101
|
Ichiyanagi K, Ishino Y, Ariyoshi M, Komori K, Morikawa K. Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J Mol Biol 2000; 300:889-901. [PMID: 10891276 DOI: 10.1006/jmbi.2000.3873] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inteins possess two different enzymatic activities, self-catalyzed protein splicing and site-specific DNA cleavage. These endonucleases, which are classified as part of the homing endonuclease family, initiate the mobility of their genetic elements into homologous alleles. They recognize long asymmetric nucleotide sequences and cleave both DNA strands in a monomer form. We present here the 2.1 A crystal structure of the archaeal PI-PfuI intein from Pyroccocus furiosus. The structure reveals a unique domain, designated here as the Stirrup domain, which is inserted between the Hint domain and an endonuclease domain. The horseshoe-shaped Hint domain contains a catalytic center for protein splicing, which involves both N and C-terminal residues. The endonuclease domain, which is inserted into the Hint domain, consists of two copies of substructure related by an internal pseudo 2-fold axis. In contrast with the I-CreI homing endonuclease, PI-PfuI possibly has two asymmetric catalytic sites at the center of a putative DNA-binding cleft formed by a pair of four-stranded beta-sheets. DNase I footprinting experiments showed that PI-PfuI covers more than 30 bp of the substrate asymmetrically across the cleavage site. A docking model of the DNA-enzyme complex suggests that the endonuclease domain covers the 20 bp DNA duplex encompassing the cleavage site, whereas the Stirrup domain could make an additional contact with another upstream 10 bp region. For the double-strand break, the two strands in the DNA duplex were cleaved by PI-PfuI with different efficiencies. We suggest that the cleavage of each strand is catalyzed by each of the two non-equivalent active sites.
Collapse
Affiliation(s)
- K Ichiyanagi
- Department of Structural Biology, Biomolecular Engineering Research Institute 6-2-3 Furuedai, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
102
|
Tam JP, Wu C, Yang JL. Membranolytic selectivity of cystine-stabilized cyclic protegrins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3289-300. [PMID: 10824115 DOI: 10.1046/j.1432-1327.2000.01359.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To correlate conformational rigidity with membranolytic selectivity of antimicrobial activity and cytotoxicity, we prepared six cyclic analogs of protegrin-1 (PG-1), an 18-residue cationic peptide with a broad-spectrum antimicrobial activity. These cyclic protegrins bear end-to-end peptide bonds together with varying numbers (zero to three) of cross-strand disulfide constraints. The most constrained analog is a cyclic tricystine protegrin (ccPG 3) containing three evenly spaced, parallel disulfide bonds. Antimicrobial assays against 10 organisms in low- and high-salt conditions showed that these cyclic protegrins were broadly active with different antimicrobial profiles against Gram-positive and Gram-negative bacteria, fungi and one tested virus, HIV-1. Compared to PG-1, the cyclic tricystine ccPG 3 displayed approximately a 10-fold decrease in hemolytic activity against human cells and 6- to 30-fold improvement of membranolytic selectivity against six of the 10 tested organisms. In contrast, [DeltaSS]cPG 8, a cyclic protegrin with no disulfide bond, and [DeltaCys6,15]cPG 5, a cyclic mimic of PG-1 with one disulfide bond, exhibited activity spectra, potency, and cytotoxicity similar to PG-1. Circular dichroism showed that cyclic protegrins containing with one to three cystine bonds displayed some degree of beta-strand structures in water/trifluoroethanol or phosphate-buffered solutions. Collectively, our results indicate that cyclic structures are useful in the design of antimicrobial peptides and that an increase in the conformational rigidity of protegrins may confer membranolytic selectivity that dissociates antimicrobial activity from hemolytic activity.
Collapse
Affiliation(s)
- J P Tam
- Vanderbilt University, Department of Microbiology and Immunology, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
103
|
Frischkorn K, Springer B, Böttger EC, Davis EO, Colston MJ, Sander P. In vivo splicing and functional characterization of Mycobacterium leprae RecA. J Bacteriol 2000; 182:3590-2. [PMID: 10852894 PMCID: PMC101971 DOI: 10.1128/jb.182.12.3590-3592.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RecA proteins from Mycobacterium tuberculosis and Mycobacterium leprae contain inteins. In contrast to the M. tuberculosis RecA, the M. leprae RecA is not spliced in Escherichia coli. We demonstrate here that M. leprae RecA is functionally spliced in Mycobacterium smegmatis and produces resistance toward DNA-damaging agents and homologous recombination.
Collapse
Affiliation(s)
- K Frischkorn
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
104
|
Abadjieva A, Hilven P, Pauwels K, Crabeel M. The yeast ARG7 gene product is autoproteolyzed to two subunit peptides, yielding active ornithine acetyltransferase. J Biol Chem 2000; 275:11361-7. [PMID: 10753950 DOI: 10.1074/jbc.275.15.11361] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast ornithine acetyltransferase has been purified from total yeast extracts as a heterodimer of two subpeptides (Liu, Y., Van Heeswijck, R., Hoj, P., and Hoogenraad, N. (1995) Eur. J. Biochem. 228, 291-296), confirmed to derive from a single ARG7-encoded precursor (Crabeel, M., Abadjieva, A., Hilven, P., Desimpelaere, J., and Soetens, O. (1997) Eur. J. Biochem. 250, 232-241). By Western immunoblotting, we show that Arg7p is also present as two subpeptides in isolated mitochondria, but that processing occurs before targeting to the mitochondria: deletion of the N-terminal leader peptide results in cytosolic accumulation of N-Arg7p, whereas C-Arg7p partially reaches the organelle by itself. When artificially co-expressed from separate genes, the two subpeptides can complement an arg7 mutation; ornithine acetyltransferase activity is measurable. Maturation of Arg7p occurs at threonine 215 (N-side), in the region most conserved among the 17 ornithine acetyltransferases characterized. Changing this conserved residue to alanine completely abolishes maturation. Furthermore, Arg7p is both processed and active in Escherichia coli, a heterologous background, and is also cleaved in vitro when produced by coupled transcription/translation in a reticulocyte lysate. Together, these data suggest classic autoproteolysis initiated by threonine 215. Most importantly, maturation is required for the enzyme to be functional, since the T215A substitution mutant is catalytically inactive and incapable of genetic complementation, despite its correct targeting to the mitochondria.
Collapse
Affiliation(s)
- A Abadjieva
- Department of Microbiology of the Vrije Universiteit Brussel and Vlaams Interuniversitair Instituut voor Biotechnologie, CERIA-COOVI, E. Grysonlane 1, B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|
105
|
Abstract
Inteins are naturally occurring proteins that are involved in the precise cleavage and formation of peptide bonds in a process known as protein splicing. Genetic engineering has allowed the controllable cleavage of peptide bonds at either the N- or C-terminus of the intein. Inteins displaying controllable cleavage have been used in the isolation of bacterially expressed proteins possessing either a C-terminal thioester or an N-terminal cysteine. The specific placement of these reactive groups has allowed either protein-protein or protein-peptide condensation through a native peptide bond. This review describes the methods used to specifically generate these reactive groups on bacterially expressed proteins and some applications of this technique, known as intein-mediated protein ligation. Furthermore, a versatile two intein (TWIN) system will be described which enables the circularization and polymerization of bacterially expressed proteins or peptides.
Collapse
Affiliation(s)
- T C Evans
- New England Biolabs, Inc., Beverly, MA 01915-5599, USA
| | | |
Collapse
|
106
|
Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW. Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 2000; 51:343-54. [PMID: 10685045 DOI: 10.1002/(sici)1097-0282(1999)51:5<343::aid-bip4>3.0.co;2-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we describe the results of studies designed to explore the scope and limitations of expressed protein ligation (EPL), a protein semisynthesis approach that allows unnatural amino acids to be site specifically introduced into large proteins. Using Src homology 3 domains from the proteins c-Abl and c-Crk as model systems, we show here that EPL can be performed in the presence of moderate concentrations of the chemical denaturant, guanidine hydrochloride, and the organic solvent dimethylsulfoxide. Use of these solubilizing agents allowed the successful preparation of two semisynthetic proteins, 10 and 12, both of which could not be prepared using standard procedures due to the low solubility of the synthetic peptide reactants in aqueous buffers. We also report the results of thiolysis and kinetic studies which indicate that stable alkyl thioester derivatives of recombinant proteins can be generated for storage and purification purposes, and that 2-mercaptoethanesulfonic acid compares favorably with thiophenol as the thiol cofactor for EPL reactions, while having superior handling properties. Finally, we describe the semisynthesis of the fluorescein/rhodamine-containing construct (12) and the ketone-containing construct (14). The efficiency of these two syntheses indicates that EPL offers a facile way of incorporating these important types of biophysical and biochemical probes into proteins.
Collapse
Affiliation(s)
- B Ayers
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
107
|
Kumaran S, Datta D, Roy RP. An enigmatic peptide ligation reaction: protease-catalyzed oligomerization of a native protein segment in neat aqueous solution. Protein Sci 2000; 9:734-41. [PMID: 10794415 PMCID: PMC2144614 DOI: 10.1110/ps.9.4.734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report an enigmatic peptide ligation reaction catalyzed by Glu-specific Staphylococcus aureus V8 protease that occurs in neat aqueous solution around neutral pH utilizing a totally unprotected peptide substrate containing free alpha-carboxyl and alpha-amino groups. V8 protease catalyzed a chain of ligation steps between pH 6 and 8 at 4 degrees C, producing a gamut of covalent oligomers (dimer through octamer or higher) of a native protein segment TAAAKFE (S39) derived from ribonuclease A (RNAse A). Size-exclusion chromatography suggested the absence of strong interaction between the reacting peptides. The circular dichroism spectra of monomer through pentamer showed length-dependent enhancement of secondary structure in the oligomers, suggesting that protease-catalyzed ligation of a monomer to an oligomer resulted in a product that was more structured than its precursor. The relative conformational stability of the oligomers was reflected in their ability to resist proteolysis, indicating that the oligomerization reaction was facilitated as a consequence of the "conformational trapping" of the product. The ligation reaction proceeded in two phases-slow formation and accumulation of the dimer followed by a fast phase of oligomerization, implying that the conformational trap encountered in the oligomerization reaction was a two-step process. The Gly substitution at any position of the TAAAKFE sequence was deleterious, suggesting that the first step of the conformational trap, namely the dimerization reaction, that proceeded very slowly even with the parent peptide, was quite sensitive to amino acid sequence. In contrast, the oligomerization reaction of an Ala analog, AAAAKFE, occurred in much the same way as S39, albeit with faster rate, suggesting that Ala substitution stabilized the overall conformational trapping process. The results suggest the viability of the product-directed "conformational trap" as a mechanism to achieve peptide ligation of totally unprotected peptide fragments in neat aqueous solution. Further, the study projects the presence of considerable innate synthetic potential in V8 protease, baring rich possibilities of protein engineering of this enzyme to generate a "V8 peptide ligase."
Collapse
Affiliation(s)
- S Kumaran
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
108
|
Abstract
Protein synthesis by native chemical ligation has been an effective approach for the synthesis of proteins of moderate size. The utility of this approach for protein synthesis is demonstrated by the synthesis of a transcription factor, Zif 268 that contains three zinc finger domains. This synthesis highlights the modular nature of the chemical ligation approach and the ability to synthesize, handle and fold multiple domain proteins.
Collapse
Affiliation(s)
- G S Beligere
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CVN6, La Jolla, CA 920037, USA
| | | |
Collapse
|
109
|
Saguez C, Lecellier G, Koll F. Intronic GIY-YIG endonuclease gene in the mitochondrial genome of Podospora curvicolla: evidence for mobility. Nucleic Acids Res 2000; 28:1299-306. [PMID: 10684923 PMCID: PMC111034 DOI: 10.1093/nar/28.6.1299] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endonuclease genes encoded in invasive introns are themselves supposed to be mobile elements which, during evolution, have colonized pre-existing introns converting them into invasive elements. This hypothesis is supported by numerous data concerning the LAGLI-DADG subclass of intronic endonucleases. Less is known about the GIY-YIG ORFs which constitute another family of endonucleases. In this paper we describe the presence of one optional GIY-YIG ORF in the second intron of the mitochondrial cytochrome b gene in the fungus Podospora curvicolla. We show that this GIY-YIG ORF is efficiently transferred from an ORF-containing intron to an ORF-less allele. We also show that the products of both the GIY-YIG ORF and the non-canonical LAGLI-DADG-GIY-YIG ORF, which is generated by its integration, have endonuclease activities which recognize and cut the insertion site of the optional sequence. This constitutes the first direct evidence for potential mobility of an intronic GIY-YIG endonuclease. We discuss the role that such a mobile sequence could have played during evolution.
Collapse
Affiliation(s)
- C Saguez
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, 91198 Gif Sur Yvette Cedex, France
| | | | | |
Collapse
|
110
|
Shingledecker K, Jiang SQ, Paulus H. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Arch Biochem Biophys 2000; 375:138-44. [PMID: 10683259 DOI: 10.1006/abbi.1999.1645] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein splicing involves the self-catalyzed excision of an intervening polypeptide segment, an intein, from a precursor protein. The first two steps in the protein splicing process lead to the formation of ester intermediates through nucleophilic attacks by the side chains of cysteine, serine, or threonine residues adjacent to the splice junctions. Since both nucleophilic residues in the Mycobacterium tuberculosis RecA intein are cysteine, their reactivities could be compared by sulfhydryl group titration. This was accomplished by using fusion proteins containing a truncated RecA intein modified by mutation to prevent protein splicing, in which the cysteines at the splice junctions were the only sulfhydryl groups. The ability to undergo hydroxylamine-induced cleavage at the upstream splice junction showed that the modified intein was not impaired in the ability to form ester intermediates. Sulfhydryl titration with iodoacetamide, monitored by quantitating the residual thiols after reaction with a maleimide derivative of biotin, revealed a striking difference in the apparent pK(a) values of the cysteines at the two splice junctions. The apparent pK(a) of the cysteine at the upstream splice junction, which initiates the N-S acyl rearrangement leading to the linear ester intermediate, was approximately 8.2, whereas that of the cysteine residue at the downstream splice junction, which initiates the transesterification reaction converting the linear ester to the branched ester intermediate, was about 5.8. This suggests that the transesterification step is facilitated by an unusually low pK(a) of the attacking thiol group. Comparison of the rates of cleavage of the linear ester intermediates derived from the M. tuberculosis RecA and the Saccharomyces cerevisiae VMA inteins by dithiothreitol and hydroxylamine revealed that the former reacted relatively more slowly with dithiothreitol, suggesting that the RecA intein has diverged in the course of evolution to react preferentially with thiolate anions and thus lacks the basic groups that may facilitate nucleophilic attack by thiols in other inteins.
Collapse
Affiliation(s)
- K Shingledecker
- Boston Biomedical Research Institute, Boston, Massachusetts, 02114, USA
| | | | | |
Collapse
|
111
|
|
112
|
Abstract
This review summarizes evidence that most of cell protein degradation is maintained by pathways transferring energy from glucose to reduction of enzymic and nonenzymic proteins (redox-responsive). In contrast, a major subcomponent of proteolysis is simultaneously independent of the cell redox network (redox-unresponsive). Thus far, direct and indirect redox-responsive proteolytic effector mechanisms characterized by various investigators include: several classes of proteases, some peptide protease inhibitors, substrate conjugation systems, substrate redox and folding status, cytoskeletal-membrane kinesis, metal homeostasis, and others. The present focus involves redox control of sulfhydryl proteases and proteolytic pathways of mammalian muscle; however, other mechanisms, cell types, and species are also surveyed. The diversity of redox-responsive catabolic mechanisms reveals that the machinery of protein turnover evolved with fundamental dependencies upon the cell redox network, as observed in many species. The net redox status of a reversible proteolytic effector mechanism represents the balance between combined oxidative inactivating influences versus reductive activating influences. Similar to other proteins, redox-responsive proteolytic effectors appear to be oxidized by mixed disulfide formation, nitrosation, reactive oxygen species, and associations or reactions with metal ions and various pro-oxidative metabolites. Systems reducing the proteolytic machinery include major redox enzyme chains, such as thioredoxins or glutaredoxins, and perhaps various reductive metabolites, including glutathione and dihydrolipoic acid. Much of mammalian intracellular protein degradation is reversibly responsive to noninjurious experimental intervention in the reductive energy supply-demand balance. Proteolysis is reversibly inhibited by diamide or dehydroascorbic acid; and such antiproteolytic actions are strongly dependent on the cell glucose supply. However, gross redox-responsive proteolysis is not accompanied by ATP depletion or vice versa. Redox-responsive proteolysis includes Golgi-endoplasmic reticulum degradation, lysosomal degradation, and some amount of extravesicular degradation, all comprising more than half of total cell proteolysis. Speculatively, redox-dependent proteolysis exhibits features expected of a controlling influence coordinating distinct proteolytic processes under some intracellular conditions.
Collapse
Affiliation(s)
- T D Lockwood
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
113
|
Abstract
We have molecularly characterized a proteolytic cleavage in conserved nuclear pore complex proteins. This cleavage, previously demonstrated to be essential for the biogenesis of two nuclear pore complex proteins in mammals (Nup98 and Nup96) and yeast (Nup145-N and Nup145-C), occurs between Phe and Ser residues within a highly conserved domain in a polyprotein precursor. Here, we show that a protease is not involved in the cleavage event. By using a combination of domain mapping and site-directed mutagenesis, we demonstrate that the human nuclear pore complex protein Nup98 specifically cleaves itself between F863 and S864. A region of Nup98, amino acids 715-920, is able to cleave, whereas a smaller region, amino acids 772-920, does not cleave. In addition, we have generated a Nup98 mutant that cleaves under defined conditions in vitro. Further, the two cleaved fragments of Nup98 form a complex, providing a possible mechanism whereby specific, yet low-affinity, binding between Nup98 and Nup96 is responsible for the nuclear targeting of Nup96. Although apparently unrelated evolutionarily, Nup98 has converged on an autoproteolytic biogenesis mechanism similar to that of hedgehog proteins, the inteins, and the N-terminal nucleophile proteins.
Collapse
Affiliation(s)
- J S Rosenblum
- Laboratory of Cell Biology, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
114
|
Evans TC, Benner J, Xu MQ. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 1999; 274:18359-63. [PMID: 10373440 DOI: 10.1074/jbc.274.26.18359] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mini-inteins derived from Synechocystis sp. (Ssp DnaB intein) and Mycobacterium xenopi (Mxe GyrA intein) that have been modified to cleave peptide bonds at their C and N termini, respectively, were cloned in-frame to the N and C termini of a target protein. Peptide bond cleavage of the modified inteins generated an N-terminal cysteine and a C-terminal thioester on the same protein. These complementary reactive groups underwent intra- or intermolecular condensation to generate circular or polymeric protein species with a new peptide bond at the site of ligation. Three cyclic peptides, BBP, an organ specific localization peptide; RGD, an inhibitor of platelet aggregation; and CDR-H3/C2, which inhibits HIV-1 replication, were isolated using the two-intein system. BBP, RGD, and CDR-H3/C2 had masses of 977.1, 1119.9, and 2098.6 g/mol, respectively, as determined by matrix-assisted laser desorption-time of flight mass spectrometry, which agreed well with the values of 977.2, 1120.3, and 2098.3 g/mol, respectively, predicted for the cyclic species. This system was used to cyclize proteins as large as 395 amino acids. Furthermore, multimers of thioredoxin were formed upon concentration of the reactive species, indicating the potential to form novel biomaterials based on fibrous proteins.
Collapse
Affiliation(s)
- T C Evans
- New England Biolabs, Inc., Beverly, Massachusetts 01915-5599, USA
| | | | | |
Collapse
|
115
|
Affiliation(s)
- F B Perler
- New England Biolabs Inc., 32 Tozer Rd, Beverly, MA 01915, USA.
| |
Collapse
|
116
|
Evans TC, Benner J, Xu MQ. The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem 1999; 274:3923-6. [PMID: 9933578 DOI: 10.1074/jbc.274.7.3923] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The smallest known intein, found in the ribonucleoside diphosphate reductase gene of Methanobacterium thermoautotrophicum (Mth RIR1 intein), was found to splice poorly in Escherichia coli with the naturally occurring proline residue adjacent to the N-terminal cysteine of the intein. Splicing proficiency increased when this proline was replaced with an alanine residue. However, constructs that displayed efficient N- and C-terminal cleavage were created by replacing either the C-terminal asparagine or N-terminal cysteine of the intein, respectively, with an alanine. Furthermore, these constructs were used to specifically generate complementary reactive groups on protein sequences for use in ligation reactions. Reaction between an intein-generated C-terminal thioester on E. coli maltose-binding protein (43 kDa) and an intein-generated cysteine at the N terminus of either T4 DNA ligase (56 kDa) or thioredoxin (12 kDa) resulted in the ligation of the proteins through a native peptide bond. Thus the smallest of the known inteins is capable of splicing and its unique properties extend the utility of intein-mediated protein ligation to include the in vitro fusion of large, bacterially expressed proteins.
Collapse
Affiliation(s)
- T C Evans
- New England Biolabs, Inc., Beverly, Massachusetts 01915-5599, USA
| | | | | |
Collapse
|
117
|
Affiliation(s)
- H Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| |
Collapse
|
118
|
Abstract
Inteins are intervening sequences that splice as proteins, not RNA. InBase, the New England Biolabs Intein Database (http://www.neb. com/neb/inteins.html), is a comprehensive on-line database that includes the Intein Registry, along with detailed information about each intein and its host protein, tabulated comparisons and a comprehensive bibliography including papers in press.
Collapse
Affiliation(s)
- F B Perler
- New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915, USA.
| |
Collapse
|
119
|
Abstract
Several protein processing events that involve related chemical mechanisms have been observed in nature. Now, new methods have been developed, based on the same chemical reactions, that permit proteins to be modified in ways that were not previously possible.
Collapse
Affiliation(s)
- F S Gimble
- Center for Macromolecular Design, Texas A&M University, Houston, Texas 77030, USA.
| |
Collapse
|
120
|
Affiliation(s)
- Mande Holford
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Tom W Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| |
Collapse
|
121
|
Kinsland C, Taylor SV, Kelleher NL, McLafferty FW, Begley TP. Overexpression of recombinant proteins with a C-terminal thiocarboxylate: implications for protein semisynthesis and thiamin biosynthesis. Protein Sci 1998; 7:1839-42. [PMID: 10082383 PMCID: PMC2144084 DOI: 10.1002/pro.5560070821] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A facile and rapid method for the production of protein C-terminal thiocarboxylates on DNA-encoded polypeptides is described. This method, which relies on the mechanism of the cleavage reaction of intein-containing fusion proteins, can produce multi-milligram quantities of protein C-terminal thiocarboxylate quickly and inexpensively. The utility of this method for protein semisynthesis and implications for studies on the biosynthesis of thiamin are discussed.
Collapse
Affiliation(s)
- C Kinsland
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
122
|
Abstract
A wide range of biological laboratories have adopted protein engineering techniques, altering the way biochemical research is carried out. Ironically, this broad success has increased the challenges faced by researchers at the chemistry-biology interface.
Collapse
Affiliation(s)
- D F Doyle
- Howard Hughes Medical Institute Department of Pharmacology University of Texas Southwestern Medical Center at Dallas Dallas, TX 75235-9050, USA
| | | |
Collapse
|
123
|
Lew BM, Mills KV, Paulus H. Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem 1998; 273:15887-90. [PMID: 9632632 DOI: 10.1074/jbc.273.26.15887] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein splicing elements, or inteins, catalyze their own excision from flanking polypeptide sequences, or exteins, thereby leading to the formation of new proteins in which the exteins are linked directly by a peptide bond. A trans-splicing system, using separately purified and expressed N- and C-terminal intein fragments of about 100 amino acids each, fused to appropriate exteins, was recently derived from the Mycobacterium tuberculosis RecA intein (Mills, K. V., Lew, B. M., Jiang, S.-Q., and Paulus, H. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3543-3548). We have replaced the C-terminal intein fragment of this system with synthetic peptides comprising 35-50 of the C-terminal residues of the RecA intein. The N-terminal intein fragment and the synthetic peptide were reconstituted by renaturation from guanidinium chloride. In the absence of added reductants, a disulfide-linked dimer of the N-terminal fragment and the peptide accumulated and could be induced to splice by reduction of its disulfide bond. The intermediate and spliced products were identified by polyacrylamide gel electrophoresis, mass spectrometry, and derivatization with thiol-reactive biotin followed by Western blotting with a streptavidin-enzyme conjugate. This is the first example of protein splicing involving a synthetic intein fragment and opens the way for studying the active site structure and function of the intein by the use of different synthetic peptides, including ones with non-natural amino acids.
Collapse
Affiliation(s)
- B M Lew
- Boston Biomedical Research Institute, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
124
|
Abstract
Formation of an internal (thio)ester bond activates numerous in vivo protein autoprocessing pathways including pyruvoyol group synthesis, autoproteolysis, protein splicing, enzyme activation and protein targeting. Structural analysis of precursors, intermediates and products is fine tuning our understanding of the mechanisms of these reactions.
Collapse
|
125
|
Mills KV, Lew BM, Jiang S, Paulus H. Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A 1998; 95:3543-8. [PMID: 9520402 PMCID: PMC19872 DOI: 10.1073/pnas.95.7.3543] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein splicing involves the self-catalyzed excision of protein splicing elements, or inteins, from flanking polypeptide sequences, or exteins, leading to the formation of new proteins in which the exteins are linked directly by a peptide bond. To study the enzymology of this interesting process we have expressed and purified N- and C-terminal segments of the Mycobacterium tuberculosis RecA intein, each approximately 100 amino acids long, fused to appropriate exteins. These fragments were reconstituted into a functional protein splicing element by renaturation from 6 M urea. When renaturation was carried out in the absence of thiols, the reconstituted splicing element accumulated as an inactive disulfide-linked complex of the two intein fragments, which could be induced to undergo protein splicing by reduction of the disulfide bond. This provided a useful tool for separately investigating the requirements for the reconstitution of the intein fragments to yield a functional protein splicing element and for the protein splicing process per se. For example, the pH dependence of these processes was quite different, with reconstitution being most efficient at pH 8.5 and splicing most rapid at pH 7.0. The availability of such an in vitro protein splicing system opens the way for the exploration of intein structure and the unusual enzymology of protein splicing. In addition, this trans-splicing system is a potential protein ligase that can link any two polypeptides fused to the N- and C-terminal intein segments.
Collapse
Affiliation(s)
- K V Mills
- Boston Biomedical Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
126
|
Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB. Control of protein splicing by intein fragment reassembly. EMBO J 1998; 17:918-26. [PMID: 9463370 PMCID: PMC1170441 DOI: 10.1093/emboj/17.4.918] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inteins are protein splicing elements that mediate their excision from precursor proteins and the joining of the flanking protein sequences (exteins). In this study, protein splicing was controlled by splitting precursor proteins within the Psp Pol-1 intein and expressing the resultant fragments in separate hosts. Reconstitution of an active intein was achieved by in vitro assembly of precursor fragments. Both splicing and intein endonuclease activity were restored. Complementary fragments from two of the three fragmentation positions tested were able to splice in vitro. Fragments resulting in redundant overlaps of intein sequences or containing affinity tags at the fragmentation sites were able to splice. Fragment pairs resulting in a gap in the intein sequence failed to splice or cleave. However, similar deletions in unfragmented precursors also failed to splice or cleave. Single splice junction cleavage was not observed with single fragments. In vitro splicing of intein fragments under native conditions was achieved using mini exteins. Trans-splicing allows differential modification of defined regions of a protein prior to extein ligation, generating partially labeled proteins for NMR analysis or enabling the study of the effects of any type of protein modification on a limited region of a protein.
Collapse
|
127
|
Shingledecker K, Jiang SQ, Paulus H. Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 1998; 207:187-95. [PMID: 9511761 DOI: 10.1016/s0378-1119(97)00624-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most protein-splicing elements (inteins) function both as catalysts of protein splicing and as homing endonucleases. In order to identify the domains of inteins that are essential for protein splicing, the intein sequence embedded in the recA gene of Mycobacterium tuberculosis was genetically dissected. The effect of various modifications of the intein on the ability to mediate splicing was studied in Escherichia coli transformed with plasmids in which the coding sequence for the RecA intein was inserted in-frame between coding regions for the E. coli maltose-binding protein and a polypeptide containing a hexahistidine sequence as the N- and C-exteins, respectively. One type of genetic alteration of the RecA intein involved deletion of the central region encoding 229 amino acids (aa), representing the entire homing endonuclease homology domain. The residual intein (211 aa plus an undecapeptide spacer) was able to promote protein splicing as efficiently as the wild-type intein, indicating that the homing endonuclease domain plays no role in the protein-splicing process and that the protein-splicing active center is confined to the N- and C-terminal segments of the intein, less than 110 aa each. Another type of alteration involved the introduction of overlapping translation termination and initiation codons in-frame into the intein coding region. The modified RecA intein, although synthesized as two separate components, could nevertheless mediate protein splicing, indicating that the N- and C-terminal protein-splicing domains can interact with sufficient affinity and specificity to allow protein-splicing to occur in trans. The efficiency of trans-splicing was much enhanced when the homing endonuclease domain was entirely deleted so that the length of the interacting N- and C-terminal intein fragments was only about 110 aa each.
Collapse
|
128
|
Affiliation(s)
- F B Perler
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA
| |
Collapse
|
129
|
|