101
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
102
|
Khan MIH, An X, Dai L, Li H, Khan A, Ni Y. Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Curr Med Chem 2019; 26:2502-2513. [DOI: 10.2174/0929867325666180927100817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 12/27/2022]
Abstract
The development of innovative drug delivery systems, versatile to different drug characteristics
with better effectiveness and safety, has always been in high demand. Chitosan, an
aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of
the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives
can be used for direct compression tablets, as disintegrant for controlled release or for improving
dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with
enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and
ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere
technology in hydrogel formulation is particularly relevant to pharmaceutical product development.
This review highlights the suitability and future of chitosan in drug delivery with special
attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable
non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation
have made this polymer an attractive candidate for developing novel drug delivery systems
including various advanced therapeutic applications such as gene delivery, DNA based drugs,
organ specific drug carrier, cancer drug carrier, etc.
Collapse
Affiliation(s)
- Md. Iqbal Hassan Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Xingye An
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Lei Dai
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Hailong Li
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Avik Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
103
|
Sawarkar SP, Deshpande SG, Bajaj AN, Soni PS, Pandit P, Nikam VS. Potential of low molecular weight natural polysaccharides for colon targeted formulation and its evaluation in human by Gamma Scintigraphy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00447-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
104
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
105
|
Bostanudin MF, Arafat M, Sarfraz M, Górecki DC, Barbu E. Butylglyceryl Pectin Nanoparticles: Synthesis, Formulation and Characterization. Polymers (Basel) 2019; 11:E789. [PMID: 31052540 PMCID: PMC6571649 DOI: 10.3390/polym11050789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pectin is a polysaccharide with very good gel forming properties that traditionally has found important applications in foods and pharmaceutical industries. Although less studied, chemical modifications of pectin leading to a decrease in its hydrophilicity can be useful for the development of novel drug carriers. To this aim, butylglyceryl pectins (P-OX4) were synthesized via functionalization with n-butylglycidyl ether and subsequently formed into nanoparticles. Chromatographic, spectroscopic, and thermal analytical methods were employed to characterize the novel butylglyceryl pectins (P-OX4) obtained, prior to their formulation into nanoparticles via nanoprecipitation. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy confirmed a degree of modification in these materials in the range 10.4-13.6%, and thermal stability studies indicated an increase in both the thermal decomposition onset and glass transition temperature values (compared to those of the original pectin). An increase in the molecular weight and a decrease in the viscosity of P-OX4, when compared to the starting material, were also observed. The resulting nanoformulations were investigated in terms of particle morphology, size and stability, and it was found that particles were roughly spherical, with their size below 300 nm, and a negative zeta potential (-20 to -26 mV, indicating good stability). Having demonstrated the ability to load Doxorubicin at the level of 10%, their potential in drug delivery applications warrants further investigations.
Collapse
Affiliation(s)
- Mohammad F Bostanudin
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 112612, UAE.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| | - Mosab Arafat
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, UAE.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, UAE.
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| |
Collapse
|
106
|
Evaluation of cytotoxicity, hemocompatibility and spectral studies of chitosan assisted polyurethanes prepared with various diisocyanates. Int J Biol Macromol 2019; 129:116-126. [DOI: 10.1016/j.ijbiomac.2019.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
|
107
|
Liu C, Cui Y, Pi F, Cheng Y, Guo Y, Qian H. Extraction, Purification, Structural Characteristics, Biological Activities and Pharmacological Applications of Acemannan, a Polysaccharide from Aloe vera: A Review. Molecules 2019; 24:molecules24081554. [PMID: 31010204 PMCID: PMC6515206 DOI: 10.3390/molecules24081554] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Aloe vera is a medicinal plant species of the genus Aloe with a long history of usage around the world. Acemannan, considered one of the main bioactive polysaccharides of Aloe vera, possesses immunoregulation, anti-cancer, anti-oxidation, wound healing and bone proliferation promotion, neuroprotection, and intestinal health promotion activities, among others. In this review, recent advancements in the extraction, purification, structural characteristics and biological activities of acemannan from Aloe vera were summarized. Among these advancements, the structural characteristics of purified polysaccharides were reviewed in detail. Meanwhile, the biological activities of acemannan from Aloe vera determined by in vivo, in vitro and clinical experiments are summarized, and possible mechanisms of these bioactivities were discussed. Moreover, the latest research progress on the use of acemannan in dentistry and wound healing was also summarized in details. The structure-activity relationships of acemannan and its medical applications were discussed. Finally, new perspectives for future research work on acemannan were proposed. In conclusion, this review summarizes the extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, and provides information for the industrial production and possible applications in dentistry and wound healing in the future.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yan Cui
- Institute of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China.
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
108
|
Jalababu R, Satya Veni S, Reddy KVNS. Development, characterization, swelling, and network parameters of amino acid grafted guar gum based pH responsive polymeric hydrogels. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1594058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. Jalababu
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - S. Satya Veni
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - K. V. N. S. Reddy
- Department of Chemistry, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
109
|
Concomitant and controlled release of furazolidone and bismuth(III) incorporated in a cross-linked sodium alginate-carboxymethyl cellulose hydrogel. Int J Biol Macromol 2019; 126:359-366. [DOI: 10.1016/j.ijbiomac.2018.12.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
|
110
|
Martínez-López A, Carvajal-Millan E, Sotelo-Cruz N, Micard V, Rascón-Chu A, López-Franco Y, Lizardi-Mendoza J, Canett-Romero R. Enzymatically cross-linked arabinoxylan microspheres as oral insulin delivery system. Int J Biol Macromol 2019; 126:952-959. [DOI: 10.1016/j.ijbiomac.2018.12.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
111
|
Singh B, Singh B. Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations. Int J Biol Macromol 2019; 127:450-459. [DOI: 10.1016/j.ijbiomac.2019.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 11/17/2022]
|
112
|
Dexamethasone-Loaded Chitosan Beads Coated with a pH-Dependent Interpolymer Complex for Colon-Specific Drug Delivery. INT J POLYM SCI 2019. [DOI: 10.1155/2019/4204375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chitosan (CS) microparticles loaded with dexamethasone were prepared by spray drying, followed by coating with a pH-dependent interpolymer complex based on poly(acrylic acid)/poly(vinyl pyrrolidone) using an water-in-oil emulsion technique. The aim of this research was to evaluate the influence of PAA/PVP coating on the release of dexamethasone from loaded chitosan microparticles, in simulated gastric fluid (SGF, pH=1.2) and simulated intestinal fluid (SIF, pH=6.8). The release of dexamethasone from uncoated loaded CS microparticles was similar in both fluids, and almost complete release of the drug was achieved in 5 hours. In the coated loaded CS microparticles, the release of dexamethasone in SGF was reduced considerably, very close to zero, due to the interpolymer complex formation at low pH, demonstrating that this system applied as pH-dependent coating has a potential as a site-specific delivery system.
Collapse
|
113
|
Dadou SM, El-Barghouthi MI, Antonijevic MD, Chowdhry BZ, Badwan AA. Elucidation of the Controlled-Release Behavior of Metoprolol Succinate from Directly Compressed Xanthan Gum/Chitosan Polymers: Computational and Experimental Studies. ACS Biomater Sci Eng 2019; 6:21-37. [DOI: 10.1021/acsbiomaterials.8b01028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suha M. Dadou
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Musa I. El-Barghouthi
- Department of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
- Department of Chemistry, Isra University, Amman 11622, Jordan
| | - Milan D. Antonijevic
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Babur Z. Chowdhry
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Adnan A. Badwan
- Research and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Company (PLC), P.O. Box
94, Naor 11710, Jordan
| |
Collapse
|
114
|
Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Lomstein Pedersen B. In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics 2019; 11:E95. [PMID: 30813323 PMCID: PMC6410320 DOI: 10.3390/pharmaceutics11020095] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
The primary focus of this review is a discussion regarding in vitro media for colon release, but we also give a brief overview of colon delivery and the colon microbiota as a baseline for this discussion. The large intestine is colonized by a vast number of bacteria, approximately 1012 per gram of intestinal content. The microbial community in the colon is complex and there is still much that is unknown about its composition and the activity of the microbiome. However, it is evident that this complex microbiota will affect the release from oral formulations targeting the colon. This includes the release of active drug substances, food supplements, and live microorganisms, such as probiotic bacteria and bacteria used for microbiota transplantations. Currently, there are no standardized colon release media, but researchers employ in vitro models representing the colon ranging from reasonable simple systems with adjusted pH with or without key enzymes to the use of fecal samples. In this review, we present the pros and cons for different existing in vitro models. Furthermore, we summarize the current knowledge of the colonic microbiota composition which is of importance to the fermentation capacity of carbohydrates and suggest a strategy to choose bacteria for a new more standardized in vitro dissolution medium for the colon.
Collapse
Affiliation(s)
- Marie Wahlgren
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Magdalena Axenstrand
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Åsa Håkansson
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Ali Marefati
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Betty Lomstein Pedersen
- Ferring International PharmaScience Center (IPC), Kay Fiskers Plads 11, 2300 Copenhagen, Denmark.
| |
Collapse
|
115
|
Haseeb MT, Khaliq NU, Yuk SH, Hussain MA, Bashir S. Linseed polysaccharides based nanoparticles for controlled delivery of docetaxel: Design, in vitro drug release and cellular uptake. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
116
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
117
|
Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: A novel and versatile approach. Food Res Int 2019; 116:1163-1172. [DOI: 10.1016/j.foodres.2018.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022]
|
118
|
Birajdar RP, Patil SB, Alange VV, Kulkarni RV. Synthesis and characterization of electrically responsive poly(acrylamide)-grafted-chondroitin sulfate hydrogel for transdermal drug delivery application. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ravindra P. Birajdar
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur, India
| | - Sudha B. Patil
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur, India
| | - Vijaykumar V. Alange
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur, India
| | - Raghavendra V. Kulkarni
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur, India
| |
Collapse
|
119
|
Yang Y, Wang T, Guan J, Wang J, Chen J, Liu X, Qian J, Xu X, Qu W, Huang Z, Zhan C. Oral Delivery of Honokiol Microparticles for Nonrapid Eye Movement Sleep. Mol Pharm 2019; 16:737-743. [PMID: 30652875 DOI: 10.1021/acs.molpharmaceut.8b01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Honokiol (HNK) is a small-molecule lignin extracted from Magnolia Officinalis, demonstrating high potency in promoting nonrapid eye movement (NREM) sleep by modulating the benzodiazepine site of the GABAA receptor. However, the clinical use of HNK in the treatment of insomnia is restricted by its extremely low oral bioavailability. In the present work, enhanced oral bioavailability of HNK was achieved by loading it into poly lactide-glycolide acid microparticles (HNK-MP). After oral administration, HNK-MP demonstrated 15-fold increase of AUC0-12 h in comparison to free HNK. The maximum blood concentration ( Cmax) of HNK in HNK-MP-treated rats was 3.6 μg/mL at 2 h after oral administration, which was 6.5-fold of that in free HNK-treated rats. Oral administration of HNK-MP (20 mg/kg) efficiently increased NREM sleep by 60% by enhancing the transition from wakefulness to NREM sleep in rats. The biosafety of HNK-MP was assessed in vivo, and no damage occurred in the gastrointestinal tract. The present study provides a promising oral HNK formulation for the treatment of insomnia.
Collapse
Affiliation(s)
| | | | | | | | - Junyi Chen
- School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering , Chongqing Chemical Industry Vocational College , Chongqing 401220 , China
| | - Jun Qian
- School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | | | - Weimin Qu
- State Key Laboratory of Medical Neurobiology, and Institutes of Brain Science and Collaborative Innovation Center for Brain Science , Fudan University , Shanghai 200032 , China
| | - Zhili Huang
- State Key Laboratory of Medical Neurobiology, and Institutes of Brain Science and Collaborative Innovation Center for Brain Science , Fudan University , Shanghai 200032 , China
| | - Changyou Zhan
- School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| |
Collapse
|
120
|
Affiliation(s)
- Wahid Khan
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Ester Abtew
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Sheela Modani
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Abraham J. Domb
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| |
Collapse
|
121
|
Chen Z, Cheng L, He Y, Wei X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int J Biol Macromol 2018; 120:2076-2085. [DOI: 10.1016/j.ijbiomac.2018.09.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
|
122
|
Ferreira Tomaz A, Sobral de Carvalho SM, Cardoso Barbosa R, L Silva SM, Sabino Gutierrez MA, B de Lima AG, L Fook MV. Ionically Crosslinked Chitosan Membranes Used as Drug Carriers for Cancer Therapy Application. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2051. [PMID: 30347857 PMCID: PMC6213910 DOI: 10.3390/ma11102051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
The aim of this paper was to prepare, by the freeze-drying method, ionically crosslinked chitosan membranes with different contents of pentasodium tripolyphosphate (TPP) and loaded with 1,4-naphthoquinone (NQ14) drug, in order to evaluate how the physical crosslinking affects NQ14 release from chitosan membranes for cancer therapy application. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), swelling degree, and through in vitro drug release and cytotoxicity studies. According to the results, the molecular structure, porosity and hydrophilicity of the chitosan membranes were affected by TPP concentration and, consequently, the NQ14 drug release behavior from the membranes was also affected. The release of NQ14 from crosslinked chitosan membranes decreased when the cross-linker TPP quantity increased. Thus, depending on the TPP amount, the crosslinked chitosan membranes would be a potential delivery system to control the release of NQ14 for cancer therapy application. Lastly, the inhibitory potential of chitosan membranes ionically crosslinked with TPP and loaded with NQ14 against the B16F10 melanoma cell line was confirmed through in vitro cytotoxicity studies assessed via MTT assay. The anti-proliferative effect of prepared membranes was directly related to the amount of cross-linker and among all membranes prepared, such that one crosslinked with 0.3% of TPP may become a potential delivery system for releasing NQ14 drug for cancer therapy.
Collapse
Affiliation(s)
- Alecsandra Ferreira Tomaz
- Postgraduate Program in Process Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Sandra Maria Sobral de Carvalho
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Rossemberg Cardoso Barbosa
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Suédina M L Silva
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | | | - Antônio Gilson B de Lima
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Marcus Vinícius L Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| |
Collapse
|
123
|
Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 2018; 122:137-148. [PMID: 30342131 DOI: 10.1016/j.ijbiomac.2018.10.120] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Currently, diabetes mellitus (DM) accelerated diabetic foot ulcer (DFU) remains vivacious health problem related with delayed healing and high amputation rates which leads to enormous clinical obligation. Keeping in view of the foregoing, researchers have been made in their efforts to develop novel materials which accelerate delayed wound healing in the diabetic patient and reduce the adversative influences of DFUs. The most prominent materials used for the wound healing application have biocompatibility, low cytotoxicity, excellent biodegradable properties, and antimicrobial activity properties. Utilization of nanoparticles has emerged as a protruding scientific and technological revolution in controlling DFUs. Biopolymers in combination with bioactive nanoparticles having antimicrobial, antibacterial, and anti-inflammatory properties have great potential in wound care to enhance the healing process of diabetic wound infectious. Combination of antibacterial nanoparticles like silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), copper nanoparticles (CuNPs) etc. with polymeric matrix could efficiently inhibit bacterial growth and at the same time fastens the healing process of a wound. This review briefed the recent development of different natural polymers and antibacterial nanoparticles to mitigate the diabetes mellitus based DFU.
Collapse
Affiliation(s)
- Veena Vijayakumar
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Sushanta K Samal
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India.
| | - Smita Mohanty
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Sanjay K Nayak
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
124
|
Ghibaudo F, Gerbino E, Hugo A, Simões M, Alves P, Costa B, Campo Dallˊ Orto V, Gómez-Zavaglia A, Simões P. Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids Surf B Biointerfaces 2018; 170:538-543. [DOI: 10.1016/j.colsurfb.2018.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/09/2018] [Accepted: 06/22/2018] [Indexed: 11/29/2022]
|
125
|
Das S, Subuddhi U. Guar gum–poly(N-isopropylacrylamide) smart hydrogels for sustained delivery of 5-fluorouracil. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2526-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
126
|
Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater 2018; 9:E50. [PMID: 30134538 PMCID: PMC6165026 DOI: 10.3390/jfb9030050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Giulia Ghiacci
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
127
|
Abstract
Phenolic compounds, while widely recognized for their biological potential, when added into food matrixes may interact with food constituents. One example of this is the interaction between phenolic compounds and proteins, that may result in the formation of complexes and alter the bioavailability of both phenolic compounds and the nutrient availability. Moreover, when adding compounds to improve the functionality of a food matrix, these interactions may compromise the perceived benefits of the additions. Nanoencapsulation has been considered one of the means to circumvent these interactions, as they may function as a physical barrier between the phenolic compounds and the matrix (preventing not only the loss of bioactivity, but eventual sensorial alterations of the foods), protect phenolic compounds through the gastrointestinal tract, and may enhance phenolic absorption through cellular endocytosis. However, despite these advantages the food industry is still limited in its nanotechnological solutions, as special care must be taken to use food-grade encapsulants which will not pose any deleterious effect towards human health. Therefore, this review aims to provide an encompassing view of the existing advantages and limitations of nanotechnology, associated with the inclusion of phenolic compounds in dairy beverages.
Collapse
|
128
|
Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Samantha J Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
129
|
Seidi F, Jenjob R, Phakkeeree T, Crespy D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J Control Release 2018; 284:188-212. [DOI: 10.1016/j.jconrel.2018.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
130
|
Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation. Saudi Pharm J 2018; 27:71-81. [PMID: 30662309 PMCID: PMC6323150 DOI: 10.1016/j.jsps.2018.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Background Pterostilbene has a proven chemopreventive effect for colon carcinogenesis but suffers low bioavailability limitations and therefore unable to reach the colonic tissue. Objective and methodology To overcome the issue of low bioavailability, pterostilbene was formulated into an oral colon targeted beads by ionic gelation method using pectin and zinc acetate. Optimization was carried out by 23 factorial design whereby the effect of pectin concentration (X1), zinc acetate concentration (X2) and pterostilbene:pectin ratio (X3) were studied on entrapment efficiency (Y1) and in vitro drug release till 24 h (Y2). The optimized beads were characterized for shape and size, swelling and surface morphology. The optimized beads were uniformly coated with Eudragit S-100 using fluidized bed coater. Optimized coated beads were characterized for in vitro drug release till 24 h and surface morphology. Pharmacokinetic and organ distribution study were performed in rats to ascertain the release of pterostilbene in colon. Results The optimized formulation comprised of 2% w/v of pectin concentration (X1), 2% w/v of zinc acetate concentration (X2) and 1:4 of pterostilbene:pectin ratio (X3), which showed a satisfactory entrapment efficiency (64.80%) and in vitro release (37.88%) till 24 h. The zinc pectinate beads exhibited sphericity, uniform size distribution, adequate swelling and rough surface. The optimized coated beads achieved 15% weight gain, displayed smooth surface and optimum drug release. Pterostilbene from optimized coated beads appeared in the plasma at 14 h and reached the Cmax at 22 h (Tmax), whereas plain pterostilbene exhibited Tmax of 3 h. Discussion and conclusion Thus, larger distribution of pterostilbene was obtained in the colonic tissue compared to stomach and small intestinal tissues. Thus, delayed Tmax and larger distribution of pterostilbene in colonic tissue confirmed the targeting of beads to colon.
Collapse
|
131
|
Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:367-374. [PMID: 30006023 DOI: 10.1016/j.joim.2018.07.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Curcumin is a widely studied natural compound which has shown tremendous in vitro therapeutic potential. Despite that, the clinical efficacy of the native curcumin is weak due to its low bioavailability and high metabolism in the gastrointestinal tract. During the last decade, researchers have come up with different formulations with a focus on improving the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with the varying range of enhanced bioavailability. The purpose of this review is to collate the published clinical studies of curcumin products with improved bioavailability over conventional (unformulated) curcumin. Based on the literature search, 11 curcumin formulations with available human bioavailability and pharmacokinetics data were included in this review. Further, the data on clinical study design, analytical method, pharmacokinetic parameters and other relevant details of each formulation were extracted. Based on a review of these studies, it is evident that better bioavailability of formulated curcumin products is mostly attributed to improved solubility, stability, and possibly low first-pass metabolism. The review hopes to provide a quick reference guide for anyone looking information on these bioavailable curcumin formulations. Based on the published reports, NovaSol® (185), CurcuWin® (136) and LongVida® (100) exhibited over 100-fold higher bioavailability relative to reference unformulated curcumin. Suggested mechanisms accounting for improved bioavailability of the formulations and details on the bioanalysis methods are also discussed.
Collapse
Affiliation(s)
- Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
132
|
Chen J, Li X, Chen L, Xie F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr Polym 2018; 191:242-254. [DOI: 10.1016/j.carbpol.2018.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022]
|
133
|
Controlled drug release behavior of 5-aminosalicylic acid using polyacrylamide grafted oatmeal (OAT-g-PAM): a pH-sensitive drug carrier. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2407-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
134
|
Sinha P, Udhumansha U, Rathnam G, Ganesh M, Jang HT. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int J Biol Macromol 2018; 117:840-850. [PMID: 29807085 DOI: 10.1016/j.ijbiomac.2018.05.181] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
The present study aims to investigate the efficacy of the novel biopolymeric complex multiparticulate system consisting of chitosan succinate and alginate for the capecitabine-targeted delivery to colon cancer. A Box-Behnken design was used to optimize the CS-SA beads by considering the effect of three factors: CS (A;X1), CaCl2 (B;X2), and SA (C;X3), on the response variables Y1 (EE), Y2 (Size), and Y3 (Release). The results of response surface plots allowed an optimized bead to be identified with high drug EE and maximum drug release at colon. The swelling index showed that the beads reached a maximum good swelling at pH 7.4, and nil or little swelling at acidic pH, which proves that the beads completely protect the release of drug. The in vitro release portrayed a maximum release at pH 7.4, due to the large swelling force that was created by electrostatic repulsion between the ionized carboxylic acid groups of the CS-SA network. In vitro cytotoxicity assay (MTT) of CS-SA beads shows inhibition of the proliferation of HT-29 tumour cell to induce apoptosis over a longer period of time. The above results show that CS-SA beads prolong the release of CP in the colonic region, and also enhance antitumor efficacy.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pharmaceutics, C.L. Baid Metha College of Pharmacy, Chennai, India
| | - Ubaidulla Udhumansha
- Department of Pharmaceutics, C.L. Baid Metha College of Pharmacy, Chennai, India.
| | - Grace Rathnam
- Department of Pharmaceutics, C.L. Baid Metha College of Pharmacy, Chennai, India
| | - Mani Ganesh
- Department of Chemical Engineering, Hanseo University, Seosan-si, 356 706, South Korea
| | - Hyun Tae Jang
- Department of Chemical Engineering, Hanseo University, Seosan-si, 356 706, South Korea
| |
Collapse
|
135
|
Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018; 16:E179. [PMID: 29882898 PMCID: PMC6024944 DOI: 10.3390/md16060179] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/20/2018] [Indexed: 02/04/2023] Open
Abstract
Current trends in the application of nanomaterials are emerging in the nano-biotechnological sector for development of medicines. Cyanobacteria (blue-green algae) are photosynthetic prokaryotes that have applications to human health and numerous biological activities as dietary supplements. Cyanobacteria produce biologically active and chemically diverse compounds such as cyclic peptides, lipopeptides, fatty acid amides, alkaloids, and saccharides. More than 50% of marine cyanobacteria are potentially exploitable for the extraction of bioactive substances, which are effective in killing cancer cells by inducing apoptotic death. The current review emphasizes that not even 10% of microalgal bioactive components have reached commercialized platforms due to difficulties related to solubility. Considering these factors, they should be considered as a potential source of natural products for drug discovery and drug delivery approaches. Nanoformulations employing a wide variety of nanoparticles and their polymerized forms could be an emerging approach to the development of new cancer drugs. This review highlights recent research on microalgae-based medicines or compounds as well as their biomedical applications. This review further discusses the facts, limitations, and commercial market trends related to the use of microalgae for industrial and medicinal purposes.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Sung-Min Kang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Seung Kyu Hwang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Korea.
| | - Yun Suk Huh
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| |
Collapse
|
136
|
De Paula WX, Denadai ÂML, Braga ANG, Shastri VP, Pinheiro SVB, Frezard F, Santos RAS, Sinisterra RD. A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan. Drug Dev Ind Pharm 2018; 44:1498-1505. [PMID: 29683352 DOI: 10.1080/03639045.2018.1467923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.
Collapse
Affiliation(s)
- Washington X De Paula
- a Laboratório de Encapsulamento Molecular e Biomateriais (LEMB), Chemistry Department, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Ângelo M L Denadai
- b Laboratório de Nanotecnologia dos Fluidos Complexos, Pharmacy Department, Universidade Federal de Juiz de Fora (UFJF) , Valadares , MG , Brazil
| | - Aline N G Braga
- c Biophysics and Physiology Department , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - V Prasad Shastri
- d Department of Chemistry , Pharmacy, and Earth Sciences, Institute for Macromolecular Chemistry and BIOSS Centre for Biological Signalling Studies, University of Freiburg , Freiburg , Germany
| | - Sérgio V B Pinheiro
- c Biophysics and Physiology Department , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Frederic Frezard
- c Biophysics and Physiology Department , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Robson A S Santos
- c Biophysics and Physiology Department , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Ruben D Sinisterra
- a Laboratório de Encapsulamento Molecular e Biomateriais (LEMB), Chemistry Department, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| |
Collapse
|
137
|
Huang W, Deng H, Jin S, Ma X, Zha K, Xie M. The isolation, structural characterization and anti-osteosarcoma activity of a water soluble polysaccharide from Agrimonia pilosa. Carbohydr Polym 2018; 187:19-25. [DOI: 10.1016/j.carbpol.2018.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/02/2023]
|
138
|
Li Y, Xu F, Zheng M, Xi X, Cui X, Han C. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects. Int J Biol Macromol 2018; 111:894-902. [DOI: 10.1016/j.ijbiomac.2018.01.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
|
139
|
Singh B, Kumar A. Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties. Int J Biol Macromol 2018; 108:477-488. [DOI: 10.1016/j.ijbiomac.2017.12.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
|
140
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
141
|
Mohd Zuki SA, Abd Rahman N, Abu Bakar NF. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2018; 334:012046. [DOI: 10.1088/1757-899x/334/1/012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
142
|
Zhao L, Sun D, Lu H, Han B, Zhang G, Guan Q. In vitro characterization of pH-sensitive Bletilla Striata polysaccharide copolymer micelles and enhanced tumour suppression in vivo. J Pharm Pharmacol 2018; 70:797-807. [PMID: 29485227 DOI: 10.1111/jphp.12888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/03/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES A system of stearic acid (SA)-modified Bletilla striata polysaccharide (BSP) micelles was developed for the targeted delivery of docetaxel (DTX) as a model anticancer drug (DTX-SA-BSP). METHODS Particle size, zeta potential and DTX release in vitro were measured in release media at different pH values. Quantitative cellular uptake, cytotoxicity assay in vitro and antitumour efficacy in vivo were also evaluated. Cell apoptosis was assessed by flow cytometry. KEY FINDINGS DTX-SA-BSP copolymer micelles displayed pH-dependent properties in the respects of particle size, zeta potential and in vitro release behaviour ranging from pH 5.0 to pH 7.4. DTX-SA-BSP copolymer micelles showed higher release rate at pH 5.0 than that at pH 6.0 and 7.4. In vitro cytotoxic effect of DTX-SA-BSP copolymer micelles was higher than that of DTX injection. The results of high-performance liquid chromatography determination confirmed that DTX cellular uptake of micelles was enhanced compared with that of DTX injection. Anticancer activity in vivo further confirmed the enhanced tumour targeting and anticancer efficacy of DTX-SA-BSP copolymer micelles. CONCLUSIONS The above results show that DTX-SA-BSP copolymer micelles have pH sensitivity. SA-BSP copolymers are a promising carrier for delivering hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Lichun Zhao
- School of Pharmacy, Jilin University, Changchun, China
| | - Dandan Sun
- School of Pharmacy, Jilin University, Changchun, China
| | - Haibin Lu
- School of Pharmacy, Jilin University, Changchun, China
| | - Bing Han
- School of Pharmacy, Jilin University, Changchun, China
| | | | | |
Collapse
|
143
|
Zhang K, Yang W, Yin X, Chen Y, Liu Y, Le J, Xu B. Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution. Carbohydr Polym 2018; 181:191-199. [DOI: 10.1016/j.carbpol.2017.10.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/16/2017] [Accepted: 10/21/2017] [Indexed: 11/29/2022]
|
144
|
|
145
|
Sakthivel M, Franklin D, Sudarsan S, Chitra G, Sridharan T, Guhanathan S. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
146
|
Hemamalini T, Giri Dev VR. Comprehensive review on electrospinning of starch polymer for biomedical applications. Int J Biol Macromol 2018; 106:712-718. [DOI: 10.1016/j.ijbiomac.2017.08.079] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
147
|
Ghibaudo F, Gerbino E, Campo Dall' Orto V, Gómez-Zavaglia A. P ectin-iron capsules: Novel system to stabilise and deliver lactic acid bacteria. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
148
|
Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv Transl Res 2017; 6:648-659. [PMID: 27807769 DOI: 10.1007/s13346-016-0337-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While eye drops account for the majority of ophthalmic formulation for drug delivery, their efficiency is limited by rapid pre-corneal loss. In this study, we investigate nanogel suspensions in order to improve the topical ocular therapy by reducing dosage and frequency of administration. We synthesized self-assembling nanogels of 140 nm by grafting side chains of poly(N-tert-butylacrylamide) (PNtBAm) on methylcellulose via cerium ammonium nitrate. Successful grafting of PNtBAm onto methylcellulose (MC) was confirmed by both NMR and ATR. Synthesized molecules (MC-g-PNtBAm) self-assembled in water driven by hydrophobic interaction of the grafted side chains creating colloid solutions. Materials were synthesized by changing feed ratios of acid, initiator and monomer in order to control the degree of hydrophobic modification. The nanogels were tested for different degrees of grafting. Viability studies performed with HCE cells testified to the biocompatibility of poly(N-tert-butylacrylamide) grafted methylcellulose nanogels. Dexamethasone was entrapped with an efficiency superior to 95 % and its release presented minimal burst phase. Diffusion of drug from the nanogels was found to be delayed by increasing the degree of grafting. The release profile of the entrapped compound from the MC-g-PNtBAm nanogels can thus be tuned by simply adjusting the degree of hydrophobic modification. MC-g-PNtBAm nanogels present promising properties for ocular drug delivery.
Collapse
|
149
|
Liu CM, He XH, Liang RH, Liu W, Guo WL, Chen J. Relating physicochemical properties of alginate-HMP complexes to their performance as drug delivery systems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2242-2254. [DOI: 10.1080/09205063.2017.1393176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cheng-mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiao-hong He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Rui-hong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wen-Li Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
150
|
Chen Q, Shao X, Ling P, Liu F, Han G, Wang F. Recent advances in polysaccharides for osteoarthritis therapy. Eur J Med Chem 2017; 139:926-935. [DOI: 10.1016/j.ejmech.2017.08.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/24/2022]
|