101
|
Santos JM, Freire P, Mesquita FS, Mika F, Hengge R, Arraiano CM. Poly(A)-polymerase I links transcription with mRNA degradation via sigmaS proteolysis. Mol Microbiol 2006; 60:177-88. [PMID: 16556229 DOI: 10.1111/j.1365-2958.2006.05078.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria rapidly adapt to changes in growth conditions through control of transcription and specific mRNA degradation. Interplay of both mechanisms must exist in order to achieve fine-tuned regulation of gene expression. Transcription of the Escherichia coli bolA gene is mediated by the RpoS/sigmaS transcription factor in response to environmental signals. In this report it is shown that the mechanisms of bolA1p mRNA transcription and degradation are tightly connected at the onset of stationary phase and in response to sudden carbon starvation. In stationary phase, bolA1p mRNA levels were reduced 2.5-fold in a poly(A)-polymerase I (PAPI) mutant, explained by the significant threefold reduction in sigmaS protein levels in the same strain. Furthermore, fusions with the rpoS gene, analysis of the stability of sigmaS and the levels of RssB indicate that the absence of PAPI enhances RssB-mediated sigmaS proteolysis specifically in starved cells. The fact that PAPI induces higher cellular levels of a global regulator is a novel finding of wide biological significance. PAPI could work as a linker between transcription and mRNA degradation with the ultimate goal of adapting and surviving to growth-limiting conditions.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apt 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
102
|
Bougdour A, Wickner S, Gottesman S. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 2006; 20:884-97. [PMID: 16600914 PMCID: PMC1472289 DOI: 10.1101/gad.1400306] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sigma(S) subunit of Escherichia coli RNA polymerase regulates the expression of stationary phase and stress response genes. sigma(S) is highly unstable in exponentially growing cells, whereas its stability increases dramatically upon starvation or under certain stress conditions. The degradation of sigma(S) is controlled by the phosphorylatable adaptor protein RssB and the ClpXP protease. RssB specifically directs sigma(S) to ClpXP. An unanswered question is how RssB-mediated degradation of sigma(S) is blocked by conditions such as glucose or phosphate starvation. We report here the identification and characterization of a new regulator of sigma(S) stability, IraP (inhibitor of RssB activity during phosphate starvation), that stabilizes sigma(S) both in vivo and in vitro. Deletion of iraP interferes with sigma(S) stabilization during phosphate starvation, but not during carbon starvation, and has a partial effect in stationary phase and nitrogen starvation. IraP interferes with RssB-dependent degradation of sigma(S) through a direct protein-protein interaction with RssB. A point mutant of IraP was isolated and found to be defective both for inhibition of sigma(S) degradation and interaction with RssB. Our results reveal a novel mechanism of regulation of sigma(S) stability through the regulation of RssB activity and identify IraP as a member of a new class of regulators, the anti-adaptor proteins.
Collapse
Affiliation(s)
- Alexandre Bougdour
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
103
|
Chen JC, Hottes AK, McAdams HH, McGrath PT, Viollier PH, Shapiro L. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 2006; 25:377-86. [PMID: 16395329 PMCID: PMC1383518 DOI: 10.1038/sj.emboj.7600935] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/02/2005] [Indexed: 11/08/2022] Open
Abstract
We demonstrate that successive cleavage events involving regulated intramembrane proteolysis (Rip) occur as a function of time during the Caulobacter cell cycle. The proteolytic substrate PodJ(L) is a polar factor that recruits proteins required for polar organelle biogenesis to the correct cell pole at a defined time in the cell cycle. We have identified a periplasmic protease (PerP) that initiates the proteolytic sequence by truncating PodJ(L) to a form with altered activity (PodJ(S)). Expression of perP is regulated by a signal transduction system that activates cell type-specific transcription programs and conversion of PodJ(L) to PodJ(S) in response to the completion of cytokinesis. PodJ(S), sequestered to the progeny swarmer cell, is subsequently released from the polar membrane by the membrane metalloprotease MmpA for degradation during the swarmer-to-stalked cell transition. This sequence of proteolytic events contributes to the asymmetric localization of PodJ isoforms to the appropriate cell pole. Thus, temporal activation of the PerP protease and spatial restriction of the polar PodJ(L) substrate cooperatively control the cell cycle-dependent onset of Rip.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Alison K Hottes
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Patrick T McGrath
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Patrick H Viollier
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Beckman Center B300, Stanford, CA 94305, USA. Tel.: +1 650 725 7678; Fax: +1 650 725 7739; E-mail:
| |
Collapse
|
104
|
Mika F, Hengge R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 2005; 19:2770-81. [PMID: 16291649 PMCID: PMC1283968 DOI: 10.1101/gad.353705] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The general stress sigma factor sigma(S) (RpoS) in Escherichia coli is controlled at the levels of transcription, translation, and proteolysis. Here we demonstrate that the phosphorylated response regulator ArcA is a direct repressor of rpoS transcription that binds to two sites flanking the major rpoS promoter, with the upstream site overlapping an activating cAMP-CRP-binding site. The histidine sensor kinase ArcB not only phosphorylates ArcA, but also the sigma(S) proteolytic targeting factor RssB, and thereby stimulates sigma(S) proteolysis. Thus, ArcB/ArcA/RssB constitute a branched "three-component system", which coordinates rpoS transcription and sigma(S) proteolysis and thereby maintains low sigma(S) levels in rapidly growing cells. We suggest that the redox state of the quinones, which controls autophosphorylation of ArcB, not only monitors oxygen but also energy supply, and we show that the ArcB/ArcA/RssB system is involved in sigma(S) induction during entry into starvation conditions. Moreover, this induction is enhanced by a positive feedback that involves sigma(S)-dependent induction of ArcA, which further reduces sigma(S) proteolysis, probably by competing with RssB for residual phosphorylation by ArcB.
Collapse
Affiliation(s)
- Franziska Mika
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
105
|
Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 2005; 57:576-91. [PMID: 15978086 DOI: 10.1111/j.1365-2958.2005.04710.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the structural genes encoding the ATP-dependent proteases ClpCP and Lon in Corynebacterium glutamicum and Streptomyces lividans is activated by the transcriptional regulator ClgR in response to yet unknown environmental stimuli. As it was not known whether ClgR controls expression of additional genes we used DNA microarrays in order to comprehensively define the ClgR regulon in C. glutamicum. The mRNA levels of 16 genes decreased >/= 2-fold in a DeltaclgRDeltaclpC mutant (ClgR absent) compared with a DeltaclpC mutant (ClgR present). For five genes in four operons (NCgl0748, ptrB, hflX and NCgl0240-recR) regulation by ClgR could be independently verified by primer extension analyses and confirmation of binding of purified ClgR to the regulatory regions of these operons. ptrB encodes an endopeptidase, which is consistent with the proteolytic functions of the genes already known to be under ClgR control. However, RecR is unrelated to proteolysis but required for recombinational repair of UV-induced DNA damage. Possibly ClgR-dependent activation of gene expression is triggered by environmental stresses damaging both proteins and nucleic acids, although DNA damage induced by UV radiation and mitomycin C treatment did not result in ClgR-dependent transcriptional activation of any of the newly identified ClgR regulon members. In order to functionally analyse the NCgl0748 and hflX genes we have constructed C. glutamicum strains with deletions in these genes. The DeltaNCgl0748 mutant displayed reduced growth rates in minimal and rich media. The NCgl0748 protein was shown to be localized in the cytoplasm only, while the HflX pool is equally distributed between cytoplasm and plasma membrane. In order to study the proposed degradation of ClgR by ClpCP we have constructed a conditional clpP1P2 mutant. Depletion of ClpP1 and ClpP2 in that strain resulted in the accumulation of ClgR, indicating that ClgR is in fact a substrate of the ClpCP1 and/or ClpCP2 protease in C. glutamicum.
Collapse
Affiliation(s)
- Sabine Engels
- Institute of Biotechnology 1, Research Centre Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E. Proteomic characterization of the acid tolerance response inLactococcus lactis MG1363. Proteomics 2005; 5:4794-807. [PMID: 16237734 DOI: 10.1002/pmic.200401327] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exponentially growing cells of Lactococcus lactis MG1363 are able to develop an Acid Tolerance Response (ATR) when incubated at pH 5, in both rich (M17)--and chemically defined (SA)--culture media. Physiological and proteomic characterization of this adaptive response indicated that L. lactis reorganizes its metabolism in response to acid stress to a great extent and quite differently in the two media. The development of ATR was fully dependent on protein de novo synthesis in SA and only partly dependent in M17. 2D gel electrophoresis revealed a total of 90 spots induced by acidity, 80 of which were identified by mass spectrometry. Only 10 proteins (BglA, PycA, GlmS, HasC, ArgS, GatA, AtpA, ArcB, Cfa, and SodA) were overproduced in the two media. A transcriptional analysis of the corresponding genes suggested that for half of them the mode of regulation may differ in the two media. Among the protein spots upregulated during the ATR in SA but not in M17, 13 already displayed an elevated rate of synthesis in M17 at neutral pH. These proteins could play an important role in the development of the protein de novo synthesis-independent ATR observed in M17.
Collapse
Affiliation(s)
- Aurélie Budin-Verneuil
- Laboratoire Microbiologie de l'Environnement, Université de Caen, F-14032 Caen cedex, France
| | | | | | | | | |
Collapse
|
107
|
Ranquet C, Toussaint A, de Jong H, Maenhaut-Michel G, Geiselmann J. Control of Bacteriophage Mu Lysogenic Repression. J Mol Biol 2005; 353:186-95. [PMID: 16154589 DOI: 10.1016/j.jmb.2005.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/24/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
The transposable and temperate phage Mu infects Escherichia coli where it can enter the lytic life-cycle or reside as a repressed and integrated prophage. The repressor protein Rep is the key element in the lysis-lysogeny decision. We have analyzed the fate of Rep in different mutants by Western blotting under two conditions that can induce a lysogen: high temperature and stationary phase. We show that, unexpectedly, Rep accumulates under all conditions where the prophage is completely derepressed, and that this accumulation is ClpX-dependent. An analysis of the degradation kinetics shows that Rep is a target of two protease systems: inactivation of either the clpP or lon gene results in a stabilization of Rep. Such a reaction scheme explains the counterintuitive observation that derepression is correlated with high repressor concentration. We conclude that under all conditions of phage induction the repressor is sequestered in a non-active form. A quantitative simulation accounts for our experimental data. It provides a model that captures the essential features of Mu induction and explains some of the mechanisms by which the physiological signals affecting the lysis-lysogeny decision converge onto Rep.
Collapse
Affiliation(s)
- Caroline Ranquet
- Laboratoire du Contrôle de l'Expression Génique, Institut Jean Roget-Faculté de Médecine-Pharmacie, Domaine de la Merci, F-38700 La Tronche, France.
| | | | | | | | | |
Collapse
|
108
|
van den Ent F, Löwe J. Crystal structure of the ubiquitin-like protein YukD from Bacillus subtilis. FEBS Lett 2005; 579:3837-41. [PMID: 15978580 DOI: 10.1016/j.febslet.2005.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 05/24/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The YukD protein in Bacillus subtilis was identified in a hidden Markov model (HMM) search as being related in sequence to ubiquitin. By solving the crystal structure we show that YukD adopts a fold that is most closely related to ubiquitin, yet has the shortest C-terminal tail of all known ubiquitin-like proteins. The endogenous gene of yukD in B. subtilis was disrupted without an obvious phenotypic effect and an inducible copy encoding a C-Myc and His-tagged version of the protein was introduced at the ectopic locus amyE. Conjugation assays performed both in vitro and in vivo indicate that YukD lacks the capacity for covalent bond formation with other proteins.
Collapse
|
109
|
Buchler NE, Gerland U, Hwa T. Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci U S A 2005; 102:9559-64. [PMID: 15972813 PMCID: PMC1172234 DOI: 10.1073/pnas.0409553102] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 05/06/2005] [Indexed: 11/18/2022] Open
Abstract
The functions of most genetic circuits require a sufficient degree of cooperativity in the circuit components. Although mechanisms of cooperativity have been studied most extensively in the context of transcriptional initiation control, cooperativity from other processes involved in the operation of the circuits can also play important roles. In this work, we examine a simple kinetic source of cooperativity stemming from the nonlinear degradation of multimeric proteins. Ample experimental evidence suggests that protein subunits can degrade less rapidly when associated in multimeric complexes, an effect we refer to as "cooperative stability." For dimeric transcription factors, this effect leads to a concentration-dependence in the degradation rate because monomers, which are predominant at low concentrations, will be more rapidly degraded. Thus, cooperative stability can effectively widen the accessible range of protein levels in vivo. Through theoretical analysis of two exemplary genetic circuits in bacteria, we show that such an increased range is important for the robust operation of genetic circuits as well as their evolvability. Our calculations demonstrate that a few-fold difference between the degradation rate of monomers and dimers can already enhance the function of these circuits substantially. We discuss molecular mechanisms of cooperative stability and their occurrence in natural or engineered systems. Our results suggest that cooperative stability needs to be considered explicitly and characterized quantitatively in any systematic experimental or theoretical study of gene circuits.
Collapse
Affiliation(s)
- Nicolas E Buchler
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
110
|
Sung CK, Morrison DA. Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J Bacteriol 2005; 187:3052-61. [PMID: 15838032 PMCID: PMC1082825 DOI: 10.1128/jb.187.9.3052-3061.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Natural genetic transformation in Streptococcus pneumoniae is controlled by a quorum-sensing system, which acts through the competence-stimulating peptide (CSP) for transient activation of genes required for competence. More than 100 genes have been identified as CSP regulated by use of DNA microarray analysis. One of the CSP-induced genes required for genetic competence is comW. As the expression of this gene depended on the regulator ComE, but not on the competence sigma factor ComX (sigma(X)), and as expression of several genes required for DNA processing was affected in a comW mutant, comW appears to be a new regulatory gene. Immunoblotting analysis showed that the amount of the sigma(X) protein is dependent on ComW, suggesting that ComW may be directly or indirectly involved in the accumulation of sigma(X). As sigma(X) is stabilized in clpP mutants, a comW mutation was introduced into the clpP background to ask whether the synthesis of sigma(X) depends on ComW. The clpP comW double mutant accumulated an amount of sigma(X) higher (threefold) than that seen in the wild type but was not transformable, suggesting that while comW is not needed for sigma(X) synthesis, it acts both in stabilization of sigma(X) and in its activation. Modification of ComW with a histidine tag at its C or N terminus revealed that both amino and carboxyl termini are important for increasing the stability of sigma(X), but only the N terminus is important for stimulating its activity.
Collapse
Affiliation(s)
- Chang Kyoo Sung
- Laboratory for Molecular Biology, University of Illinois at Chicago, IL 60607, USA
| | | |
Collapse
|
111
|
Kagawa TF, O'toole PW, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 2005; 57:650-66. [PMID: 16045611 DOI: 10.1111/j.1365-2958.2005.04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Todd F Kagawa
- Department of Chemical and Environmental Sciences, and Materials and Surfaces Sciences Institute, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
112
|
Schmid AK, Howell HA, Battista JR, Peterson SN, Lidstrom ME. HspR is a global negative regulator of heat shock gene expression in Deinococcus radiodurans. Mol Microbiol 2005; 55:1579-90. [PMID: 15720562 DOI: 10.1111/j.1365-2958.2005.04494.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The HspR protein functions as a negative regulator of chaperone and protease gene expression in a diversity of bacteria. Here we have identified, cloned and deleted the Deinococcus radiodurans HspR homologue, DR0934. Delta hspR mutants exhibit moderate growth defects when shifted to mild heat shock temperatures, but are severely impaired for survival at 48 degrees C. Using quantitative reverse transcription polymerase chain reaction and global transcriptional analysis, we have identified 14 genes that are derepressed in the absence of stress in the delta hspR background, 11 of which encode predicted chaperones and proteases, including dnaKJgrpE, ftsH, lonB, hsp20 and clpB. Promoter mapping indicated that the transcription of these genes initiates from a promoter bearing a sigma70-type consensus, and that putative HspR binding sites (HAIR) were present in the 5'-untranslated regions. Electrophoretic mobility shift assays indicated that HspR binds to these promoters at the HAIR site in vitro. These results strongly suggest that DR0934 encodes the HspR-like global negative regulator of D. radiodurans that directly represses chaperone and protease gene expression by binding to the HAIR site in close proximity to promoter regions.
Collapse
Affiliation(s)
- Amy K Schmid
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195-2180, USA
| | | | | | | | | |
Collapse
|
113
|
Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 2005; 55:1233-45. [PMID: 15686567 DOI: 10.1111/j.1365-2958.2004.04459.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DnaA protein binds bacterial replication origins and it initiates chromosome replication. The Caulobacter crescentus DnaA also initiates chromosome replication and the C. crescentus response regulator CtrA represses chromosome replication. CtrA proteolysis by ClpXP helps restrict chromosome replication to the dividing cell type. We report that C. crescentus DnaA protein is also selectively targeted for proteolysis but DnaA proteolysis uses a different mechanism. DnaA protein is unstable during both growth and stationary phases. During growth phase, DnaA proteolysis ensures that primarily newly made DnaA protein is present at the start of each replication period. Upon entry into stationary phase, DnaA protein is completely removed while CtrA protein is retained. Cell cycle arrest by sudden carbon or nitrogen starvation is sufficient to increase DnaA proteolysis, and relieving starvation rapidly stabilizes DnaA protein. This starvation-induced proteolysis completely removes DnaA protein even while DnaA synthesis continues. Apparently, C. crescentus relies on proteolysis to adjust DnaA in response to such rapid nutritional changes. Depleting the C. crescentus ClpP protease significantly stabilizes DnaA. However, a dominant-negative clpX allele that blocks CtrA degradation, even when combined with a clpA null allele, did not decrease DnaA degradation. We suggest that either a novel chaperone presents DnaA to ClpP or that ClpX is used with exceptional efficiency so that when ClpX activity is limiting for CtrA degradation it is not limiting for DnaA degradation. This unexpected and finely tuned proteolysis system may be an important adaptation for a developmental bacterium that is often challenged by nutrient-poor environments.
Collapse
Affiliation(s)
- Boris Gorbatyuk
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Room 506, Montreal, Quebec, H3A 2B4, Canada
| | | |
Collapse
|
114
|
Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:311-323. [PMID: 15828683 DOI: 10.1094/mpmi-18-0311] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expression of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase, a key enzyme in the production of indole-3-acetic acid (IAA) in this bacterium, is upregulated by IAA. Here, we demonstrate that the ipdC gene is the promoter proximal gene in a bicistronic operon. Database searches revealed that the second gene of this operon, named iaaC, is well conserved evolutionarily and that the encoded protein is homologous to the Escherichia coli protein SCRP-27A, the zebrafish protein ES1, and the human protein KNP-I/GT335 (HES1), all of unknown function and belonging to the DJ-1/PfpI superfamily. In addition to this operon structure, iaaC is also transcribed monocistronically. Mutation analysis of the latter gene indicated that the encoded protein is involved in controlling IAA biosynthesis but not ipdC expression. Besides being upregulated by IAA, expression of the ipdC-iaaC operon is pH dependent and maximal at acidic pH. The ipdC promoter was studied using a combination of deletion analyses and site-directed mutagenesis. A dyadic sequence (ATTGTTTC(GAAT)GAAACAAT), centered at -48 was demonstrated to be responsible for the IAA inducibility. This bacterial auxin-responsive element does not control the pH-dependent expression of ipdC-iaaC.
Collapse
Affiliation(s)
- A Vande Broek
- Center of Microbial and Plant Genetics, KULeuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
116
|
|
117
|
Chandu D, Nandi D. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res Microbiol 2005; 155:710-9. [PMID: 15501647 DOI: 10.1016/j.resmic.2004.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The general pathway involving adenosine triphosphate (ATP)-dependent proteases and ATP-independent peptidases during cytosolic protein degradation is conserved, with differences in the enzymes utilized, in organisms from different kingdoms. Lon and caseinolytic protease (Clp) are key enzymes responsible for the ATP-dependent degradation of cytosolic proteins in Escherichia coli. Orthologs of E. coli Lon and Clp were searched for, followed by multiple sequence alignment of active site residues, in genomes from seventeen organisms, including representatives from eubacteria, archaea, and eukaryotes. Lon orthologs, unlike ClpP and ClpQ, are present in most organisms studied. The roles of these proteases as essential enzymes and in the virulence of some organisms are discussed.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
118
|
Beck NA, Krukonis ES, DiRita VJ. TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J Bacteriol 2005; 186:8309-16. [PMID: 15576780 PMCID: PMC532408 DOI: 10.1128/jb.186.24.8309-8316.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of toxT, the transcription activator of cholera toxin and pilus production in Vibrio cholerae, is the consequence of a complex cascade of regulatory events that culminates in activation of the toxT promoter by TcpP and ToxR, two membrane-localized transcription factors. Both are encoded in operons with genes whose products, TcpH and ToxS, which are also membrane localized, are hypothesized to control their activity. In this study we analyzed the role of TcpH in controlling TcpP function. We show that a mutant of V. cholerae lacking TcpH expressed virtually undetectable levels of TcpP, although tcpP mRNA levels remain unaffected. A time course experiment showed that levels of TcpP, expressed from a plasmid, are dramatically reduced over time without co-overexpression of TcpH. By contrast, deletion of toxS did not affect ToxR protein levels. A fusion protein in which the TcpP periplasmic domain is replaced with that of ToxR remains stable, suggesting that the periplasmic domain of TcpP is the target for degradation of the protein. Placement of the periplasmic domain of TcpP on ToxR, an otherwise stable protein, results in instability, providing further evidence for the hypothesis that the periplasmic domain of TcpP is a target for degradation. Consistent with this interpretation is our finding that derivatives of TcpP lacking a periplasmic domain are more stable in V. cholerae than are derivatives in which the periplasmic domain has been truncated. This work identifies at least one role for the periplasmic domain of TcpP, i.e., to act as a target for a protein degradation pathway that regulates TcpP levels. It also provides a rationale for why the V. cholerae tcpH mutant strain is avirulent. We hypothesize that regulator degradation may be an important mechanism for regulating virulence gene expression in V. cholerae.
Collapse
Affiliation(s)
- Nancy A Beck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103-0620, USA
| | | | | |
Collapse
|
119
|
McCrindle SL, Kappler U, McEwan AG. Microbial Dimethylsulfoxide and Trimethylamine-N-Oxide Respiration. Adv Microb Physiol 2005; 50:147-98. [PMID: 16221580 DOI: 10.1016/s0065-2911(05)50004-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last two decades, the biochemistry and genetics of dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) respiration has been characterised, particularly in Escherichia coli marine bacteria of the genus Shewanella and the purple phototrophic bacteria, Rhodobacter sphaeroides and R. capsulatus. All of the enzymes (or catalytic subunits) involved the final step in DMSO and TMAO respiration contain a pterin molybdenum cofactor and are members of the DMSO reductase family of molybdoenzymes. In E. coli, the dimethylsulfoxide reductase (DmsABC) can be purified from membranes as a complex, which exhibits quinol-DMSO oxidoreductase activity. The enzyme is anchored to the membrane via the DmsC subunit and its catalytic subunit DmsA is now considered to face the periplasm. Electron transfer to DmsA involves the DmsB subunit, which is a polyferredoxin related to subunits found in other molybdoenzymes such as nitrate reductase and formate dehydrogenase. A characteristic of the DmsAB-type DMSO reductase is its ability to reduce a variety of S- and N-oxides. E. coli contains a trimethylamine-N-oxide reductase (TorA) that is highly specific for N-oxides. This enzyme is located in the periplasm and is connected to the quinone pool via a membrane-bound penta-haem cytochrome (TorC). DorCA in purple phototrophic bacteria of the genus Rhodobacter is very similar to TorCA with the critical difference that DorA catalyses reduction of both DMSO and TMAO. It is known as a DMSO reductase because the S-oxide is the best substrate. Crystal structures of DorA and TorA have revealed critical differences at the Mo active site that may explain the differences between substrate specificity between the two enzymes. DmsA, TorA and DorA possess a "twin arginine" N-terminal signal sequence consistent with their secretion via the TAT secretory system and not the Sec system. The enzymes are secreted with their bound prosthetic groups: this take place in the cytoplasm and the biogenesis involves a chaperone protein, which is cognate for each enzyme. Expression of the DMSO and TMAO respiratory operons is induced in response to a fall in oxygen tension. dmsABC expression is positively controlled by the oxygen-responsive transcription factor, Fnr and ModE, a transcription factor that binds molybdate. In contrast, torCAD expression is not under Fnr- or ModE-control but is dependent upon a sensor histidine kinase-response regulator pair, TorSR, which activate gene expression under conditions of low oxygen tension in the presence of N- or S-oxide. Regulation of dorCDA expression is similar to that seen for torCAD but it appears that the expression of the sensor histidine kinase-response regulator pair, DorSR is regulated by Fnr and there is an additional tier of regulation involving the ModE-homologue MopB, molybdate and the transcription factor DorX. Analysis of microbial genomes has revealed the presence of dms and tor operons in a wide variety of bacteria and in some archaea and duplicate dms and tor operons have been identified in E. coli. Challenges ahead will include the determination of the significance of the presence of the dms operon in bacterial pathogens and the determination of the significance of DMSO respiration in the global turnover of marine organo-sulfur compounds.
Collapse
Affiliation(s)
- Sharon L McCrindle
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
120
|
Kobiler O, Oppenheim AB, Herman C. Recruitment of host ATP-dependent proteases by bacteriophage lambda. J Struct Biol 2004; 146:72-8. [PMID: 15037238 DOI: 10.1016/j.jsb.2003.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/21/2003] [Indexed: 11/29/2022]
Abstract
Upon infection of a bacterial cell, the temperate bacteriophage lambda executes a regulated temporal program with two possible outcomes: (1) Cell lysis and virion production or (2) establishment of a dormant state, lysogeny, in which the phage genome (prophage) is integrated into the host chromosome. The prophage is replicated passively as part of the host chromosome until it is induced to resume the lytic cycle. In this review, we summarize the evidence that implicates every known ATP-dependent protease in the regulation of specific steps in the phage life cycle. The proteolysis of specific regulatory proteins appears to fine-tune phage gene expression. The bacteriophage utilizes multiple proteases to irreversibly inactivate specific regulators resulting in a temporally regulated program of gene expression. Evolutionary forces may have favored the utilization of overlapping protease specificities for differential proteolysis of phage regulators according to different phage life styles.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
121
|
Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B. Broad yet high substrate specificity: the challenge of AAA+ proteins. J Struct Biol 2004; 146:90-8. [PMID: 15037240 DOI: 10.1016/j.jsb.2003.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Revised: 10/09/2003] [Indexed: 11/21/2022]
Abstract
AAA+ proteins remodel target substrates in an ATP-dependent manner, an activity that is of central importance for a plethora of cellular processes. While sharing a similar hexameric structure AAA+ proteins must exhibit differences in substrate recognition to fulfil their diverse biological functions. Here we describe strategies of AAA+ proteins to ensure substrate specificity. AAA domains can directly mediate substrate recognition, however, in general extra domains, added to the core AAA domain, control substrate interaction. Such extra domains may either directly recognize substrates or serve as a platform for adaptor proteins, which transfer bound substrates to their AAA+ partner proteins. The positioning of adaptor proteins in substrate recognition can enable them to control the activity of their partner proteins by coupling AAA+ protein activation to substrate availability.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| | | | | | | | | | | |
Collapse
|
122
|
Chen JC, Viollier PH, Shapiro L. A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol Microbiol 2004; 55:1085-103. [PMID: 15686556 DOI: 10.1111/j.1365-2958.2004.04443.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caulobacter crescentus assembles many of its cellular machines at distinct times and locations during the cell cycle. PodJ provides the spatial cues for the biogenesis of several polar organelles, including the pili, adhesive holdfast and chemotactic apparatus, by recruiting structural and regulatory proteins, such as CpaE and PleC, to a specific cell pole. PodJ is a protein with a single transmembrane domain that exists in two forms, full-length (PodJL) and truncated (PodJS), each appearing during a specific time period of the cell cycle to control different aspects of polar organelle development. PodJL is synthesized in the early predivisional cell and is later proteolytically converted to PodJS. During the swarmer-to-stalked transition, PodJS must be degraded to preserve asymmetry in the next cell cycle. We found that MmpA facilitates the degradation of PodJS. MmpA belongs to the site-2 protease (S2P) family of membrane-embedded zinc metalloproteases, which includes SpoIVFB and YluC of Bacillus subtilis and YaeL of Escherichia coli. MmpA appears to cleave within or near the transmembrane segment of PodJS, releasing it into the cytoplasm for complete proteolysis. While PodJS has a specific temporal and spatial address, MmpA is present throughout the cell cycle; furthermore, periplasmic fusion to mRFP1 suggested that MmpA is uniformly distributed around the cell. We also determined that mmpA and yaeL can complement each other in C. crescentus and E. coli, indicating functional conservation. Thus, the sequential degradation of PodJ appears to involve regulated intramembrane proteolysis (Rip) by MmpA.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Developmental Biology, Stanford University School of Medicine, 300 Beckman Center, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
123
|
Takaya A, Kubota Y, Isogai E, Yamamoto T. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol 2004; 55:839-52. [PMID: 15661008 DOI: 10.1111/j.1365-2958.2004.04425.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 263-8522, Japan.
| | | | | | | |
Collapse
|
124
|
Abstract
Proteases can play key roles in regulation by controlling the levels of critical components of, for example, signal transduction pathways. Proteolytic processing can remove regulatory proteins when they are not needed, while transforming others from the dormant into the biologically active state. The latter mechanism often involves a subsequent change of cellular localization such as the movement from the membrane to the nucleus. The investigation of these processes has revealed a new type of proteolytic activity, regulated intramembrane proteolysis, and a reversible switch in activity occurring in the HtrA family of serine proteases. The bacterial RseA and the human amyloid precursor processing pathways are used as models to review these novel principles that are evolutionarily conserved and have wide biological implications.
Collapse
Affiliation(s)
- Michael Ehrmann
- Cardiff University, School of Biosciences, Cardiff CF10 3US, UK.
| | | |
Collapse
|
125
|
Peterson CN, Ruiz N, Silhavy TJ. RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site. J Bacteriol 2004; 186:7403-10. [PMID: 15489452 PMCID: PMC523208 DOI: 10.1128/jb.186.21.7403-7410.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate.
Collapse
Affiliation(s)
- Celeste N Peterson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
126
|
Hecker M, Völker U. Towards a comprehensive understanding ofBacillus subtiliscell physiology by physiological proteomics. Proteomics 2004; 4:3727-50. [PMID: 15540212 DOI: 10.1002/pmic.200401017] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Erst-Moritz-Arndt-University, Greifswald, Germany.
| | | |
Collapse
|
127
|
King T, Ishihama A, Kori A, Ferenci T. A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 2004; 186:5614-20. [PMID: 15317765 PMCID: PMC516835 DOI: 10.1128/jb.186.17.5614-5620.2004] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are few existing indications that strain variation in prokaryotic gene regulation is common or has evolutionary advantage. In this study, we report on isolates of Escherichia coli with distinct ratios of sigma factors (RpoD, sigmaD, or sigma70 and RpoS or sigmaS) that affect transcription initiated by RNA polymerase. Both laboratory E. coli K-12 lineages and nondomesticated isolates exhibit strain-specific endogenous levels of RpoS protein. We demonstrate that variation in genome usage underpins intraspecific variability in transcription patterns, resistance to external stresses, and the choice of beneficial mutations under nutrient limitation. Most unexpectedly, RpoS also controlled strain variation with respect to the metabolic capability of bacteria with more than a dozen carbon sources. Strains with higher sigmaS levels were more resistant to external stress but metabolized fewer substrates and poorly competed for low concentrations of nutrients. On the other hand, strains with lower sigmaS levels had broader nutritional capabilities and better competitive ability with low nutrient concentrations but low resistance to external stress. In other words, RpoS influenced both r and K strategist functions of bacteria simultaneously. The evolutionary principle driving strain variation is proposed to be a conceptually novel trade-off that we term SPANC (for "self-preservation and nutritional competence"). The availability of multiple SPANC settings potentially broadens the niche occupied by a species consisting of individuals with narrow specialization and reveals an evolutionary advantage offered by polymorphic regulation. Regulatory diversity is likely to be a significant contributor to complexity in a bacterial world in which multiple sigma factors are a universal feature.
Collapse
Affiliation(s)
- Thea King
- School of Molecular and Microbial Biosciences G08, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
128
|
Grünenfelder B, Tawfilis S, Gehrig S, ØSterås M, Eglin D, Jenal U. Identification of the protease and the turnover signal responsible for cell cycle-dependent degradation of the Caulobacter FliF motor protein. J Bacteriol 2004; 186:4960-71. [PMID: 15262933 PMCID: PMC451599 DOI: 10.1128/jb.186.15.4960-4971.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Flagellar ejection is tightly coupled to the cell cycle in Caulobacter crescentus. The MS ring protein FliF, which anchors the flagellar structure in the inner membrane, is degraded coincident with flagellar release. Previous work showed that removal of 26 amino acids from the C terminus of FliF prevents degradation of the protein and interferes with flagellar assembly. To understand FliF degradation in more detail, we identified the protease responsible for FliF degradation and performed a high-resolution mutational analysis of the C-terminal degradation signal of FliF. Cell cycle-dependent turnover of FliF requires an intact clpA gene, suggesting that the ClpAP protease is required for removal of the MS ring protein. Deletion analysis of the entire C-terminal cytoplasmic portion of FliF C confirmed that the degradation signal was contained in the last 26 amino acids that were identified previously. However, only deletions longer than 20 amino acids led to a stable FliF protein, while shorter deletions dispersed over the entire 26 amino acids critical for turnover had little effect on stability. This indicated that the nature of the degradation signal is not based on a distinct primary amino acid sequence. The addition of charged amino acids to the C-terminal end abolished cell cycle-dependent FliF degradation, implying that a hydrophobic tail feature is important for the degradation of FliF. Consistent with this, ClpA-dependent degradation was restored when a short stretch of hydrophobic amino acids was added to the C terminus of stable FliF mutant forms.
Collapse
Affiliation(s)
- Björn Grünenfelder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
129
|
Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 2004; 52:285-302. [PMID: 15049827 DOI: 10.1111/j.1365-2958.2003.03979.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-dependent protease Clp plays important roles in the cell's protein quality control system and in the regulation of cellular processes. In Corynebacterium glutamicum, the levels of the proteolytic subunits ClpP1 and ClpP2 as well as of the corresponding mRNAs were drastically increased upon deletion of the clpC gene, coding for a Clp ATPase subunit. We identified a regulatory protein, designated ClgR, binding to a common palindromic sequence motif in front of clpP1P2 as well as of clpC. Deletion of clgR in the DeltaclpC background completely abolished the increased transcription of both operons, indicating that ClgR activates transcription of these genes. ClgR activity itself is probably controlled via ClpC-dependent regulation of its stability, as ClgR is only present in DeltaclpC and not in wild-type cells, whereas the levels of clgR mRNA are comparable in both strains. clpC, clpP1P2 and clgR expression is induced upon severe heat stress, however, independently of ClgR. Identification of the heat-responsive transcriptional start sites in front of these genes revealed the presence of sequence motifs typical for sigmaECF-dependent promoters. The ECF sigma factor sigmaH could be identified as being required for transcriptional activation of clpC, clpP1P2 and clgR in response to severe heat stress. A second heat-responsive but sigmaH-independent promoter in front of clgR could be identified that is subject to negative regulation by the transcriptional repressor HspR. Taken together, these results show that clpC and clpP1P2 expression in C. glutamicum is subject to complex regulation via both independent and hierarchically organized pathways, allowing for the integration of multiple environmental stimuli. Both the ClgR- and sigmaH-dependent regulation of clpC and clpP1P2 expression appears to be conserved in other actinomycetes.
Collapse
Affiliation(s)
- Sabine Engels
- Institute of Biotechnology 1, Research Centre Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
130
|
Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A. Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 2004; 54:132-47. [PMID: 15458411 DOI: 10.1111/j.1365-2958.2004.04247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
P(II)-type signal transduction proteins play a central role in nitrogen regulation in many bacteria. In response to the intracellular nitrogen status, these proteins are rendered in their function and interaction with other proteins by modification/demodification events, e.g. by phosphorylation or uridylylation. In this study, we show that GlnK, the only P(II)-type protein in Corynebacterium glutamicum, is adenylylated in response to nitrogen starvation and deadenylylated when the nitrogen supply improves again. Both processes depend on the GlnD protein. As shown by mutant analyses, the modifying activity of this enzyme is located in the N-terminal part of the enzyme, while demodification depends on its C-terminal domain. Besides its modification status, the GlnK protein changes its intracellular localization in response to changes of the cellular nitrogen supply. While it is present in the cytoplasm during nitrogen starvation, the GlnK protein is sequestered to the cytoplasmic membrane in response to an ammonium pulse following a nitrogen starvation period. About 2-5% of the GlnK pool is located at the cytoplasmic membrane after ammonium addition. GlnK binding to the cytoplasmic membrane depends on the ammonium transporter AmtB, which is encoded in the same transcriptional unit as GlnK and GlnD, the amtB-glnK-glnD operon. In contrast, the structurally related methylammonium/ammonium permease AmtA does not bind GlnK. The membrane-bound GlnK protein is stable, most likely to inactivate AmtB-dependent ammonium transport in order to prevent a detrimental futile cycle under post-starvation ammonium-rich conditions, while the majority of GlnK is degraded within 2-4 min. Proteolysis in the transition period from nitrogen starvation to nitrogen-rich growth seems to be specific for GlnK; other proteins of the nitrogen metabolism, such as glutamine synthetase, or proteins unrelated to ammonium assimilation, such as enolase and ATP synthase subunit F(1)beta, are stable under these conditions. Our analyses of different mutant strains have shown that at least three different proteases influence the degradation of GlnK, namely FtsH, the ClpCP and the ClpXP protease complex.
Collapse
Affiliation(s)
- Julia Strösser
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | | | | | | | | |
Collapse
|
131
|
Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol 2004; 51:1705-17. [PMID: 15009896 DOI: 10.1046/j.1365-2958.2003.03941.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the Lon ATP-dependent protease is responsible for degradation of several regulatory proteins and for the elimination of abnormal proteins. Previous studies have shown that the overproduction of Lon is lethal. Here, we showed that Lon overproduction specifically inhibits translation through at least two different pathways. We have identified one of the pathways as being the chromosomal yefM-yoeB toxin-antitoxin system. The existence of a second pathway is demonstrated by the observation that the deletion of the yefM-yoeB system did not completely suppress lethality and translation inhibition. We also showed that the YoeB toxin induces cleavage of translated mRNAs and that Lon overproduction specifically activates YoeB-dependent mRNAs cleavage. Indeed, none of the other identified chromosomal toxin-antitoxin systems (relBE, mazEF, chpB and dinJ-yafQ) was involved in Lon-dependent lethality, translation inhibition and mRNA cleavage even though the RelB and MazE antitoxins are known to be Lon substrates. Based on our results and other studies, translation inhibition appears to be the key element that triggers chromosomal toxin-antitoxin systems. We propose that under Lon overproduction conditions, translation inhibition is mediated by Lon degradation of a component of the YoeB-independent pathway, in turn activating the YoeB toxin by preventing synthesis of its unstable YefM antidote.
Collapse
Affiliation(s)
- Susanne K Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
132
|
Len ACL, Harty DWS, Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology (Reading) 2004; 150:1339-1351. [PMID: 15133096 DOI: 10.1099/mic.0.27008-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutansis an important pathogen in the initiation of dental caries as the bacterium remains metabolically active when the environment becomes acidic. The mechanisms underlying this ability to survive and proliferate at low pH remain an area of intense investigation. Differential two-dimensional electrophoretic proteome analysis ofS. mutansgrown at steady state in continuous culture at pH 7·0 or pH 5·0 enabled the resolution of 199 cellular and extracellular protein spots with altered levels of expression. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 167 of these protein spots. Sixty-one were associated with stress-responsive pathways involved in DNA replication, transcription, translation, protein folding and proteolysis. The 61 protein spots represented isoforms or cleavage products of 30 different proteins, of which 25 were either upregulated or uniquely expressed during acid-tolerant growth at pH 5·0. Among the unique and upregulated proteins were five that have not been previously identified as being associated with acid tolerance inS. mutansand/or which have not been studied in any detail in oral streptococci. These were the single-stranded DNA-binding protein, Ssb, the transcription elongation factor, GreA, the RNA exonuclease, polyribonucleotide nucleotidyltransferase (PnpA), and two proteinases, the ATP-binding subunit, ClpL, of the Clp family of proteinases and a proteinase encoded by thepepgene family with properties similar to the dipeptidase, PepD, ofLactobacillus helveticus. The identification of these and other differentially expressed proteins associated with an acid-tolerant-growth phenotype provides new information on targets for mutagenic studies that will allow the future assessment of their physiological significance in the survival and proliferation ofS. mutansin low pH environments.
Collapse
Affiliation(s)
- Alice C L Len
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, PO BOX 533, Wentworthville, NSW 2145, Australia
| | - Derek W S Harty
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, PO BOX 533, Wentworthville, NSW 2145, Australia
| | - Nicholas A Jacques
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, PO BOX 533, Wentworthville, NSW 2145, Australia
| |
Collapse
|
133
|
Böhm A, Boos W. Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Curr Opin Microbiol 2004; 7:151-6. [PMID: 15063852 DOI: 10.1016/j.mib.2004.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traditionally, prokaryotic transcriptional regulators were thought to be controlled by the binding of low-molecular-weight effector molecules--inducers and co-repressors. Here, we describe two examples of a novel mode of regulator control. In this mode, transcription factors "shuttle" between their operator sites on the chromosome and the inner face of the cytoplasmic membrane, where they are sequestered by specific transport systems. This change in the subcellular address corresponds to the on/off state of the target genes; thus, release or binding of the transcription regulators is controlled by the activity of these transporters.
Collapse
Affiliation(s)
- Alex Böhm
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
134
|
Stephani K, Weichart D, Hengge R. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol Microbiol 2003; 49:1605-14. [PMID: 12950924 DOI: 10.1046/j.1365-2958.2003.03644.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli starvation-induced DNA protection protein Dps was observed to be degraded rapidly during exponential growth. This turnover is dependent on the clpP and clpX genes. The clpA gene is not required for Dps proteolysis, suggesting that Dps is a substrate for ClpXP protease but not for ClpAP protease. Dps proteolysis was found to be highly regulated. Upon carbon starvation, Dps is stabilized, which together with increased Dps synthesis allows strong accumulation of Dps in the stationary phase. The addition of glucose to starving cells results in rapid resumption of Dps proteolysis by ClpXP. Oxidative stress also leads to efficient stabilization of Dps. After hyperosmotic shift, however, proteolysis remains unaffected. Thus, regulated proteolysis of Dps strongly contributes to controlling Dps levels under very specific stress conditions. In contrast to the regulated degradation of RpoS by ClpXP, Dps proteolysis is independent of the recognition factor RssB. In addition, during starvation, clpP and, to a somewhat lesser extent, clpA are involved in maintaining ongoing Dps synthesis (acting at the level of Dps translation), which is required for strong Dps accumulation in long-term stationary phase cells. In summary, both ClpXP and ClpAP exert significant control of Dps levels by affecting log phase stability and stationary phase synthesis of Dps respectively.
Collapse
Affiliation(s)
- Kunigunde Stephani
- Institut für Biologie--Mikrobiologie, Freie Universität Berlin, Königin-Luise Str. 12-16, 14195 Berlin, Germany
| | | | | |
Collapse
|
135
|
Affiliation(s)
- Regine Hengge
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.
| | | |
Collapse
|
136
|
Stüdemann A, Noirclerc-Savoye M, Klauck E, Becker G, Schneider D, Hengge R. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 2003; 22:4111-20. [PMID: 12912910 PMCID: PMC175800 DOI: 10.1093/emboj/cdg411] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 06/26/2003] [Accepted: 06/30/2003] [Indexed: 11/14/2022] Open
Abstract
sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.
Collapse
Affiliation(s)
- Andrea Stüdemann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|