101
|
Wan YJ, Yang Y, Leng QL, Lan B, Jia HY, Liu YH, Zhang CZ, Cao Y. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell Signal 2014; 26:2202-9. [PMID: 24880064 DOI: 10.1016/j.cellsig.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/06/2023]
Abstract
Vav proteins are guanine nucleotide exchange factors (GEFs) that activate a group of small G proteins (GTPases). Vav1 is predominantly expressed in hematopoietic cells, whereas Vav2 and Vav3 are ubiquitously distributed in almost all human tissues. All three Vav proteins contain conserved structural motifs and associate with a variety of cellular activities including proliferation, migration, and survival. Previous observation with Jurkat leukemia T cells showed that Vav1 possessed anti-apoptotic activity by enhancing Bcl-2 transcription. However the mechanism has not been unveiled. Here, we explored the effectors of Vav1 in promoting Bcl-2 expression in Jurkat cells and revealed that Rac2-Akt was specifically evoked by the expression of Vav1, but not Vav2 or Vav3. Although all three Vav isoforms existed in Jurkat cells, Rac2 was distinguishably activated by Vav1 and that led to enhanced Bcl-2 expression and cell survival. Akt was modulated downstream of Vav1-Rac2, and the activation of Akt was indispensable in the enhanced transcription of Bcl-2. Intriguingly, neither Vav2 nor Vav3 was able to activate Rac2-Akt pathway as determined by gene silencing approach. Our data illustrated a unique role of Vav1 in T leukemia survival by selectively triggering Rac2-Akt axis and elevating the expression of anti-apoptotic Bcl-2.
Collapse
Affiliation(s)
- Ya-Juan Wan
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yin Yang
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Qian-Li Leng
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Bei Lan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Hui-Yan Jia
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yao-Hui Liu
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Cui-Zhu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Youjia Cao
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China.
| |
Collapse
|
102
|
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells. Cell Signal 2014; 26:2721-9. [PMID: 25152368 DOI: 10.1016/j.cellsig.2014.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.
Collapse
|
103
|
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins. Cell Death Differ 2014; 22:174-84. [PMID: 25124553 DOI: 10.1038/cdd.2014.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/27/2013] [Accepted: 07/10/2014] [Indexed: 01/16/2023] Open
Abstract
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Collapse
|
104
|
Correia RP, Silva FAM, Bacal NS, Campregher PV, Hamerschlak N, Amarante-Mendes GP. [Not Available]. Rev Bras Hematol Hemoter 2014; 36:60-4. [PMID: 24624038 PMCID: PMC3948668 DOI: 10.5581/1516-8484.20140015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/16/2013] [Indexed: 12/03/2022] Open
Abstract
The role of T-cells in the pathogenesis of chronic lymphocytic leukemia has recently gained much attention due to the importance of the constant interaction between neoplastic B-cells with microenvironment substratum and T-cells. It is believed that these interactions modulate the clinical course of the disease, mainly through the regulation of the expansion, differentiation, and survival of chronic lymphocytic leukemia B-cells. Importantly, this crosstalk may also change the number, function, and memory phenotype of normal T-cells, thereby altering the amplitude and/or efficiency of adaptive immunity in chronic lymphocytic leukemia patients. The present study presents an overview on important aspects of this immunological crosstalk, particularly on the abnormalities of chronic lymphocytic leukemia B-cells and the alterations in normal T-cells, with focus on the CD4 memory T-cell compartment that could offer survival signals to chronic lymphocytic leukemia B-cell clone(s) and contribute to the establishment and progression of the disease. The authors believe that understanding the biological consequences of the interaction between normal T- and neoplastic B-cells in chronic lymphocytic leukemia may allow for improvements in the prognostic information and therapeutic approaches for this disease. © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. All rights reserved.
Collapse
Affiliation(s)
- Rodolfo Patussi Correia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Hospital Israelita Albert Einstein (HIAE), São Paulo, SP, Brazil.
| | | | - Nydia Strachman Bacal
- Hospital Israelita Albert Einstein (HIAE), São Paulo, SP, Brazil; Centro de Hematologia de São Paulo (CHSP), São Paulo, SP, Brazil
| | | | | | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), Brazil
| |
Collapse
|
105
|
Min-Oo G, Bezman NA, Madera S, Sun JC, Lanier LL. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. ACTA ACUST UNITED AC 2014; 211:1289-96. [PMID: 24958849 PMCID: PMC4076589 DOI: 10.1084/jem.20132459] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
NK cells lacking proapoptotic factor Bim show impaired contraction phase after MCMV infection, leading to impaired memory cell maturation and a less effective responses to viral rechallenge. Apoptosis is critical for the elimination of activated lymphocytes after viral infection. Proapoptotic factor Bim (Bcl2l11) controls T lymphocyte contraction and the formation of memory T cells after infection. Natural killer (NK) cells also undergo antigen-driven expansion to become long-lived memory cells after mouse cytomegalovirus (MCMV) infection; therefore, we examined the role of Bim in regulating the MCMV-driven memory NK cell pool. Despite responding similarly early after infection, Bcl2l11−/− Ly49H+ NK cells show impaired contraction and significantly outnumber wild-type (WT) cells after the expansion phase. The inability to reduce the effector pool leads to a larger Bcl2l11−/− NK memory subset, which displays a less mature phenotype (CD11blo, CD27+) and lower levels of NK cell memory-associated markers KLRG1 and Ly6C. Bcl2l11−/− memory NK cells demonstrate a reduced response to m157-mediated stimulation and do not protect as effectively as WT memory NK cells in an MCMV challenge model. Thus, Bim-mediated apoptosis drives selective contraction of effector NK cells to generate a pool of mature, MCMV-specific memory cells.
Collapse
Affiliation(s)
- Gundula Min-Oo
- Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Natalie A Bezman
- Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Sharline Madera
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Lewis L Lanier
- Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
106
|
Shenoy AR, Kirschnek S, Häcker G. IL-15 regulates Bcl-2 family members Bim and Mcl-1 through JAK/STAT and PI3K/AKT pathways in T cells. Eur J Immunol 2014; 44:2500-7. [DOI: 10.1002/eji.201344238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Aparna R. Shenoy
- Institute for Medical Microbiology and Hygiene; University Medical Center Freiburg; Freiburg Germany
| | - Susanne Kirschnek
- Institute for Medical Microbiology and Hygiene; University Medical Center Freiburg; Freiburg Germany
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene; University Medical Center Freiburg; Freiburg Germany
| |
Collapse
|
107
|
Fan H, Liu XX, Zhang LJ, Hu H, Tang Q, Duan XY, Zhong M, Shou ZX. Intervention effects of QRZSLXF, a Chinese medicinal herb recipe, on the DOR-β-arrestin1-Bcl2 signal transduction pathway in a rat model of ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:88-97. [PMID: 24637189 DOI: 10.1016/j.jep.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingre Zaoshi Liangxue Fang (QRZSLXF) is a Chinese medicinal herb recipe that is commonly prescribed for the treatment of ulcerative colitis. It includes 5 quality assured herbs: Sophora flavescens Aiton., Baphicacanthus cusia (Nees) Bremek., Bletilla striata Rchb.f., Glycyrrhiza uralensis Fisch. and Coptis chinensis Franch. The main phytochemical ingredient of QRZSLXF includes ammothamnine, sophocarpidine, liquiritin, berberine and indirubin. QRZSLXF has been clinically proven for use in the treatment of ulcerative colitis for over twenty years. In the past ten years, research has confirmed the therapeutic effect of QRZSLXF in ulcerative colitis and partially revealed its mechanism of action. Here, we further reveal the therapeutic mechanism of QRZSLXF in ulcerative colitis. To investigate the role of the DOR-β-arrestin1-Bcl-2 signal transduction pathway in ulcerative colitis and to determine the effects of QRZSLXF on this signal transduction pathway. MATERIALS AND METHODS Eighty-four Sprague-Dawley rats were randomly divided into six groups: normal control group, model group, mesalazine group, and QRZSLXF high-dose, medium-dose group and low-dose groups (n=14). Experimental colitis was induced by trinitrobenzenesulfonic acid (TNBS) in each group, except the normal control group. After modeling, bloody stool, mental state and diarrhea were observed and recorded. Two rats were randomly selected from the model groups adfnd sacrificed on day 3 to observe pathological changes in the colon tissue by microscopy. The rats in the QRZSLXF-treated groups received intramuscular injections of different concentrations of QRZSLXF for 15 days. The rats in the mesalazine group were treated with mesalazine solution (0.5 g/kg/day) by gastric lavage for 15 days. The rats in the normal control group and the model group were treated with 3 mL water by gastric lavage for 15 days. On the 16th day, after fasting for 24 h, the remaining rats were sacrificed and their colon tissues were used to detect the mRNA and protein expressions of DOR, β-arrestin1 and Bcl-2 by Real-time PCR and immunohistochemistry, respectively. Histological changes in the colon tissues were also examined. RESULTS AND CONCLUSIONS The expressions of DOR, β-arrestin1 and Bcl-2 were significantly different among the four groups. The expressions of DOR, β-arrestin1 and Bcl-2 protein and mRNA were significantly increased in the model group compared with the other groups (P<0.05). In contrast to the model group, the expressions of DOR, β-arrestin1 and Bcl-2 were significantly decreased in the mesalazine group and the groups that received different doses of QRZSLXF (P<0.05), and there were no statistically significant differences among the mesalazine and QRZSLXF-treated groups (P>0.05). This study indicates that the DOR-beta-arrestin1-Bcl-2 signal transduction pathway may participate in the pathologic course of ulcerative colitis. Moreover, QRZSLXF could attenuate ulcerative colitis by regulating the DOR-β-arrestin1-Bcl-2 signal transduction pathway.
Collapse
Affiliation(s)
- Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xing-xing Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Li-juan Zhang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hui Hu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Xue-yun Duan
- Xueyun Duan, Department of Pharmacy, the Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan 430061, Hubei Province, China
| | - Min Zhong
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhe-xing Shou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
108
|
Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection. Proc Natl Acad Sci U S A 2014; 111:8559-64. [PMID: 24912151 DOI: 10.1073/pnas.1401750111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic viral infections incapacitate adaptive immune responses by "exhausting" virus-specific T cells, inducing their deletion and reducing productive T-cell memory. Viral infection rapidly induces death receptor CD95 (Fas) expression by dendritic cells (DCs), making them susceptible to elimination by the immune response. Lymphocytic choriomeningitis virus (LCMV) clone 13, which normally establishes a chronic infection, is rapidly cleared in C57Black6/J mice with conditional deletion of Fas in DCs. The immune response to LCMV is characterized by an extended survival of virus-specific effector T cells. Moreover, transfer of Fas-negative DCs from noninfected mice to preinfected animals results in either complete clearance of the virus or a significant reduction of viral titers. Thus, DC-specific Fas expression plays a role in regulation of antiviral responses and suggests a strategy for stimulation of T cells in chronically infected animals and humans to achieve the clearance of persistent viruses.
Collapse
|
109
|
Bradley WG, Holm KN, Tanaka A. An orally active immune adjuvant prepared from cones of Pinus sylvestris, enhances the proliferative phase of a primary T cell response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:163. [PMID: 24884568 PMCID: PMC4051390 DOI: 10.1186/1472-6882-14-163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Background We have previously demonstrated that an alkaline extract of shredded pinecones yields a polyphenylpropanoid polysaccharide complex (PPC) that functions as an orally active immune adjuvant. Specifically, oral PPC can boost the number of antigen-specific memory CD8+ T cells generated in response to a variety of vaccine types (DNA, protein, and dendritic cell) and bias the response towards one that is predominately a T helper 1 type. Methods An immune response was initiated by intraperitoneal injection of mice with Staphylococcus enterotoxin B (SEB). A group of mice received PPC by gavage three times per day on Days 0 and 1. The draining lymph nodes were analyzed 48–96 h post-injection for the numbers of reactive T cells, cytokine production, the generation of reactive oxygen species, and apoptotsis. Results In this study we examined whether the ability of PPC to boost a T cell response is due to an effect on the proliferative or contraction phases, or both, of the primary response. We present data to demonstrate that oral PPC significantly enhances the primary T cell response by affecting the expansion of T cells (both CD4 and CD8) during the proliferative phase, while having no apparent effects on the activation-induced cell death associated with the contraction phase. Conclusions These findings suggest that PPC could potentially be utilized to enhance the T cell response generated by a variety of prophylactic and therapeutic vaccines designed to target a cellular response.
Collapse
|
110
|
von Rossum A, Enns W, Shi YP, MacEwan GE, Malekesmaeli M, Brinkman R, Choy JC. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death. Arterioscler Thromb Vasc Biol 2014; 34:1290-7. [PMID: 24700126 DOI: 10.1161/atvbaha.114.303649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. APPROACH AND RESULTS Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. CONCLUSIONS Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries.
Collapse
Affiliation(s)
- Anna von Rossum
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Winnie Enns
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Yu P Shi
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Grace E MacEwan
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Mehrnoush Malekesmaeli
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Ryan Brinkman
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.)
| | - Jonathan C Choy
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada (A.v.R., W.E., Y.P.S., G.E.M., J.C.C.); and Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada (M.M., R.B.).
| |
Collapse
|
111
|
Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell Death Dis 2014; 5:e1098. [PMID: 24603326 PMCID: PMC3973243 DOI: 10.1038/cddis.2014.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues.
Collapse
|
112
|
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15:49-63. [PMID: 24355989 DOI: 10.1038/nrm3722] [Citation(s) in RCA: 2323] [Impact Index Per Article: 211.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.
Collapse
|
113
|
Moltedo B, Hemmers S, Rudensky AY. Regulatory T cell ablation causes acute T cell lymphopenia. PLoS One 2014; 9:e86762. [PMID: 24466225 PMCID: PMC3900634 DOI: 10.1371/journal.pone.0086762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022] Open
Abstract
Regulatory T (Treg) cells enforce T cell homeostasis and maintain peripheral T cell tolerance. Here we report a previously unappreciated phenomenon of acute T cell lymphopenia in secondary lymphoid organs and non-lymphoid tissues triggered by Treg cell depletion that precedes the expansion of self-reactive T cells. Lymphopenia affects both neonates and adults indicating a dominant role of Treg cells in maintaining peripheral T cell numbers regardless of the developmental stage. The lymphopenia was neither triggered by caspase-dependent apoptosis nor macrophage-mediated clearance of T cells, nor diminished survival of naïve or recently activated T cells due to paucity of IL-7. It is possible that transient lymphopenia associated with congenital or acute Treg cell deficiency may contribute to the development of T cell mediated autoimmune disorders.
Collapse
Affiliation(s)
- Bruno Moltedo
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Saskia Hemmers
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Alexander Y. Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
114
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
115
|
Srikanth S, Kim KD, Gwack Y. Methods to measure cytoplasmic and mitochondrial Ca(2+) concentration using Ca(2+)-sensitive dyes. Methods Enzymol 2014; 543:1-20. [PMID: 24924125 DOI: 10.1016/b978-0-12-801329-8.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca(2+) is a ubiquitous second messenger that is involved in regulation of various signaling pathways. Cytoplasmic Ca(2+) is maintained at low concentrations (~100 nM) by many active mechanisms. Increases in intracellular Ca(2+) concentration ([Ca(2+)]i) indeed can initiate multiple signaling pathways, depending both on their pattern and subcellular localization. In T cells, the stimulation of T-cell receptor leads to an increase in [Ca(2+)]i upon the opening of Ca(2+) release-activated calcium (CRAC) channels. T cells can actually sustain high [Ca(2+)]i for several hours, resulting in the activation of transcriptional programs orchestrated by members of the nuclear factor of activated T-cell (NFAT) protein family. Here, we describe an imaging method widely employed to measure cytoplasmic [Ca(2+)] in naïve and effector T cells based on the ratiometric dye Fura-2. Furthermore, we discuss a pharmacological method relying on an inhibitor of CRAC channels, 2-aminoethyldiphenyl borate, to validate the role of CRAC channels in cytoplasmic Ca(2+) elevation. Finally, we describe an approach to measure mitochondrial [Ca(2+)] based on another fluorescent dye, Rhod-2. With appropriate variations, our methodological approach can be employed to assess the effect and regulation of cytosolic and mitochondrial Ca(2+) waves in multiple experimental settings, including cultured cancer cells.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
116
|
Starbeck-Miller GR, Xue HH, Harty JT. IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. ACTA ACUST UNITED AC 2013; 211:105-20. [PMID: 24367005 PMCID: PMC3892973 DOI: 10.1084/jem.20130901] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signal 3 cytokines interleukin-12 and type I interferon sustain CD8 T cell division by prolonging expression of CD25 in vivo. TCR ligation and co-stimulation induce cellular division; however, optimal accumulation of effector CD8 T cells requires direct inflammatory signaling by signal 3 cytokines, such as IL-12 or type I IFNs. Although in vitro studies suggest that IL-12/type I IFN may enhance T cell survival or early proliferation, the mechanisms underlying optimal accumulation of CD8 T cells in vivo are unknown. In particular, it is unclear if disparate signal 3 cytokines optimize effector CD8 T cell accumulation by the same mechanism and how these inflammatory cytokines, which are transiently produced early after infection, affect T cell accumulation many days later at the peak of the immune response. Here, we show that transient exposure of CD8 T cells to IL-12 or type I IFN does not promote survival or confer an early proliferative advantage in vivo, but rather sustains surface expression of CD25, the high-affinity IL-2 receptor. This prolongs division of CD8 T cells in response to basal IL-2, through activation of the PI3K pathway and expression of FoxM1, a positive regulator of cell cycle progression genes. Thus, signal 3 cytokines use a common pathway to optimize effector CD8 T cell accumulation through a temporally orchestrated sequence of cytokine signals that sustain division rather than survival.
Collapse
Affiliation(s)
- Gabriel R Starbeck-Miller
- Interdisciplinary Graduate Program in Immunology, 2 Department of Microbiology, and 3 Department of Pathology, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
117
|
Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex. Neoplasia 2013; 15:511-22. [PMID: 23633923 DOI: 10.1593/neo.121784] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 01/29/2023] Open
Abstract
BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2) corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation.
Collapse
|
118
|
Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nat Commun 2013; 4:1735. [PMID: 23591902 PMCID: PMC3644093 DOI: 10.1038/ncomms2719] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Two major processes govern T cell proliferation and survival: interleukin-7-mediated homeostasis and antigen-induced selection. How cells transit between the two states is unknown. Here we show that T cell receptor ligation actively inhibits homeostatic survival signals while initiating a new, dominant survival programme. This switch is mediated by a change in the expression of pro- and anti-apoptosis proteins through the downregulation of Bcl-2 and the induction of Bim, A1 and Bcl-xL. Calcineurin inhibitors prevent the initiation of the new survival programme, while permitting the dominant repression of Bcl-2. Thus, in the presence of these drugs the response to antigen receptor ligation is cell death. Our results identify a molecular switch that can serve as an attractive target for inducing antigen-specific tolerance in treating autoimmune disease patients and transplant recipients. Before antigen exposure, T cell survival is dependent on signalling stimulated by IL-7. Koenen et al. show that upon encountering specific antigen, T cell receptor signalling initiates a different set of survival pathways, which actively suppress those that sustain naive T cells.
Collapse
|
119
|
Leucht K, Caj M, Fried M, Rogler G, Hausmann M. Impaired removal of Vβ8(+) lymphocytes aggravates colitis in mice deficient for B cell lymphoma-2-interacting mediator of cell death (Bim). Clin Exp Immunol 2013; 173:493-501. [PMID: 23668821 DOI: 10.1111/cei.12137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 01/01/2023] Open
Abstract
We investigated the role of B cell lymphoma (BCL)-2-interacting mediator of cell death (Bim) for lymphocyte homeostasis in intestinal mucosa. Lymphocytes lacking Bim are refractory to apoptosis. Chronic colitis was induced in Bim-deficient mice (Bim(-/-) ) with dextran sulphate sodium (DSS). Weight loss and colonoscopic score were increased significantly in Bim(-/-) mice compared to wild-type mice. As Bim is induced for the killing of autoreactive cells we determined the role of Bim in the regulation of lymphocyte survival at mucosal sites. Upon chronic dextran sulphate sodium (DSS)-induced colitis, Bim(-/-) animals exhibited an increased infiltrate of lymphocytes into the mucosa compared to wild-type mice. The number of autoreactive T cell receptor (TCR) Vβ8(+) lymphocytes was significantly higher in Bim(-/-) mice compared to wild-type controls. Impaired removal of autoreactive lymphocytes in Bim(-/-) mice upon chronic DSS-induced colitis may therefore contribute to aggravated mucosal inflammation.
Collapse
Affiliation(s)
- K Leucht
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
120
|
Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 2013; 46:41-54. [PMID: 23931959 DOI: 10.1016/j.jaut.2013.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
|
121
|
Tripathi P, Koss B, Opferman JT, Hildeman DA. Mcl-1 antagonizes Bax/Bak to promote effector CD4(+) and CD8(+) T-cell responses. Cell Death Differ 2013; 20:998-1007. [PMID: 23558951 PMCID: PMC3705594 DOI: 10.1038/cdd.2013.25] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023] Open
Abstract
Members of the Bcl-2 family have critical roles in regulating tissue homeostasis by modulating apoptosis. Anti-apoptotic molecules physically interact and restrain pro-apoptotic family members preventing the induction of cell death. However, the specificity of the functional interactions between pro- and anti-apoptotic Bcl-2 family members remains unclear. The pro-apoptotic Bcl-2 family member Bcl-2 interacting mediator of death (Bim) has a critical role in promoting the death of activated, effector T cells following viral infections. Although Bcl-2 is an important Bim antagonist in effector T cells, and Bcl-xL is not required for effector T-cell survival, the roles of other anti-apoptotic Bcl-2 family members remain unclear. Here, we investigated the role of myeloid cell leukemia sequence 1 (Mcl-1) in regulating effector T-cell responses in vivo. We found, at the peak of the response to lymphocytic choriomeningitis virus (LCMV) infection, that Mcl-1 expression was increased in activated CD4(+) and CD8(+) T cells. Retroviral overexpression of Mcl-1-protected activated T cells from death, whereas deletion of Mcl-1 during the course of infection led to a massive loss of LCMV-specific CD4(+) and CD8(+) T cells. Interestingly, the co-deletion of Bim failed to prevent the loss of Mcl-1-deficient T cells. Furthermore, lck-driven overexpression of a Bcl-xL transgene only partially rescued Mcl-1-deficient effector T cells suggesting a lack of redundancy between the family members. In contrast, additional loss of Bax and Bak completely rescued Mcl-1-deficient effector T-cell number and function, without enhancing T-cell proliferation. These data suggest that Mcl-1 is critical for promoting effector T-cell responses, but does so by combating pro-apoptotic molecules beyond Bim.
Collapse
Affiliation(s)
- P Tripathi
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - B Koss
- Department of Biochemistry, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - J T Opferman
- Department of Biochemistry, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - D A Hildeman
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
122
|
C5a receptor signalling in dendritic cells controls the development of maladaptive Th2 and Th17 immunity in experimental allergic asthma. Mucosal Immunol 2013; 6:807-25. [PMID: 23212198 DOI: 10.1038/mi.2012.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pathways underlying dendritic cell (DC) activation in allergic asthma are incompletely understood. Here we demonstrate that adoptive transfer of ovalbumin-pulsed wild-type (wt) but not of C5a receptor-deficient (C5aR⁻/⁻) bone marrow (BM)-derived DCs (BMDCs) induced mixed T helper type 2 (Th2)/Th17 maladaptive immunity, associated with severe airway hyperresponsiveness, mucus production, and mixed eosinophilic/neutrophilic inflammation. Mechanistically, antigen uptake, processing, and CD11b expression were reduced in C5aR⁻/⁻ BMDCs. Further, interleukin (IL)-1β, -6, and -23 production were impaired resulting in reduced Th17 cell differentiation, associated with accelerated activated T-cell death in vitro and in vivo. Surprisingly, we found an increased frequency of CD11b(hi)CD11c(int)Gr1⁺F4/80⁺ cells, expressing arginase and nitric oxide synthase in C5aR⁻/⁻ BM preparations. Intratracheal administration of ovalbumin-pulsed wt DCs and sorted CD11b(hi)CD11c(int)Gr1⁺F4/80⁺ C5aR⁻/⁻ cells reduced Th2 immune responses in vivo. Together, we uncover novel roles for C5aR in Th17 differentiation, T-cell survival, and differentiation of a DC-suppressor population controlling Th2 immunity in experimental allergic asthma.
Collapse
|
123
|
Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive Oxygen Species in the Immune System. Int Rev Immunol 2013; 32:249-70. [DOI: 10.3109/08830185.2012.755176] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
124
|
Wang N, Sun H, Shen Y, Li XF, Pan T, Liu GL, Liu Q. Augmenter of liver regeneration inhibits apoptosis of activated human peripheral blood lymphocytes in vitro. Immunopharmacol Immunotoxicol 2013; 35:257-263. [PMID: 23383627 DOI: 10.3109/08923973.2013.764502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulating apoptosis of lymphocytes is an effective strategy for treatment of lymphocyte-mediated diseases. Recently it has been demonstrated that augmenter of liver regeneration (ALR), an enigmatic protein presented ubiquitously in multiple forms among eukaryotes, possesses potent anti-apoptotic activity and supports proliferation of a variety of cells. However, its action on lymphocytes and the underlying mechanism are not completely understood. In this study, we analyzed the effects of recombinant human ALR (rhALR) on apoptosis of human lymphocytes activated with concanavalin A (ConA). Our results showed that rhALR inhibited apoptosis of ConA-activated lymphocytes and revealed reductions in the percentage of apoptotic cells, caspase-3 activation and PARP cleavage in cells treated with rhALR. Furthermore, the BAX/BCL-2 and cytosol/mitochondria cytochrome c ratios were decreased in the intrinsic death pathway and the activation of caspase-8 was also decreased in the extrinsic death pathway in activated lymphocytes treated with rhALR. In addition, rhALR significantly reduced the quantity of interleukin-2. These results demonstrated that rhALR has anti-apoptotic effects on activated lymphocytes through the activation of several apoptosis-related signaling pathways, and shed some light on the effects of rhALR on modulation immune reactions.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education of China, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. Trends Immunol 2013; 34:251-8. [PMID: 23499559 DOI: 10.1016/j.it.2013.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/17/2022]
Abstract
Immunological memory has traditionally been regarded as a unique feature of the adaptive immune response, mediated in an antigen-specific manner by T and B lymphocytes. All other hematopoietic cells, including natural killer (NK) cells, are classified as innate immune cells, which have been considered short-lived but can respond rapidly against pathogens in a manner not thought to be driven by antigen. Interestingly, NK cells have recently been shown to survive long term after antigen exposure and subsequently mediate antigen-specific recall responses. In this review, we address the similarities between, and the controversies surrounding, three major viewpoints of NK memory that have arisen from these recent studies: (i) mouse cytomegalovirus (MCMV)-induced memory; (ii) cytokine-induced memory; and (iii) liver-restricted memory cells.
Collapse
Affiliation(s)
- Gundula Min-Oo
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
126
|
Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW. Persistent antigen at vaccination sites induces tumor-specific CD8⁺ T cell sequestration, dysfunction and deletion. Nat Med 2013; 19:465-72. [PMID: 23455713 PMCID: PMC3618499 DOI: 10.1038/nm.3105] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
To understand why cancer vaccine-induced T cells often fail to eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund’s adjuvant (IFA), commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, Interferon-γ (IFN-γ) and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of anti-CD40 antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination site sequestration. A non-persisting vaccine formulation shifted T cell localization towards tumors, inducing superior anti-tumor activity while reducing systemic T cell dysfunction and promoting memory formation. Persisting peptide/IFA vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Yared Hailemichael
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35:182-94. [PMID: 23483280 PMCID: PMC3887911 DOI: 10.1007/s10059-013-0073-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022] Open
Abstract
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca(2+)-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca(2+) store and in turn, initiates store-operated Ca(2+) entry (SOCE), one of the major mechanisms to raise the intracellular Ca(2+) concentrations in T cells. Ca(2+)-release-activated-Ca(2+) (CRAC) channels are a prototype of store-operated Ca(2+) (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca(2+) signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| |
Collapse
|
128
|
McCoy MJ, Nowak AK, van der Most RG, Dick IM, Lake RA. Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother 2013; 62:529-39. [PMID: 23069871 PMCID: PMC11029143 DOI: 10.1007/s00262-012-1360-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/02/2012] [Indexed: 01/16/2023]
Abstract
There is a complex interplay between the immune system and a developing tumor that is manifest in the way that the balance of T cell subsets in the local tumor environment reflects clinical outcome. Tumor infiltration by CD8(+) T cells and regulatory T cells (Treg) is associated with improved and reduced survival, respectively, in many cancer types. However, little is known of the prognostic value of immunological parameters measured in peripheral blood. In this study, peripheral CD8(+) T cells and Treg from 43 patients with malignant mesothelioma or advanced non-small-cell lung cancer scheduled to commence palliative chemotherapy were assessed by flow cytometry and evaluated for association with patient survival. Patients had a higher proportion of peripheral Treg, proliferating CD8(+) T cells and CD8(+) T cells with an activated effector phenotype compared with age-matched healthy controls. Higher proportions of Treg and proliferating CD8(+) T cells were both associated with poor survival in univariate analyses (hazard ratio [HR] 3.81, 95 % CI 1.69-8.57; p < 0.01 and HR 2.86, 95 % CI 1.26-6.50; p < 0.05, respectively). CD8(+) T cell proliferation was independently predictive of reduced survival in multivariate analysis (HR 2.58, 95 % CI 1.01-6.61; p < 0.05). These findings suggest that peripheral CD8(+) T cell proliferation can be a useful prognostic marker in patients with thoracic malignancies planned for palliative chemotherapy.
Collapse
Affiliation(s)
- Melanie J McCoy
- School of Medicine and Pharmacology, The University of Western Australia, M503, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | | | | | | | | |
Collapse
|
129
|
Orange DE, Blachere NE, Fak J, Parveen S, Frank MO, Herre M, Tian S, Monette S, Darnell RB. Dendritic cells loaded with FK506 kill T cells in an antigen-specific manner and prevent autoimmunity in vivo. eLife 2013; 2:e00105. [PMID: 23390586 PMCID: PMC3564474 DOI: 10.7554/elife.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
FK506 (Tacrolimus) is a potent inhibitor of calcineurin that blocks IL2 production and is widely used to prevent transplant rejection and treat autoimmunity. FK506 treatment of dendritic cells (FKDC) limits their capacity to stimulate T cell responses. FK506 does not prevent DC survival, maturation, or costimulatory molecule expression, suggesting that the limited capacity of FKDC to stimulate T cells may be due to inhibition of calcineurin signaling in the DC. Instead, we demonstrate that DC inhibit T cells by sequestering FK506 and continuously releasing the drug over several days. T cells encountering FKDC proliferate but fail to upregulate the survival factor bcl-xl and die, and IL2 restores both bcl-xl and survival. In mice, FKDC act in an antigen-specific manner to inhibit T-cell mediated autoimmune arthritis. This establishes that DCs can act as a cellular drug delivery system to target antigen specific T cells.DOI:http://dx.doi.org/10.7554/eLife.00105.001.
Collapse
Affiliation(s)
- Dana E Orange
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
- Division of Rheumatology, Hospital for Special Surgery, New York, United States
| | - Nathalie E Blachere
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
| | - Salina Parveen
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
| | - Mayu O Frank
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
| | - Margo Herre
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
| | - Suyan Tian
- Center for Clinical and Translational Science, The Rockefeller University, New York, United States
| | - Sebastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
130
|
Kurtulus S, Tripathi P, Hildeman DA. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development. Front Immunol 2013; 3:404. [PMID: 23346085 PMCID: PMC3552183 DOI: 10.3389/fimmu.2012.00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022] Open
Abstract
Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8(+) T cells. For example, the effector CD8(+) T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8(+) T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8(+) T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8(+) T cell memory. Effector to memory transition of CD4(+) T cells is less well characterized than CD8(+) T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells.
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Cellular and Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati Cincinnati, OH, USA
| | | | | |
Collapse
|
131
|
Abstract
A fundamental property of the adaptive immune system is the ability to generate antigen-specific memory, which protects against repeated infections with the same pathogens and determines the success of vaccination. Immune memory is built up alongside a response providing direct protection during the course of a primary immune response. For CD8 T cells, this involves the generation of two distinct types of effector cells. Short lived effector cells (SLECs) confer immediate protection, but contribute little to the memory repertoire. Memory precursor effector cells (MPECs) have the ability to respond to survival signals and develop into memory cells. These two types of cells can be distinguished on the basis of surface markers and express distinct genetic programs. A single naive CD8 T cell can give rise to both MPEC and SLEC daughter cells. This may involve an initial asymmetric division or depend on later instructive signals acting on equipotent daughter cells. Strong inflammatory signals favor the generation of SLECs and weaker inflammation favors the generation of MPECs. A distinguishing feature of MPECs is their ability to persist when most effector cells die. This survival depends on signals from the IL-7 receptor, which induce expression of anti-apoptotic factors. MPECs are therefore characterized by expression of the IL-7 receptor as well as the CCR7 chemokine receptor, which allows homing to areas in lymphoid organs where IL-7 is produced. Critical for persistence of MPECs is further their responsiveness to myeloid cell derived IL-15, which instructs these cells to switch their metabolic programs from glycolysis associated with rapid proliferation to fatty acid oxidation required during a more resting state. As the mechanisms determining generation of immunological memory are unraveled, opportunities will emerge for the improvement of vaccination strategies.
Collapse
|
132
|
Abstract
CD8 T cells exhibit dynamic alterations in proliferation and apoptosis during various phases of the CD8 T cell response, but the mechanisms that regulate cellular proliferation from the standpoint of CD8 T cell memory are not well defined. The cyclin-dependent kinase inhibitor p27Kip1 functions as a negative regulator of the cell cycle in various cell types including T cells and it has been implicated in regulating cellular processes including differentiation, transcription and migration. Here, we investigated whether p27Kip1 regulates CD8 T cell memory by T cell-intrinsic or T cell-extrinsic mechanisms, by conditional ablation of p27Kip1 in T cells or non-T cells. Studies of T cell responses to an acute viral infection show that p27Kip1 negatively regulates the proliferation of CD8 T cells by T cell-intrinsic mechanisms. However, the enhanced proliferation of CD8 T cells induced by T cell-specific p27Kip1 deficiency minimally affects the primary expansion or the magnitude of CD8 T cell memory. Unexpectedly, p27Kip1 ablation in non-T cells markedly augmented the number of high quality memory CD8 T cells by enhancing the accumulation of memory precursor effector cells without increasing their proliferation. Further studies show that p27Kip1 deficiency in immunizing DCs fail to enhance CD8 T cell memory. Nevertheless, we have delineated the T cell-intrinsic, anti-proliferative activities of p27Kip1 in CD8 T cells from its role as a factor in non-T cells that restricts the development of CD8 T cell memory. These findings have implications in vaccine development and understanding the mechanisms that maintain T cell homeostasis.
Collapse
|
133
|
Ramaswamy M, Siegel RM. Autoimmunity: twenty years in the Fas lane. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5097-100. [PMID: 23169861 PMCID: PMC3580219 DOI: 10.4049/jimmunol.1202833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
134
|
Abstract
BIM represents a BH3-only proapoptotic member of the BCL-2 family of apoptotic regulatory proteins. Recent evidence suggests that in addition to its involvement in normal homeostasis, BIM plays a critical role in tumor cell biology, including the regulation of tumorigenesis through activities as a tumor suppressor, tumor metastasis, and tumor cell survival. Consequently, BIM has become the focus of intense interest as a potential target for cancer chemotherapy. The control of BIM expression is complex, and involves multiple factors, including epigenetic events (i.e., promoter acetylation or methylation, miRNA), transcription factors, posttranscriptional regulation, and posttranslational modifications, most notably phosphorylation. Significantly, the expression of BIM by tumor cells has been shown to play an important role in determining the response of transformed cells to not only conventional cytotoxic agents, but also to a broad array of targeted agents that interrupt cell signaling and survival pathways. Furthermore, modifications in BIM expression may be exploited to improve the therapeutic activity and potentially the selectivity of such agents. It is likely that evolving insights into the factors that regulate BIM expression will ultimately lead to novel BIM-based therapeutic strategies in the future.
Collapse
Affiliation(s)
- Hisashi Harada
- Department of Oral and Craniofacial Molecular Biology, Massey Cancer Center, Virginia Commonwealth University Health Sciences System, Richmond VA, 23298, USA
| | | |
Collapse
|
135
|
Oh J, Kim SH, Ahn S, Lee CE. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-κB and mitochondrial Bfl-1 in leukemic T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5561-71. [PMID: 23152563 DOI: 10.4049/jimmunol.1103415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressors of cytokine signaling (SOCS) are known as negative regulators of cytokine- and growth factor-induced signal transduction. Recently they have emerged as multifunctional proteins with regulatory roles in inflammation, autoimmunity, and cancer. We have recently reported that SOCS1 has antiapoptotic functions against the TNF-α- and the hydrogen peroxide-induced T cell apoptosis through the induction of thioredoxin, which protects protein tyrosine phosphatases and attenuates Jaks. In this study, we report that SOCS, on the contrary, promote death receptor Fas-mediated T cell apoptosis. The proapoptotic effect of SOCS1 was manifested with increases in Fas-induced caspase-8 activation, truncated Bid production, and mitochondrial dysfunctions. Both caspase-8 inhibitor c-Flip and mitochondrial antiapoptotic factor Bfl-1 were significantly reduced by SOCS1. These proapoptotic responses were not associated with changes in Jak or p38/Jnk activities but were accompanied with downregulation of NF-κB and NF-κB-dependent reporter gene expression. Indeed, p65 degradation via ubiquitination was accelerated in SOCS1 overexpressing cells, whereas it was attenuated in SOCS1 knockdown cells. With high NF-κB levels, the SOCS1-ablated cells displayed resistance against Fas-induced apoptosis, which was abrogated upon siBfl-1 transfection. The results indicate that the suppression of NF-κB-dependent induction of prosurvival factors, such as Bfl-1 and c-Flip, may serve as a mechanism for SOCS action to promote Fas-mediated T cell apoptosis. SOCS3 exhibited a similar proapoptotic function. Because both SOCS1 and SOCS3 are induced upon TCR stimulation, SOCS would play a role in activation-induced cell death by sensitizing activated T cells toward Fas-mediated apoptosis to maintain T cell homeostasis.
Collapse
Affiliation(s)
- Jiyoung Oh
- Laboratory of Immunology, Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
136
|
Nuclear export of histone deacetylase 7 during thymic selection is required for immune self-tolerance. EMBO J 2012; 31:4453-65. [PMID: 23103766 DOI: 10.1038/emboj.2012.295] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase 7 (HDAC7) is a T-cell receptor (TCR) signal-dependent regulator of differentiation that is highly expressed in CD4/CD8 double-positive (DP) thymocytes. Here, we examine the effect of blocking TCR-dependent nuclear export of HDAC7 during thymic selection, through expression of a signal-resistant mutant of HDAC7 (HDAC7-ΔP) in thymocytes. We find that HDAC7-ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection-associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self-tolerance.
Collapse
|
137
|
Trushin SA, Carena AA, Bren GD, Rizza SA, Dong X, Abraham RS, Badley AD. SDF-1α degrades whereas glycoprotein 120 upregulates Bcl-2 interacting mediator of death extralong isoform: implications for the development of T cell memory. THE JOURNAL OF IMMUNOLOGY 2012; 189:1835-42. [PMID: 22802411 DOI: 10.4049/jimmunol.1100275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After a primary immune response, T cell memory occurs when a subset of Ag-specific T cells resists peripheral selection by acquiring resistance to TCR-induced death. Recent data have implicated Bcl-2 interacting mediator of death (Bim) as an essential mediator of the contraction phase of T cell immunity. In this article, we describe that stromal-derived factor-1α (SDF-1α) ligation of CXCR4 on activated T cells promotes two parallel processes that favor survival, phospho-inactivation of Foxo3A, as well as Bim extralong isoform (Bim(EL)) degradation, both in an Akt- and Erk-dependent manner. Activated primary CD4 T cells treated with SDF-1α therefore become resistant to the proapoptotic effects of TCR ligation or IL-2 deprivation and accumulate cells of a memory phenotype. Unlike SDF-1α, gp120 ligation of CXCR4 has the opposite effect because it causes p38-dependent Bim(EL) upregulation. However, when activated CD4 T cells are treated with both gp120 and SDF-1α, the SDF-1α-driven effects of Bim(EL) degradation and acquired resistance to TCR-induced death predominate. These results provide a novel causal link between SDF-1α-induced chemotaxis, degradation of Bim(EL), and the development of CD4 T cell memory.
Collapse
Affiliation(s)
- Sergey A Trushin
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Hamad ARAR, Arcara K, Uddin S, Donner T. The potential of Fas ligand (apoptosis-inducing molecule) as an unconventional therapeutic target in type 1 diabetes. Front Immunol 2012; 3:196. [PMID: 22807927 PMCID: PMC3395106 DOI: 10.3389/fimmu.2012.00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 01/10/2023] Open
Abstract
The development of type 1 diabetes (T1D) is driven by autoreactive T cells that attack and destroy the insulin-producing β-cells in pancreatic islets, forcing patients to take multiple daily insulin injections. Insulin therapy, however, is not a cure and diabetic patients often develop serious long-term microvascular and cardiovascular complications. Therefore, intensive efforts are being directed toward developing safe immunotherapy for the disease that does not impair host defense and preserves β-cells, leading to better glycemic control than exogenous insulin therapy. Engineering therapies that differentially cripple or tolerate autoreactive diabetogenic T cells while sparing protective T cells necessary for maintaining a competent immune system has proven challenging. Instead, recent efforts have focused on modulating or resetting the immune system through global but transient deletion of T cells or B cells using anti-CD3 or anti-CD20 mAb, respectively. However, phase III clinical trials have shown promising but modest efficacy so far with these approaches. Therefore, there is a need to identify novel biological targets that do not fit the classic properties of being involved in adaptive immune cell activation. In this prospective, we provide preclinical evidence that targeting Fas ligand (FasL) may provide a unique opportunity to prevent or cure T1D and perhaps other organ-specific autoimmune diseases without causing immune suppression. Unlike conventional targets that are involved in T and B lymphocyte activation (such as CD3 and CD20, respectively), FasL is an apoptosis-inducing surface molecule that triggers cell death by binding to Fas (also known as CD95 Apo-1). Therefore, targeting FasL is not expected to cause immune suppression, the Achilles Heel of conventional approaches. We will discuss the hypothesis that targeting FasL has unique benefits that are not offered by current immunomodulatory approaches.
Collapse
Affiliation(s)
- Abdel Rahim A R Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore,MD, USA
| | | | | | | |
Collapse
|
139
|
Abstract
Recent studies of normal and neoplastic lymphocytes have revealed overlapping metabolic rewiring in activated T cells and Myc-transformed lymphocytes. Myc expression is attenuated in normal lymphocytes that return to the basal state, but Notch-activated or Myc-transformed lymphocytes persistently express Myc, which activates genes involved in glucose and glutamine metabolism. Although this difference could provide a therapeutic window for the treatment of cancers, the overlapping metabolic profiles suggest a potential for immunosuppression by metabolic inhibitors.
Collapse
Affiliation(s)
- Brian J Altman
- Abramson Family Cancer Research Institute, Abramson Cancer Center, Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
140
|
Ruppert SM, Li W, Zhang G, Carlson AL, Limaye A, Durum SK, Khaled AR. The major isoforms of Bim contribute to distinct biological activities that govern the processes of autophagy and apoptosis in interleukin-7 dependent lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1877-93. [PMID: 22728771 DOI: 10.1016/j.bbamcr.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 12/22/2022]
Abstract
Bim is a BH3-only member of the Bcl-2 family that enables the death of T-cells. Partial rescue of cytokine-deprived T-cells occurs when Bim and the receptor for the T-cell growth factor, interleukin-7, are deleted, implicating Bim as a possible target of interleukin-7-mediated signaling. Alternative splicing yields three major isoforms: BimEL, BimL and BimS. To study the effect of Bim deficiency and define the function of the major isoforms, Bim-containing and Bim-deficient T-cells, dependent on interleukin-7 for growth, were used. Loss of total Bim in interleukin-7-deprived T-cells resulted in delayed apoptosis. However, loss of Bim also impeded the later degradative phase of autophagy. p62, an autophagy-adaptor protein which is normally degraded, accumulated in Bim deficient cells. To explain this, BimL was found to support acidification of lysosomes that later may associate with autophagic vesicles. Key findings showed that inhibition of lysosomal acidification accelerated death upon interleukin-7 withdrawal only in Bim-containing T-cells. intereukin-7 dependent T-cells lacking Bim were less sensitive to inhibition of lysosomal acidification. BimL co-immunoprecipitated with dynein and Lamp1-containing vesicles, indicating BimL could be an adaptor for dynein to facilitate loading of lysosomes. In Bim deficient T-cells, lysosome-tracking probes revealed vesicles of less acidic pH. Over-expression of BimL restored acidic vesicles in Bim deficient T-cells, while other isoforms, BimEL and BimS, promoted intrinsic cell death. These results reveal a novel role for BimL in lysosomal positioning that may be required for the formation of degradative autolysosomes.
Collapse
Affiliation(s)
- Shannon M Ruppert
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Kaesler S, Sobiesiak M, Kneilling M, Volz T, Kempf WE, Lang PA, Lang KS, Wieder T, Heller-Stilb B, Warskulat U, Häussinger D, Lang F, Biedermann T. Effective T-cell recall responses require the taurine transporter Taut. Eur J Immunol 2012; 42:831-41. [PMID: 22531910 DOI: 10.1002/eji.201141690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T-cell activation and the subsequent transformation of activated T cells into T-cell blasts require profound changes in cell volume. However, the impact of cell volume regulation for T-cell immunology has not been characterized. Here we studied the role of the cell-volume regulating osmolyte transporter Taut for T-cell activation in Taut-deficient mice. T-cell mediated recall responses were severely impaired in taut(-/-) mice as shown with B16 melanoma rejection and hapten-induced contact hypersensitivity. CD4(+) and CD8(+) T cells were unequivocally located within peripheral lymph nodes of unprimed taut(-/-) mice but significantly decreased in taut(-/-) compared with taut(+/+) mice following in vivo activation. Further analysis revealed that Taut is critical for rescuing T cells from activation-induced cell death in vitro and in vivo as shown with TCR, superantigen, and antigen-specific activation. Consequently, reduction of CD4(+) and CD8(+) T cells in taut(-/-) mice upon antigen challenge resulted in impaired in vivo generation of T-cell memory. These findings disclose for the first time that volume regulation in T cells is an element in the regulation of adaptive immune responses and that the osmolyte transporter Taut is crucial for T-cell survival and T-cell mediated immune reactions.
Collapse
Affiliation(s)
- Susanne Kaesler
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Somatic recombination of TCR genes in immature thymocytes results in some cells with useful TCR specificities, but also many with useless or potentially self-reactive specificities. Thus thymic selection mechanisms operate to shape the T-cell repertoire. Thymocytes that have a TCR with low affinity for self-peptide-MHC complexes are positively selected to further differentiate and function in adaptive immunity, whereas useless ones die by neglect. Clonal deletion and clonal diversion (Treg differentiation) are the major processes in the thymus that eliminate or control self-reactive T cells. Although these processes are thought to be efficient, they fail to control self-reactivity in all circumstances. Thus, peripheral tolerance processes exist wherein self-reactive T cells become functionally unresponsive (anergy) or are deleted after encountering self-antigens outside of the thymus. Recent advances in mechanistic studies of central and peripheral T-cell tolerance are promoting the development of therapeutic strategies to treat autoimmune disease and cancer and improve transplantation outcome.
Collapse
Affiliation(s)
- Yan Xing
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
143
|
Sekine Y, Yamamoto C, Kakisaka M, Muromoto R, Kon S, Ashitomi D, Fujita N, Yoshimura A, Oritani K, Matsuda T. Signal-Transducing Adaptor Protein-2 Modulates Fas-Mediated T Cell Apoptosis by Interacting with Caspase-8. THE JOURNAL OF IMMUNOLOGY 2012; 188:6194-204. [DOI: 10.4049/jimmunol.1103467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
144
|
Logan MR, Jordan-Williams KL, Poston S, Liao J, Taparowsky EJ. Overexpression of Batf induces an apoptotic defect and an associated lymphoproliferative disorder in mice. Cell Death Dis 2012; 3:e310. [PMID: 22592317 PMCID: PMC3366083 DOI: 10.1038/cddis.2012.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activator protein-1 (AP-1) is a dimeric transcription factor composed of the Jun, Fos and Atf families of proteins. Batf is expressed in the immune system and participates in AP-1 dimers that modulate gene expression in response to a variety of stimuli. Transgenic (Tg) mice overexpressing human BATF in T cells were generated using the human CD2 promoter (CD2-HA (hemagglutinin antigen) - BATF). By 1 year of age, over 90% of the mice developed a lymphoproliferative disorder (LPD). The enlarged lymph nodes characteristic of this LPD contain a polyclonal accumulation of T cells with a CD4+ bias, yet efforts to propagate these tumor cells in vitro demonstrate that they do not proliferate as well as wild-type CD4+ T cells. Instead, the accumulation of these cells is likely due to an apoptotic defect as CD2-HA-BATF Tg T cells challenged by trophic factor withdrawal in vitro resist apoptosis and display a pro-survival pattern of Bcl-2 family protein expression. As elevated levels of Batf expression are a feature of lymphoid tumors in both humans and mice, these observations support the use of CD2-HA-BATF mice as a model for investigating the molecular details of apoptotic dysregulation in LPD.
Collapse
Affiliation(s)
- M R Logan
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN 47907-2064, USA
| | | | | | | | | |
Collapse
|
145
|
Wensveen FM, Unger PPA, Kragten NAM, Derks IAM, ten Brinke A, Arens R, van Lier RAW, Eldering E, van Gisbergen KPJM. CD70-Driven Costimulation Induces Survival or Fas-Mediated Apoptosis of T Cells Depending on Antigenic Load. THE JOURNAL OF IMMUNOLOGY 2012; 188:4256-67. [DOI: 10.4049/jimmunol.1102889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
146
|
Wang X, Szymczak-Workman AL, Gravano DM, Workman CJ, Green DR, Vignali DAA. Preferential control of induced regulatory T cell homeostasis via a Bim/Bcl-2 axis. Cell Death Dis 2012; 3:e270. [PMID: 22318539 PMCID: PMC3288351 DOI: 10.1038/cddis.2012.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptosis has an essential role in controlling T cell homeostasis, especially during the contraction phase of an immune response. However, its contribution to the balance between effector and regulatory populations remains unclear. We found that Rag1−/− hosts repopulated with Bim−/− conventional CD4+ T cells (Tconv) resulted in a larger induced regulatory T cell (iTreg) population than mice given wild-type (WT) Tconv. This appears to be due to an increased survival advantage of iTregs compared with activated Tconv in the absence of Bim. Downregulation of Bcl-2 expression and upregulation of Bim expression were more dramatic in WT iTregs than activated Tconv in the absence of IL-2 in vitro. The iTregs generated following Tconv reconstitution of Rag1−/− hosts exhibited lower Bcl-2 expression and higher Bim/Bcl-2 ratio than Tconv, which indicates that iTregs were in an apoptosis-prone state in vivo. A significant proportion of the peripheral iTreg pool exhibits low Bcl-2 expression indicating increased sensitivity to apoptosis, which may be a general characteristic of certain Treg subpopulations. In summary, our data suggest that iTregs and Tconv differ in their sensitivity to apoptotic stimuli due to their altered ratio of Bim/Bcl-2 expression. Modulating the apoptosis pathway may provide novel therapeutic approaches to alter the balance between effector T cells and Tregs.
Collapse
Affiliation(s)
- X Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
147
|
Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, Roodman DG, Windle JJ, Zhang X, Lu B. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 2012; 19:144-52. [PMID: 21660048 PMCID: PMC3252822 DOI: 10.1038/cdd.2011.78] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/11/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022] Open
Abstract
Autophagy is implicated in regulating cell death in activated T cells, but the underlying mechanism is unclear. Here, we show that inhibition of autophagy via Beclin 1 gene deletion in T cells leads to rampant apoptosis in these cells upon TCR stimulation. Beclin 1-deficient mice fail to mount autoreactive T-cell responses and are resistant to experimental autoimmune encephalomyelitis. Compared with Th17 cells, Th1 cells are much more susceptible to cell death upon Beclin 1 deletion. Cell death proteins are highly increased in Beclin 1-deficient T cells and inhibition of caspases and genetic deletion of Bim reverse apoptosis. In addition, p62/sequestosome 1 binds to caspase-8 but does not control levels of procaspase-8 or other cell death-related proteins. These results establish a direct role of autophagy in inhibiting the programmed cell death through degradation of apoptosis proteins in activated T cells.
Collapse
Affiliation(s)
- J R Kovacs
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Q Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Shenzhen – Hong Kong Institute of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - G Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - I G Garcia
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Ju
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - D G Roodman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - X Zhang
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - B Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
148
|
Griffith TS, Ferguson TA. Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 2011; 35:456-66. [PMID: 22035838 DOI: 10.1016/j.immuni.2011.08.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/11/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
The mammalian immune system continually faces death in the form of its own dead and dying cells that arise during normal tissue turnover, infections, cellular damage, and cancer. Complex decisions must then be made that will permit a protective response to pathogens, while at the same time destroying tumors but not attacking vital systems of the host that could lead to autoimmunity. By using an investigative technique termed the five Ws (who, what, when, where, and why), we will examine how the immune system responds to antigens generated via cell death. This analysis will give us a better understanding of the molecular differences fundamental to tolerogenic or immunogenic cell death, the cells that sense and react to the dead cells, and the consequences of these fundamental elements on the maintenance or abrogation of tolerance.
Collapse
Affiliation(s)
- Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
149
|
Folseraas T, Melum E, Franke A, Karlsen TH. Genetics in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2011; 25:713-26. [PMID: 22117637 DOI: 10.1016/j.bpg.2011.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 09/30/2011] [Indexed: 01/31/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic and severe inflammatory disease leading to fibrotic bile duct destruction and in most cases liver cirrhosis. As in other complex genetic diseases, the sibling risk of PSC is more than ten times that of the general population. Recent genome-wide association studies have consistently identified several genetic susceptibility loci. The overlap of these loci with susceptibility loci in other chronic inflammatory diseases is considerable, and offers intriguing opportunities for transfer of pathogenetic knowledge and potentially treatment options. In the present article we summarise the present knowledge on PSC genetics with a particular emphasis on the major histocompatibility complex (MHC). We discuss the clinical relevance of the risk loci and elaborate on the insight that may be obtained from associated inflammatory conditions and existing murine knock-out models.
Collapse
Affiliation(s)
- Trine Folseraas
- Norwegian PSC Research Center, Clinic for Specialized Medicine and Surgery, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| | | | | | | |
Collapse
|
150
|
Pandiyan P, Zheng L, Lenardo MJ. The molecular mechanisms of regulatory T cell immunosuppression. Front Immunol 2011; 2:60. [PMID: 22566849 PMCID: PMC3342245 DOI: 10.3389/fimmu.2011.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022] Open
Abstract
CD4⁺CD25⁺Foxp3⁺ T lymphocytes, known as regulatory T cells or T(regs), have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of T(regs). There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4⁺ effector T cells are directly inhibited by T(regs), it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that T(regs), similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of T(reg) behavior, we will recount developing findings that support these new concepts.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA.
| | | | | |
Collapse
|