, ethanol, glycerol, and volatile acidity, after a microfermentation in Uva di Troia must for each isolate. The ability to remove ochratoxin A (OTA) was studied as an additional tool to select promising strains. A geographical-dependent technological variability was found for glycerol and volatile acidity, suggesting that the different indigenous yeasts can have a peculiar impact on the final characteristics of the corresponding wine ("Nero di Troia"). Only 2 biotypes (VI and XVII) were able to remove OTA throughout fermentation, with the highest reduction achieved by the biotype XVII (ca. 30%).
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| |
Collapse
|
117
|
De Filippis F, La Storia A, Blaiotta G. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing. Food Microbiol 2016; 63:117-122. [PMID: 28040157 DOI: 10.1016/j.fm.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/18/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
Spontaneous alcoholic fermentation of grape must is a complex process, carried out by indigenous yeast populations arising from the vineyard or the winery environment and therefore representing an autochthonous microbial terroir of the production area. Microbial diversity at species and biotype level is extremely important in order to develop the composite and typical flavour profile of DOCG (Appellation of Controlled and Guaranteed Origin) wines. In this study, we monitored fungal populations involved in spontaneous fermentations of Aglianico and Greco di Tufo grape must by high-throughput sequencing (HTS) of 18S rRNA gene amplicons. We firstly proposed an alternative/addition to ITS as target gene in HTS studies and highlighted consistency between the culture-dependent and -independent approaches. A complex mycobiota was found at the beginning of the fermentation, mainly characterized by non-Saccharomyces yeasts and several moulds, with differences between the two types of grapes. Moreover, Interdelta patterns revealed a succession of several Saccharomyces cerevisiae biotypes and a high genetic diversity within this species.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
| | - Antonietta La Storia
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| |
Collapse
|
118
|
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016; 166:1397-1410.e16. [PMID: 27610566 PMCID: PMC5018251 DOI: 10.1016/j.cell.2016.08.020] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/04/2022]
Abstract
Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today’s industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PaperClip
We sequenced and phenotyped 157 S. cerevisiae yeasts Present-day industrial yeasts originate from only a few domesticated ancestors Beer yeasts show strong genetic and phenotypic hallmarks of domestication Domestication of industrial yeasts predates microbe discovery
Collapse
Affiliation(s)
- Brigida Gallone
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Troels Prahl
- White Labs, 9495 Candida Street, San Diego, CA 92126, USA
| | - Leah Soriaga
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Adriaan Merlevede
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Loren Miraglia
- Encinitas Brewing Science, 141 Rodney Avenue, Encinitas, CA 92024, USA
| | | | - Brian Steffy
- Illumina, 5200 Illumina Way, San Diego, CA 92122, USA
| | - Maryann Taylor
- Biological & Popular Culture (BioPop), 2205 Faraday Avenue, Suite E, Carlsbad, CA 92008, USA
| | - Ariel Schwartz
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Toby Richardson
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
119
|
Pfliegler W, Sipiczki M. Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping ofSaccharomyces cerevisiaestrains. Lett Appl Microbiol 2016; 63:406-411. [DOI: 10.1111/lam.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- W.P. Pfliegler
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| | - M. Sipiczki
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
120
|
Lalou S, Capece A, Mantzouridou FT, Romano P, Tsimidou MZ. Implementing principles of traditional concentrated grape must fermentation to the production of new generation balsamic vinegars. Starter selection and effectiveness. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:3424-3436. [PMID: 27777448 DOI: 10.1007/s13197-016-2306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Abstract
In an effort to implement principles of traditional concentrated grape must fermentation to the production of new generation balsamic vinegars (BVs), the specific goals of the study were the isolation and molecular identification of the predominant yeasts in concentrated grape must (cv. Xinomavro), their technological characterization and the evaluation of the fermentative aptitude of the selected strains. Tolerance against 5-hydroxymethyl-furfural (HMF) and furfural, acetic acid and glucose concentration was examined by appropriate methods and tests. The enological characteristics studied were acetic acid and H2S production, foaming and flocculation ability and key enzymatic activity. PCR-RFLP analysis revealed only the presence of Saccharomyces cerevisiae and Hanseniaspora uvarum among the 14 predominant osmophilic yeast isolates. Tolerance to both HMF and furfural was found strain- and dose-dependent and was suggested as a critical factor in the pre-selection of yeast starters. The most tolerant yeasts to these stress factors, a S. cerevisiae and a non-Saccharomyces strains, showed satisfactory growth in the presence of high glucose and acetic acid content (up to 600 g/L and 2 % w/w, respectively) and desirable enological characteristics. Results from the comparative evaluation of the fermentative aptitude of these strains with a commercial wine strain highlighted that the isolates had glucophilic behaviour and ability to produce desirable amounts of ethanol (100-120 g/kg) in short time (~20 d). The key volatiles useful for varietal discrimination and differentiation between the BVs and the traditional ones were also evaluated.
Collapse
Affiliation(s)
- Sofia Lalou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Universitΰ degli Studi della Basilicata, Potenza, Italy
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Universitΰ degli Studi della Basilicata, Potenza, Italy
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
121
|
Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae. Int J Food Microbiol 2016; 234:36-44. [DOI: 10.1016/j.ijfoodmicro.2016.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/12/2016] [Accepted: 06/04/2016] [Indexed: 11/23/2022]
|
122
|
Maturano YP, Mestre MV, Combina M, Toro ME, Vazquez F, Esteve-Zarzoso B. Culture-dependent and independent techniques to monitor yeast species during cold soak carried out at different temperatures in winemaking. Int J Food Microbiol 2016; 237:142-149. [PMID: 27569377 DOI: 10.1016/j.ijfoodmicro.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
Abstract
Transformation of grape must into wine is a process that may vary according to the consumers' requirements. Application of cold soak prior to alcoholic fermentation is a common practice in cellars in order to enhance flavor complexity and extraction of phenolic compounds. However, the effect of this step on wine yeast microbiota is not well-known. The current study simultaneously analyzed the effect of different cold soak temperatures on the microbiological population throughout the process and the use of culture-dependent and independent techniques to study this yeast ecology. The temperatures assayed were those normally applied in wineries: 2.5, 8 and 12°C. PCR-DGGE allowed detection of the most representative species such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae. As could be expected, highest diversity indices were obtained at the beginning of each process, and survival of H. uvarum or S. bacillaris depended on the temperature. Our results are in agreement with those obtained with culture independent methods, but qPCR showed higher precision and a different behavior was observed for each yeast species and at each temperature assayed. Comparison of both culture-independent techniques can provide a general overview of the whole process, although DGGE does not reveal the diversity expected due to the reported problems with the sensitivity of this technique.
Collapse
Affiliation(s)
- Y Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - M Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina; Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martin 3853, 5507 Luján de Cuyo Mendoza, Argentina
| | - María Eugenia Toro
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Braulio Esteve-Zarzoso
- Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel.li Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
123
|
García-Ríos E, Ramos-Alonso L, Guillamón JM. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae. Front Microbiol 2016; 7:1199. [PMID: 27536287 PMCID: PMC4971067 DOI: 10.3389/fmicb.2016.01199] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10–15°C) is becoming more prevalent in order to produce white and “rosé” wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Lucía Ramos-Alonso
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - José M Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| |
Collapse
|
124
|
Tra Bi CY, N'guessan FK, Kouakou CA, Jacques N, Casaregola S, Djè MK. Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d'Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta. World J Microbiol Biotechnol 2016; 32:125. [PMID: 27339306 DOI: 10.1007/s11274-016-2095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/05/2016] [Indexed: 11/27/2022]
Abstract
Raffia wine is a traditional alcoholic beverage produced in several African countries where it plays a significant role in traditional customs and population diet. Alcoholic fermentation of this beverage is ensured by a complex natural yeast flora which plays a decisive role in the quality of the final product. This present study aims to evaluate the distribution and the diversity of the yeast strains isolated in raffia wine from four sampling areas (Abengourou, Alépé, Grand-Lahou and Adzopé) in Côte d'Ivoire. Based on the D1/D2 domain of the LSU rDNA sequence analysis, nine species belonging to six genera were distinguished. With a percentage of 69.5 % out of 171 yeast isolates, Saccharomyces cerevisiae was the predominant species in the raffia wine, followed by Kodamaea ohmeri (20.4 %). The other species isolated were Candida haemulonii (4.1 %), Candida phangngensis (1.8 %), Pichia kudriavzevii (1.2 %), Hanseniaspora jakobsenii (1.2 %), Candida silvae (0.6 %), Hanseniaspora guilliermondii (0.6 %) and Meyerozyma caribbica (0.6 %). The molecular characterization of S. cerevisiae isolates at the strain level using the PCR-interdelta method revealed the presence of 21 profiles (named I to XXI) within 115 isolates. Only four profiles (I, III, V and XI) were shared by the four areas under study. Phenotypic characterization of K. ohmeri strains showed two subgroups for sugar fermentation and no diversity for the nitrogen compound assimilations and the growth at different temperatures.
Collapse
Affiliation(s)
- Charles Y Tra Bi
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire.
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire
| | - Clémentine A Kouakou
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire
| | - Noemie Jacques
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Serge Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marcellin K Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire
| |
Collapse
|
125
|
Padilla B, García-Fernández D, González B, Izidoro I, Esteve-Zarzoso B, Beltran G, Mas A. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations. Front Microbiol 2016; 7:930. [PMID: 27379060 PMCID: PMC4908135 DOI: 10.3389/fmicb.2016.00930] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022] Open
Abstract
Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard ecosystem, which contains yeasts from different species. The description of this yeast diversity will lead to the selection of native microbiota that can be used to produce quality wines with the characteristics of the Priorat.
Collapse
Affiliation(s)
- Beatriz Padilla
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - David García-Fernández
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Beatriz González
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Iara Izidoro
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
126
|
Aponte M, Blaiotta G. Potential Role of Yeast Strains Isolated from Grapes in the Production of Taurasi DOCG. Front Microbiol 2016; 7:809. [PMID: 27303391 PMCID: PMC4882326 DOI: 10.3389/fmicb.2016.00809] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Twelve samples of Aglianico grapes, collected in different locations of the Taurasi DOCG (Appellation of Controlled and Guaranteed Origin) production area were naturally fermented in sterile containers at room temperature. A total of 70 yeast cultures were isolated from countable WL agar plates: 52 in the middle of the fermentation and 18 at the end. On the basis of ITS-RFLP analysis and ITS sequencing, all cultures collected at the end of fermentations were identified as Saccharomyces (S.) cerevisiae; while, the 52 isolates, collected after 1 week, could be referred to the following species: Metschnikowia (M.) pulcherrima; Starmerella (Star.) bacillaris; Pichia (P.) kudriavzevii; Lachancea (L.) thermotolerans; Hanseniaspora (H.) uvarum; Pseudozyma (Pseud.) aphidis; S. cerevisiae. By means of Interdelta analysis, 18 different biotypes of S. cerevisiae were retrieved. All strains were characterized for ethanol production, SO2 resistance, H2S development, β-glucosidasic, esterasic and antagonistic activities. Fermentation abilities of selected strains were evaluated in micro-fermentations on Aglianico must. Within non-Saccharomyces species, some cultures showed features of technological interest. Antagonistic activity was expressed by some strains of M. pulcherrima, L. thermotolerans, P. kudriavzevii, and S. cerevisiae. Strains of M. pulcherrima showed the highest β-glucosidase activity and proved to be able to produce high concentrations of succinic acid. L. thermotolerans produced both succinic and lactic acids. The lowest amount of acetic acid was produced by M. pulcherrima and L. thermotolerans; while the highest content was recorded for H. uvarum. The strain of Star. bacillaris produced the highest amount of glycerol and was able to metabolize all fructose and malic acid. Strains of M. pulcherrima and H. uvarum showed a low fermentation power (about 4%), while, L. thermotolerans, Star. Bacillaris, and P. kudriavzevii of about 10%. Significant differences were even detected for S. cerevisiae biotypes with respect to H2S production, antagonistic activity and β-glucosidase activity as well as for the production of acetic acid, glycerol and ethanol in micro-vinification experiments.
Collapse
Affiliation(s)
- Maria Aponte
- Sezione di "Microbiologia", Dipartimento di Agraria, Università degli Studi di Napoli Federico II Napoli, Italy
| | - Giuseppe Blaiotta
- Sezione di "Scienze della Vigna e del Vino", Dipartimento di Agraria, Università degli Studi di Napoli Federico II Avellino, Italy
| |
Collapse
|
127
|
Kopecká J, Němec M, Matoulková D. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast. J Appl Microbiol 2016; 120:1561-73. [PMID: 26929399 DOI: 10.1111/jam.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/05/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
AIMS Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. METHODS AND RESULTS A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. CONCLUSIONS PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. SIGNIFICANCE AND IMPACT OF THE STUDY It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique.
Collapse
Affiliation(s)
- J Kopecká
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Němec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - D Matoulková
- Department of Microbiology, Research Institute of Brewing and Malting, Praha, Czech Republic
| |
Collapse
|
128
|
Aponte M, Blaiotta G. Selection of an autochthonous Saccharomyces cerevisiae strain for the vinification of “Moscato di Saracena”, a southern Italy (Calabria Region) passito wine. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
129
|
Randazzo W, Corona O, Guarcello R, Francesca N, Germanà MA, Erten H, Moschetti G, Settanni L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
130
|
Lleixà J, Martín V, Portillo MDC, Carrau F, Beltran G, Mas A. Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae. Front Microbiol 2016; 7:338. [PMID: 27014252 PMCID: PMC4792884 DOI: 10.3389/fmicb.2016.00338] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/03/2016] [Indexed: 02/01/2023] Open
Abstract
Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts. In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenyl ethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.
Collapse
Affiliation(s)
- Jessica Lleixà
- Departament Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Valentina Martín
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República Montevideo, Uruguay
| | - María Del C Portillo
- Departament Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Francisco Carrau
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República Montevideo, Uruguay
| | - Gemma Beltran
- Departament Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Mas
- Departament Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
131
|
Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int J Food Microbiol 2016; 225:1-8. [PMID: 26971012 DOI: 10.1016/j.ijfoodmicro.2016.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 11/23/2022]
Abstract
The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.
Collapse
|
132
|
Garofalo C, Tristezza M, Grieco F, Spano G, Capozzi V. From grape berries to wine: population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J Microbiol Biotechnol 2016; 32:59. [DOI: 10.1007/s11274-016-2017-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
133
|
Šuranská H, Vránová D, Omelková J. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Braz J Microbiol 2016; 47:181-90. [PMID: 26887243 PMCID: PMC4822743 DOI: 10.1016/j.bjm.2015.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 05/19/2015] [Indexed: 11/26/2022] Open
Abstract
In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.
Collapse
Affiliation(s)
- Hana Šuranská
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic.
| | - Dana Vránová
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jiřina Omelková
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| |
Collapse
|
134
|
Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, Allegaert L, Vrancken G, Verstrepen KJ. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production. Appl Environ Microbiol 2016; 82:732-46. [PMID: 26590272 PMCID: PMC4711123 DOI: 10.1128/aem.02556-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor.
Collapse
Affiliation(s)
- Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Nore Struyf
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Tinneke Paulus
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | | | | | | | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| |
Collapse
|
135
|
Puig-Pujol A, Ferrando N, Capdevila F, Ocete R, Revilla E. Yeast biodiversity from Vitis viniferaL., subsp. sylvestris (Gmelin) Hegi to face up the oenological consequences of climate change. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160702026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
136
|
A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl Environ Microbiol 2015; 81:8202-14. [PMID: 26407881 DOI: 10.1128/aem.02464-15] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023] Open
Abstract
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.
Collapse
|
137
|
Rinaldi A, Blaiotta G, Aponte M, Moio L. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Food Microbiol 2015; 53:128-34. [PMID: 26678140 DOI: 10.1016/j.fm.2015.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 07/30/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Nine Saccharomyces cerevisiae cultures, isolated from different sources, were tested for their ability to reduce tannins reactive towards salivary proteins, and potentially responsible for wine astringency. Strains were preliminary genetically characterized and evaluated for physiological features of technological interest. Laboratory-scale fermentations were performed in three synthetic media: CT) containing enological grape tannin; CTP) CT supplemented with organic nitrogen sources; CTPV) CTP supplemented with vitamins. Adsorption of total tannins, tannins reactive towards salivary proteins, yellow pigments, phenolics having antioxidant activity, and total phenols, characterizing the enological tannin, was determined by spectrophotometric methods after fermentation. The presence of vitamins and peptones in musts greatly influenced the adsorption of tannins reactive towards salivary proteins (4.24 g/L gallic acid equivalent), thus promoting the reduction of the potential astringency of model wines. With reference to the different phenolic classes, yeast strains showed different adsorption abilities. From a technological point of view, the yeast choice proved to be crucial in determining changes in gustative and mouthfeel profile of red wines and may assist winemakers to modulate colour and astringency of wine.
Collapse
Affiliation(s)
- Alessandra Rinaldi
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy; Biolaffort, 126 Quai de la Souys, 33100, Bordeaux, France.
| | - Giuseppe Blaiotta
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy
| | - Maria Aponte
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Microbiologia, Via Università 100, 80055, Portici, NA, Italy
| | - Luigi Moio
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Viale Italia, angolo Via Perrottelli, 83100, Avellino, Italy
| |
Collapse
|
138
|
Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J Microbiol Biotechnol 2015; 31:1781-92. [DOI: 10.1007/s11274-015-1929-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/23/2015] [Indexed: 11/26/2022]
|
139
|
López-Malo M, García-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamón JM. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 2015; 16:537. [PMID: 26194190 PMCID: PMC4509780 DOI: 10.1186/s12864-015-1755-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. RESULTS We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. CONCLUSIONS In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.
Collapse
Affiliation(s)
- María López-Malo
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Estéfani García-Rios
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Bruno Melgar
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain.
| |
Collapse
|
140
|
Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations. Appl Environ Microbiol 2015; 81:6166-76. [PMID: 26150457 DOI: 10.1128/aem.00133-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production.
Collapse
|
141
|
New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
142
|
|
143
|
Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P. Fast method for identifying inter- and intra-species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol 2015; 119:149-61. [PMID: 25892524 DOI: 10.1111/jam.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/05/2023]
Abstract
AIMS The present work proposes a two-step molecular strategy to select inter- and intra-species Saccharomyces hybrids obtained by spore-to-spore mating, one of the most used methods for generating improved hybrids from homothallic wine yeasts. METHODS AND RESULTS As low spore viability and haplo-selfing are the main causes of failed mating, at first, we used colony screening PCR (csPCR) of discriminative gene markers to select hybrids directly on dissection plate and discard homozygous diploid colonies arisen from one auto-diploidized progenitor. Then, pre-selected candidates were submitted to recursive streaking and conventional PCR in order to discriminate between the hybrids with stable genomic background and the false-positive admixtures of progenitor cells both undergone haplo-selfing. csPCRs of internal transcribed spacer (ITS) 1 or 2, and the subsequent digestion with diagnostic endonucleases HaeIII and RsaI, respectively, were efficient to select six new Saccharomyces cerevisiae × Saccharomyces uvarum hybrids from 64 crosses. Intragenic minisatellite regions in PIR3, HSP150, and DAN4 genes showed high inter-strain size variation detectable by cost-effective agarose gel electrophoresis and were successful to validate six new intra-species S. cerevisiae hybrids from 34 crosses. CONCLUSIONS Both protocols reduce significantly the number of massive DNA extractions, prevent misinterpretations caused by one or both progenitors undergone haplo-selfing, and can be easily implemented in yeast labs without any specific instrumentation. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a method for the marker-assisted selection of several inter- and intra-species yeast hybrids in a cost-effective, rapid and reproducible manner.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - A Verspohl
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - T Bonciani
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - C Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - P Giudici
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| |
Collapse
|
144
|
Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 2015; 10:e0122709. [PMID: 25884705 PMCID: PMC4401569 DOI: 10.1371/journal.pone.0122709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations.
Collapse
|
145
|
Petruzzi L, Corbo MR, Baiano A, Beneduce L, Sinigaglia M, Bevilacqua A. In vivo stability of the complex ochratoxin A – Saccharomyces cerevisiae starter strains. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
146
|
Snoek T, Picca Nicolino M, Van den Bremt S, Mertens S, Saels V, Verplaetse A, Steensels J, Verstrepen KJ. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:32. [PMID: 25759747 PMCID: PMC4354739 DOI: 10.1186/s13068-015-0216-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND During the final phases of bioethanol fermentation, yeast cells face high ethanol concentrations. This stress results in slower or arrested fermentations and limits ethanol production. Novel Saccharomyces cerevisiae strains with superior ethanol tolerance may therefore allow increased yield and efficiency. Genome shuffling has emerged as a powerful approach to rapidly enhance complex traits including ethanol tolerance, yet previous efforts have mostly relied on a mutagenized pool of a single strain, which can potentially limit the effectiveness. Here, we explore novel robot-assisted strategies that allow to shuffle the genomes of multiple parental yeasts on an unprecedented scale. RESULTS Screening of 318 different yeasts for ethanol accumulation, sporulation efficiency, and genetic relatedness yielded eight heterothallic strains that served as parents for genome shuffling. In a first approach, the parental strains were subjected to multiple consecutive rounds of random genome shuffling with different selection methods, yielding several hybrids that showed increased ethanol tolerance. Interestingly, on average, hybrids from the first generation (F1) showed higher ethanol production than hybrids from the third generation (F3). In a second approach, we applied several successive rounds of robot-assisted targeted genome shuffling, yielding more than 3,000 targeted crosses. Hybrids selected for ethanol tolerance showed increased ethanol tolerance and production as compared to unselected hybrids, and F1 hybrids were on average superior to F3 hybrids. In total, 135 individual F1 and F3 hybrids were tested in small-scale very high gravity fermentations. Eight hybrids demonstrated superior fermentation performance over the commercial biofuel strain Ethanol Red, showing a 2 to 7% increase in maximal ethanol accumulation. In an 8-l pilot-scale test, the best-performing hybrid fermented medium containing 32% (w/v) glucose to dryness, yielding 18.7% (v/v) ethanol with a productivity of 0.90 g ethanol/l/h and a yield of 0.45 g ethanol/g glucose. CONCLUSIONS We report the use of several different large-scale genome shuffling strategies to obtain novel hybrids with increased ethanol tolerance and fermentation capacity. Several of the novel hybrids show best-parent heterosis and outperform the commonly used bioethanol strain Ethanol Red, making them interesting candidate strains for industrial production.
Collapse
Affiliation(s)
- Tim Snoek
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Martina Picca Nicolino
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Stefanie Van den Bremt
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Stijn Mertens
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Veerle Saels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Alex Verplaetse
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Jan Steensels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
147
|
Canonico L, Comitini F, Ciani M. TdPIR minisatellite fingerprinting as a useful new tool for Torulaspora delbrueckii molecular typing. Int J Food Microbiol 2015; 200:47-51. [PMID: 25676242 DOI: 10.1016/j.ijfoodmicro.2015.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/28/2022]
Abstract
Torulaspora delbrueckii yeast strains are being increasingly applied at the industrial level, such as in the winemaking process, and so their identification and characterisation require effective, fast, accurate, reproducible and reliable approaches. Therefore, the development of typing techniques that allow discrimination at the strain level will provide an essential tool for those working with T. delbrueckii strains. Here, 28 T. delbrueckii strains from various substrates were characterised using different PCR-fingerprinting molecular methods: random amplified polymorphic DNA with polymerase chain reaction (RAPD-PCR), minisatellites SED1, AGA1, DAN4 and the newly designed T. delbrueckii (Td)PIR, and microsatellites (GAC)5 and (GTG)5. The aim was to determine and compare the efficacies, reproducibilities and discriminating powers of these molecular methods. RAPD-PCR using the M13 primers and the newly designed TdPIR3 minisatellite primer pair provided discrimination of the greatest number of T. delbrueckii strains. TdPIR3 clustered the 28 strains into 16 different groups with an efficiency of 100%, while M13 clustered the strains into 17 different groups, although with a lower efficiency of 89%. Moreover, the TdPIR3 primers showed reproducible profiles when the stringency of the PCR protocol was varied, which highlighted the great robustness of this technique. In contrast, variation of the stringency of the M13 PCR protocol resulted in modification of the amplified profiles, which suggested low reproducibility of this technique.
Collapse
Affiliation(s)
- Laura Canonico
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
148
|
Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines. Int J Food Microbiol 2015; 199:23-32. [PMID: 25621717 DOI: 10.1016/j.ijfoodmicro.2015.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Prefermentative cold soak is a widely used technique in red wine production, but the impact on the development of native yeast species is hardly described. The aim of this work was to analyse the dynamics and diversity of yeast populations during prefermentative cold soak in red wines. Three different temperatures (14 ± 1 °C; 8 ± 1 °C and 2.5 ± 1 °C) were used for prefermentative cold soak in Cabernet Sauvignon and Malbec grape musts. Saccharomyces and non-Saccharomyces populations during cold soak and alcoholic fermentation were analysed. In addition, the impact on chemical and sensory properties of the wines was examined. Yeast dynamics during prefermentative cold soak were temperature dependent. At 14 ± 1 °C, the total yeast population progressively increased throughout the cold soak period. Conversely, at 2.5 ± 1 °C, the yeast populations maintained stable during the same period. Prefermentative cold soak conducted at 14±1°C favoured development of Hanseniospora uvarum and Candida zemplinina, whereas cold soak conducted at 8 ± 1 °C favoured growth of Saccharomyces cerevisiae. At 2.5 ± 1 °C, no changes in yeast species were recorded. Acidity and bitterness, two sensory descriptors, appear to be related to wines produced with prefermentative cold soak carried out at 14 ± 1 °C. This fact could be associated with the increase in non-Saccharomyces during the prefermentation stage. Our results emphasise the importance of the temperature as a determinant factor to allow an increase in non-Saccharomyces population during prefermentative cold soak and consequently to modify sensorial attributes of wines as well as their sensorial impact.
Collapse
|
149
|
Foschino R, De Lorenzis G, Fabrizio V, Picozzi C, Imazio S, Failla O, Vigentini I. Yeast DNA recovery during the secondary fermentation step of Lombardy sparkling wines produced by Champenoise method. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Vigentini I, De Lorenzis G, Fabrizio V, Valdetara F, Faccincani M, Panont CA, Picozzi C, Imazio S, Failla O, Foschino R. The vintage effect overcomes the terroir effect: a three year survey on the wine yeast biodiversity in Franciacorta and Oltrepò Pavese, two northern Italian vine-growing areas. MICROBIOLOGY-SGM 2014; 161:362-373. [PMID: 25479840 DOI: 10.1099/mic.0.000004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A three year survey on the dominant yeast populations in samples of air, must and wine in different vineyards and cellars of two northern Italian vine-growing territories (six sites in Franciacorta and eight sites in Oltrepò Pavese areas) was carried out. A total of 505 isolates were ascribed to 31 different species by RFLP analysis of the ITS1-5.8SrRNA-ITS2 region and partial sequence analysis of the 26S rRNA gene. The most commonly found species were Saccharomyces cerevisiae (frequency, F' = 58.7%; incidence, I' = 53.5%), Hanseniaspora uvarum (F' = 14.3%; I' = 5.3%), Metschnikowia fructicola (F' = 11.1%; I' = 5.0%) and Torulaspora delbrueckii (F' = 10.3%; I' = 3.8%). Among 270 S. cerevisiae new isolates, 156 (57.8%) revealed a different genetic pattern through polymorphism analysis of the interdelta regions by capillary electrophoresis, while 47 isolates (17.4 %) were clones of starter cultures. By considering the Shannon-Wiener index and results of principal component analysis (PCA) analyses, the year of isolation (vintage) proved to be a factor that significantly affected the biodiversity of the yeast species, whereas the geographical site (terroir) was not. Seventy-five per cent of S. cerevisiae isolates gathered in a unique cluster at a similarity level of 82%, while the remaining 25% were separated into minor groups without any evident relationship between δ-PCR profile and territory, year or source of isolation. However, in six cases a similar strain appeared at the harvesting time both in Franciacorta and Oltrepò Pavese areas, whereas surprisingly no strain was reisolated in the same vineyard or cellar for consecutive years.
Collapse
Affiliation(s)
- Ileana Vigentini
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Vincenzo Fabrizio
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Valdetara
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | - Claudia Picozzi
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Serena Imazio
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|