101
|
Lütolf S, Radtke F, Aguet M, Suter U, Taylor V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 2002; 129:373-85. [PMID: 11807030 DOI: 10.1242/dev.129.2.373] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.
Collapse
Affiliation(s)
- Simone Lütolf
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
102
|
|
103
|
Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001; 69:135-44. [PMID: 11798067 DOI: 10.1046/j.1432-0436.2001.690207.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Delta-Notch signalling regulates cell-fate choices in a variety of tissues during development. We report the expression of Delta4 (D14) in arterial endothelium during mouse embryogenesis and in the endothelium of tumor blood vessels. The expression of D14 in the mouse begins at 8 dpc in the dorsal aortae, umbilical artery and the heart. Subsequent expression is restricted to smaller vessels and capillaries and is reduced in most adult tissues. However, it is high in the vasculature of xenograft human tumors in the mouse, in endogenous human tumors and is regulated by hypoxia. These data implicate D14 and the Notch signalling pathway in angiogenesis and suggest possible new targets for antiangiogenic tumor therapy.
Collapse
Affiliation(s)
- C Mailhos
- Developmental Genetics, Imperial Cancer Research Fund, London, England.
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
Although Notch proteins rely upon presenilins for activation and can modulate neuritic architecture, their role in aging adults and Alzheimer's disease is unknown. Here we examine Drosophila in which Notch function was selectively diminished in adulthood. An outcrossing strategy was employed to reduce the effect of recessive modifiers of lifespan, and a temperature-sensitive allele or inducible dominant-negative Notch transgenes were used to reduce Notch function. A progressive neurological syndrome with loss of flight and shortened lifespan was observed in adults with compromised Notch function. Notch protein persists in aging adult Drosophila brains. However, no evidence of neurodegeneration in the central nervous system was detected. We conclude that Notch activity is constitutively required in the adult fly for neurological function.
Collapse
Affiliation(s)
- A Presente
- Department of Molecular Pharmacology, Northwestern University School of Medicine, 303 E. Chicago Ave. MC S215, Chicago, IL 60611, USA
| | | | | |
Collapse
|
105
|
Abstract
In human interfollicular epidermis stem cells lie in clusters surrounded by their differentiated daughters, transit amplifying cells, an arrangement that reflects differences in cell cohesiveness and motility. Keratinocytes expressing a dominant negative Delta1 mutant, Delta(T), lacking most of the cytoplasmic domain, acquired the motile behaviour of transit cells while retaining their stem cell identity. Conversely, overexpression of Delta1 promoted keratinocyte cohesiveness. The adhesive effects of Delta1 and Delta(T) were independent of SuH-dependent Notch signalling. Delta(T) increased motility and spreading of individual keratinocytes and stimulated lamellipodia formation. Delta and Delta(T) colocalised with cortical actin and redistributed on Latrunculin treatment. We propose that Delta promotes keratinocyte cohesiveness by restricting motility and discuss potential mechanisms by which Delta could interact with the actin cytoskeleton.
Collapse
Affiliation(s)
- S Lowell
- Keratinocyte Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
106
|
Small D, Kovalenko D, Kacer D, Liaw L, Landriscina M, Di Serio C, Prudovsky I, Maciag T. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J Biol Chem 2001; 276:32022-30. [PMID: 11427524 DOI: 10.1074/jbc.m100933200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously demonstrated that the expression of the soluble extracellular domain of the transmembrane ligand for Notch receptors, Jagged 1 (sJ1), in NIH 3T3 cells results in the formation of a matrix-dependent chord-like phenotype, the loss of contact inhibition of growth, and an inhibition of pro-alpha 1(I) collagen expression. In an effort to define the mechanism by which sJ1 induces this phenotype, we report that sJ1 transfectants display biochemical and cytoskeletal alterations consistent with the activation of Src. Indeed, cotransfection of sJ1 transfectants with a dominant-negative mutant of Src resulted in the loss of matrix-dependent chord formation and correlated with the restoration of type I collagen expression and contact inhibition of growth. We also report that the sJ1-mediated induction of Src activity and related phenotypes, including chord formation, may result from the inhibition of endogenous Jagged 1-mediated Notch signaling since it was not possible to detect an sJ1-dependent induction of CSL-dependent transcription in these cells. Interestingly, NIH 3T3 cells transfected with dominant-negative (but not constitutively active) mutants of either Notch 1 or Notch 2 displayed a similar Src-related phenotype as the sJ1 transfectants. These data suggest that the ability of sJ1 to mediate chord formation is Src-dependent and requires the repression of endogenous Jagged 1-mediated Notch signaling, which is tolerant to the destabilization of the actin cytoskeleton, a mediator of cell migration.
Collapse
Affiliation(s)
- D Small
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Kostyszyn B, Cowburn RF, Seiger A, KjAEldgaard A, Sundström E. Expression of presenilin-1 and Notch-1 receptor in human embryonic CNS. Neuroscience 2001; 103:885-98. [PMID: 11301199 DOI: 10.1016/s0306-4522(01)00045-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vitro studies have shown that the Alzheimer's disease-related presenilin-1 protein can mediate Notch-1 receptor cleavage during signalling. In the present study, we compared the distribution of presenilin-1 and Notch-1 receptor immunoreactivities in human embryonic CNS tissue during the first trimester of development. Our aim was to gain insight into whether these proteins are likely to interact functionally during human fetal brain development. CNS material was obtained from routine abortions, cryosectioned and studied by means of immunohistochemistry with antibodies to presenilin-1 and Notch-1. At very early stages of embryonic development (four to five gestational weeks) intensive presenilin-1 immunoreactivity could be seen predominantly in neurites in the ventral horn of the spinal cord, where it overlapped with 200-kDa neurofilament immunoreactivity. Presenilin-1 immunoreactivity was also seen in neuroblasts of the ventricular zone of the tel- and mesencephalon, as well as of the brainstem. Notch-1 receptor appeared in neuronal and ependymal cells throughout the CNS. Seven- to eight-week CNS tissue showed similar patterns of presenilin-1 and Notch-1 receptor expression in the spinal cord and cerebral cortex as was seen at five weeks. Both proteins were localised in the neuroepithelial cell layer lining the ventricles, as well as in the cortical plate layer, where immunoreactivity was seen in the cell bodies. In addition, presenilin-1 immunoreactivity was seen in thin neurites in the subplate of the developing cortex. At 10 weeks, presenilin-1 immunoreactivity was reduced in the spinal cord. These results show that, although presenilin-1 and Notch-1 receptor are localised to the same differentiating cell populations in the human cerebral cortex, making a direct interaction possible, these proteins are otherwise confined to different neurons or neuronal compartments, suggesting a role for presenilin-1 during early CNS differentiation that does not involve Notch-1 receptor processing. Double staining for presenilin-1 in the endoplasmic reticulum and presenilin-1 in the Golgi showed overlap to some extent in investigated CNS regions, but not in neurites. This suggests that presenilin-1 function during neurogenesis is not exclusively correlated to protein processing within the endoplasmic reticulum and Golgi, but that presenilin-1 may also be involved in other processes, such as axonal and dendritic outgrowth or synaptic formation. In summary, our findings provide supportive evidence that the presenilin-1 protein is involved in the development and maturation of the human fetal CNS. The presence of presenilin-1 immunoreactivity in both the cell bodies and neurites of developing neurons strongly suggests divergent mechanisms of function for presenilin-1 during human brain development. These may include interactions with any of the Notch receptor proteins, as well as Notch-independent mechanisms.
Collapse
Affiliation(s)
- B Kostyszyn
- Karolinska Institutet, NEUROTEC, Department of Geriatric Medicine, Novum, S-141 86, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
108
|
Campos LS, Duarte AJ, Branco T, Henrique D. mDll1 and mDll3 expression in the developing mouse brain: role in the establishment of the early cortex. J Neurosci Res 2001; 64:590-8. [PMID: 11398182 DOI: 10.1002/jnr.1111] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Delta/Notch signalling system is involved in several developmental processes. During fly neurogenesis, Delta expression defines the fate of neuronal precursors and inhibits neighboring Notch-expressing cells from acquiring a neural fate, a process known as lateral inhibition. In vertebrates, recent evidence demonstrates that Notch activation can positively determine cell fate and affect neuronal process extension. Nevertheless, Delta-like expression patterns during brain development are relatively unknown. Using a transgenic mouse, which expresses LacZ under the mDll1 promoter, we show by immunofluorescence that in the developing telencephalon mDll1 is expressed in undifferentiated cells in close contact with radial glial cells. Based on in situ hybridization data on mDll1 and mDll3 mRNA expression and on the immunohistochemical detection of beta-galactosidase in the Dll1-lacZ transgenic mouse, we suggest that mDll1 and mDll3 are involved in the establishment of the early cortical plate and that mDll1-expressing cells are in close contact with radial glial cells, thereby modulating the latter population, which is known to express Notch1. Furthermore, we suggest that the decrease in mDll1 mRNA found toward the end of gestation could be related, first, to the slowing of neurogenesis and, second, to the differentiation of the radial glial cell population into astrocytes.
Collapse
Affiliation(s)
- L S Campos
- Developmental Biology Unit, Lisbon Medical School (FML), Lisbon, Portugal.
| | | | | | | |
Collapse
|
109
|
Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci 2001. [PMID: 11157069 DOI: 10.1523/jneurosci.21-03-00834.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in presenilin genes are linked to early onset familial Alzheimer's disease (FAD). Previous work in non-neuronal cells indicates that presenilin-1 (PS1) associates with cytoskeletal elements and that it facilitates Notch1 signaling. Because Notch1 participates in the control of neurite growth, cultured hippocampal neurons were used to investigate the cytoskeletal association of PS1 and its potential role during neuronal development. We found that PS1 associates with microtubules (MT) and microfilaments (MF) and that its cytoskeletal association increases dramatically during neuronal development. PS1 was detected associated with MT in the central region of neuronal growth cones and with MF in MF-rich areas extending into filopodia and lamellipodia. In differentiated neurons, PS1 mutations reduced the interaction of PS1 with cytoskeletal elements, diminished the nuclear translocation of the Notch1 intracellular domain (NICD), and promoted a marked increase in total neurite length. In developing neurons, PS1 overexpression increased the nuclear translocation of NICD and inhibited neurite growth, whereas PS1 mutations M146V, I143T, and deletion of exon 9 (D9) did not facilitate NICD nuclear translocation and had no effect on neurite growth. In cultures that were treated with amyloid beta (Abeta), PS1 mutations significantly increased neuritic dystrophy and AD-like changes in tau such as hyperphosphorylation, release from MT, and increased tau protein levels. We conclude that PS1 participates in the regulation of neurite growth and stabilization in both developing and differentiated neurons. In the Alzheimer's brain PS1 mutations may promote neuritic dystrophy and tangle formation by interfering with Notch1 signaling and enhancing pathological changes in tau.
Collapse
|
110
|
Abstract
Somites are transient embryonic structures that are formed from the unsegmented presomitic mesoderm (PSM) in a highly regulated process called somitogenesis. Somite, formation can be considered as the result of several sequential processes: generation of a basic metameric pattern, specification of the antero-posterior identity of each somite, and, finally, formation of the somitic border. Evidence for the existence of a molecular clock or oscillator linked to somitogenesis has been provided by the discovery of the rhythmic and dynamic expression in the PSM of c-hairy1 and lunatic fringe, two genes potentially related to the Notch signaling pathway. These oscillating expression patterns suggest that an important role of the molecular clock could reside in the temporal control of periodic Notch activation, ultimately resulting in the regular array of the somites. We discuss both the importance of the Notch signaling pathway in the molecular events of somitogenesis and its relationship with the molecular clock, and, finally, in that context we review a number of other genes known to play a role in somitogenesis.
Collapse
Affiliation(s)
- M Maroto
- Laboratoire de Génétique et de Physiologie du Développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la Méditerranée-AP de Marseille, France
| | | |
Collapse
|
111
|
Zilian O, Saner C, Hagedorn L, Lee HY, Säuberli E, Suter U, Sommer L, Aguet M. Multiple roles of mouse Numb in tuning developmental cell fates. Curr Biol 2001; 11:494-501. [PMID: 11412999 DOI: 10.1016/s0960-9822(01)00149-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.
Collapse
Affiliation(s)
- O Zilian
- Swiss Institute for Experimental Cancer Research (ISREC), 155 Chemin des Boveresses, CH-1066 Epalinges s/ Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 2001; 128:689-702. [PMID: 11171394 DOI: 10.1242/dev.128.5.689] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory bulb, neocortex and archicortex arise from a common pool of progenitors in the dorsal telencephalon. We studied the consequences of supplying excess Notch1 signal in vivo on the cellular and regional destinies of telencephalic precursors using bicistronic replication defective retroviruses. After ventricular injections mid-neurogenesis (E14.5), activated Notch1 retrovirus markedly inhibited the generation of neurons from telencephalic precursors, delayed the emergence of cells from the subventricular zone (SVZ), and produced an augmentation of glial progeny in the neo- and archicortex. However, activated Notch1 had a distinct effect on the progenitors of the olfactory bulb, markedly reducing the numbers of cells of any type that migrated there. To elucidate the mechanism of the cell fate changes elicited by Notch1 signals in the cortical regions, short- and long-term cultures of E14.5 telencephalic progenitors were examined. These studies reveal that activated Notch1 elicits a cessation of proliferation that coincides with an inhibition of the generation of neurons. Later, during gliogenesis, activated Notch1 triggers a rapid cellular proliferation with a significant increase in the generation of cells expressing GFAP. To examine the generation of cells destined for the olfactory bulb, we used stereotaxic injections into the early postnatal anterior subventricular zone (SVZa). We observed that precursors of the olfactory bulb responded to Notch signals by remaining quiescent and failing to give rise to differentiated progeny of any type, unlike cortical precursor cells, which generated glia instead of neurons. These data show that forebrain precursors vary in their response to Notch signals according to spatial and temporal cues, and that Notch signals influence the composition of forebrain regions by modulating the rate of proliferation of neural precursor cells.
Collapse
Affiliation(s)
- C B Chambers
- Departments of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
113
|
Redmond L, Ghosh A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol 2001; 11:111-7. [PMID: 11179880 DOI: 10.1016/s0959-4388(00)00181-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dendritic patterning exerts a profound influence on neuronal connectivity. Recent studies indicate that mammalian Notch receptors are expressed by postmitotic neurons and that Notch signaling has a considerable influence on dendritic growth and branching. Investigations into the intracellular effectors of dendritic development have revealed that dendritic growth and branching are differentially affected by activation of the Rho-family GTPases, RhoA, Rac1, and Cdc42. These observations suggest that the differential activation of Notch receptors and Rho-family GTPases by extracellular signals may be important in the generation of morphological diversity in the developing nervous system.
Collapse
Affiliation(s)
- L Redmond
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore MD 21205, USA.
| | | |
Collapse
|
114
|
Abstract
The Notch receptor signaling pathway is important for morphogenesis and development of many organs and tissues in most if not all multicellular species. The classical view holds that Notch signaling keeps cells in an undifferentiated state. Recently, however, this notion has been challenged in the nervous system by two sets of observations: Notch plays an active role in the differentiation of glial cells,(1-4) and Notch influences the length and organisation of neuronal processes.(5-7) In this review, we analyse these recent data and discuss how Notch signaling may be able to perform such quite different tasks during nervous system development. BioEssays 23:3-7, 2001.
Collapse
Affiliation(s)
- J Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Sweden
| | | |
Collapse
|
115
|
Hirsinger E, Malapert P, Dubrulle J, Delfini MC, Duprez D, Henrique D, Ish-Horowicz D, Pourquié O. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 2001; 128:107-16. [PMID: 11092816 DOI: 10.1242/dev.128.1.107] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.
Collapse
Affiliation(s)
- E Hirsinger
- Laboratoire de Génétique et de Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS-INSERM-Université de Méditerranée-AP de Marseille, Campus de Luminy - Case 907, France
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Irvin DK, Zurcher SD, Nguyen T, Weinmaster G, Kornblum HI. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J Comp Neurol 2001. [DOI: 10.1002/cne.1059] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
117
|
Delfini MC, Hirsinger E, Pourquié O, Duprez D. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 2000; 127:5213-24. [PMID: 11060246 DOI: 10.1242/dev.127.23.5213] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myogenic basic helix-loop-helix (bHLH) transcription factors, Myf5, MyoD, myogenin and MRF4, are unique in their ability to direct a program of specific gene transcription leading to skeletal muscle phenotype. The observation that Myf5 and MyoD can force myogenic conversion in non-muscle cells in vitro does not imply that they are equivalent. In this paper, we show that Myf5 transcripts are detected before those of MyoD during chick limb development. The Myf5 expression domain resembles that of Pax3 and is larger than that of MyoD. Moreover, Myf5 and Pax3 expression is correlated with myoblast proliferation, while MyoD is detected in post-mitotic myoblasts. These data indicate that Myf5 and MyoD are involved in different steps during chick limb bud myogenesis, Myf5 acting upstream of MyoD. The progression of myoblasts through the differentiation steps must be carefully controlled to ensure myogenesis at the right place and time during wing development. Because Notch signalling is known to prevent differentiation in different systems and species, we sought to determine whether these molecules regulate the steps occurring during chick limb myogenesis. Notch1 transcripts are associated with immature myoblasts, while cells expressing the ligands Delta1 and Serrate2 are more advanced in myogenesis. Misexpression of Delta1 using a replication-competent retrovirus activates the Notch pathway. After activation of this pathway, myoblasts still express Myf5 and Pax3 but have downregulated MyoD, resulting in inhibition of terminal muscle differentiation. We conclude that activation of Notch signalling during chick limb myogenesis prevents Myf5-expressing myoblasts from progressing to the MyoD-expressing stage.
Collapse
Affiliation(s)
- M C Delfini
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS (FRE2160) et du Collège de France, 94736 Nogent sur Marne Cedex, France
| | | | | | | |
Collapse
|
118
|
Abstract
First described in the developing nervous system, Semaphorin III/Neuropilin, Ephrin/Eph, and Delta/Notch signaling relays have now been implicated in the elaboration of the blood vessel network during embryogenesis.
Collapse
Affiliation(s)
- D T Shima
- Endothelial Cell Biology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | |
Collapse
|
119
|
Gao FB, Kohwi M, Brenman JE, Jan LY, Jan YN. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 2000; 28:91-101. [PMID: 11086986 DOI: 10.1016/s0896-6273(00)00088-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons elaborate dendrites with stereotypic branching patterns, thereby defining their receptive fields. These branching patterns may arise from properties intrinsic to the neurons or competition between neighboring neurons. Genetic and laser ablation studies reported here reveal that different multiple dendritic neurons in the same dorsal cluster in the Drosophila embryonic PNS do not compete with one another for dendritic fields. In contrast, when dendrites from homologous neurons in the two hemisegments meet at the dorsal midline in larval stages, they appear to repel each other. The formation of normal dendritic fields and the competition between dendrites of homologous neurons require the proper expression level of Flamingo, a G protein-coupled receptor-like protein, in embryonic neurons. Whereas Flamingo functions downstream of Frizzled in specifying planar polarity, Flamingo-dependent dendritic outgrowth is independent of Frizzled.
Collapse
Affiliation(s)
- F B Gao
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
120
|
|
121
|
Abstract
Neurons are polarized cells with an axon and a dendritic arbor extending from the soma. Although the molecular mechanisms underlying axon guidance are rapidly being elucidated, those that regulate the orientation, morphology, and elaboration of dendritic processes are largely unknown. Several recent papers address these issues, and propose a set of molecular strategies that control dendrite development. This review discusses these papers and what they reveal to us about how cell signaling orchestrates neuronal form and connectivity during development.
Collapse
Affiliation(s)
- S McFarlane
- Genes and Development Research Group, University of Calgary, AB
| |
Collapse
|
122
|
Baker MW, Macagno ER. The role of a LAR-like receptor tyrosine phosphatase in growth cone collapse and mutual-avoidance by sibling processes. JOURNAL OF NEUROBIOLOGY 2000; 44:194-203. [PMID: 10934322 DOI: 10.1002/1097-4695(200008)44:2<194::aid-neu9>3.0.co;2-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Among the many cells or parts of cells that a growth cone may encounter during its embryonic migrations are other processes or parts of its parent cell. Such an event can be expected to be relatively frequent in the genesis of neuronal arbors, for instance, where the density of innervation of a target region can be quite high. Few experimental studies have addressed the very interesting question of whether a process "recognizes" siblings in some unique way, in a manner that can be distinguished from, say, how it interacts with unrelated cells. One example can be found in the leech, where sibling branches in the terminal fields of identified mechanosensory cells avoid each other strictly while permitting some significant continuing contact and overlap with homologues, a phenomenon that has been dubbed "self-avoidance." Another example has been reported in cultured Helisoma neurons, where severing a branch of a neuron allows sibling neurites to form electrical junctions with it, although normally sibling neurites do not do so. In both of these instances, coincidental activity was proposed as one means to achieve recognition of self and as possibly leading to the blocking of a continuing interaction among the parts, although alternative explanations were indeed considered possible.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
123
|
Wittenburg N, Eimer S, Lakowski B, Röhrig S, Rudolph C, Baumeister R. Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 2000; 406:306-9. [PMID: 10917532 DOI: 10.1038/35018575] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the human presenilin genes cause the most frequent and aggressive forms of familial Alzheimer's disease (FAD). Here we show that in addition to its role in cell fate decisions in non-neuronal tissues, presenilin activity is required in terminally differentiated neurons in vivo. Mutations in the Caenorhabditis elegans presenilin genes sel-12 and hop-1 result in a defect in the temperature memory of the animals. This defect is caused by the loss of presenilin function in two cholinergic interneurons that display neurite morphology defects in presenilin mutants. The morphology and function of the affected neurons in sel-12 mutant animals can be restored by expressing sel-12 only in these cells. The wild-type human presenilin PS1, but not the FAD mutant PS1 A246E, can also rescue these morphological defects. As lin-12 mutant animals display similar morphological and functional defects to presenilin mutants, we suggest that presenilins mediate their activity in postmitotic neurons by facilitating Notch signalling. These data indicate cell-autonomous and evolutionarily conserved control of neural morphology and function by presenilins.
Collapse
Affiliation(s)
- N Wittenburg
- Genzentrum, Ludwig-Maximilians-Universitaet, Munich, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Notch signalling is best known for its role in lateral inhibition, where it acts to prevent differentiation of cells neighbouring one that has 'won out' in a competition to differentiate. Recent results suggest that Notch signalling can work in the opposite way, and promote differentiation of the receiving cells.
Collapse
Affiliation(s)
- O Pourquié
- Laboratoire de Génétique et de Physiologie du Développement (LGPD), Marseille Cedex 09, 13288, France.
| |
Collapse
|
125
|
Abstract
In vertebrates, Notch signaling is generally thought to inhibit neural differentiation. However, whether Notch can also promote specific early cell fates in this context is unknown. We introduced activated Notch1 (NIC) into the mouse forebrain, before the onset of neurogenesis, using a retroviral vector and ultrasound imaging. During embryogenesis, NIC-infected cells became radial glia, the first specialized cell type evident in the forebrain. Thus, rather than simply inhibiting differentiation, Notch1 signaling promoted the acquisition of an early cellular phenotype. Postnatally, many NIC-infected cells became periventricular astrocytes, cells previously shown to be neural stem cells in the adult. These results suggest that Notch1 promotes radial glial identity during embryogenesis, and that radial glia may be lineally related to stem cells in the adult nervous system.
Collapse
Affiliation(s)
- N Gaiano
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016, USA
| | | | | |
Collapse
|
126
|
Hassan BA, Bermingham NA, He Y, Sun Y, Jan YN, Zoghbi HY, Bellen HJ. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 2000; 25:549-61. [PMID: 10774724 DOI: 10.1016/s0896-6273(00)81059-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.
Collapse
Affiliation(s)
- B A Hassan
- Howard Hughes Medical Institute, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|