101
|
Garbi M, Rubinstein S, Lax Y, Breitbart H. Activation of protein kinase calpha in the lysophosphatidic acid-induced bovine sperm acrosome reaction and phospholipase D1 regulation. Biol Reprod 2000; 63:1271-7. [PMID: 11058529 DOI: 10.1095/biolreprod63.5.1271] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in the sperm acrosome reaction. In the present study, we demonstrate induction of the acrosome reaction and activation of sperm PKCalpha by lysophosphatidic acid (LPA), which is known to induce signal transduction cascades in many cell types via binding to specific cell-surface receptors. Under conditions by which LPA activates PKCalpha, there is significant stimulation of the acrosome reaction, which is inhibited by PKC inhibitors. Protein kinase Calpha belongs to the Ca(2+)-dependent classical PKC family of isoforms, and indeed we show that its activation depends upon the presence of Ca(2+) in the incubation medium. Protein kinase Calpha is a known regulator of phospholipase D (PLD). We investigated the possible regulatory relationships between PKCalpha and PLD1. Using specific antibodies against PLD1, we demonstrate for the first time its presence in bovine sperm. Furthermore, PLD1 coimmunoprecipitates with PKCalpha and the PKCalpha-PLD1 complex decomposes after treatment of the cells with LPA or 12-O:-tetradecanoyl phorbol-13-acetate, resulting in the translocation of PKCalpha to the plasma membrane and translocation of PLD1 to the particulate fraction. A possible bilateral regulation of PKCalpha and PLD1 activation during the sperm acrosome reaction is suggested.
Collapse
Affiliation(s)
- M Garbi
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
102
|
de Bruyn KM, de Rooij J, Wolthuis RM, Rehmann H, Wesenbeek J, Cool RH, Wittinghofer AH, Bos JL. RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem 2000; 275:29761-6. [PMID: 10889189 DOI: 10.1074/jbc.m001160200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ral is a ubiquitously expressed Ras-like small GTPase. Several guanine nucleotide exchange factors for Ral have been identified, including members of the RalGDS family, which exhibit a Ras binding domain and are regulated by binding to RasGTP. Here we describe a novel type of RalGEF, RalGEF2. This guanine nucleotide exchange factor has a characteristic Cdc25-like catalytic domain at the N terminus and a pleckstrin homology (PH) domain at the C terminus. RalGEF2 is able to activate Ral both in vivo and in vitro. Deletion of the PH domain results in an increased cytoplasmic localization of the protein and a corresponding reduction in activity in vivo, suggesting that the PH domain functions as a membrane anchor necessary for optimal activity in vivo.
Collapse
Affiliation(s)
- K M de Bruyn
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Levy BD, Serhan CN. Polyisoprenyl phosphate signaling: topography in human neutrophils. Biochem Biophys Res Commun 2000; 275:739-45. [PMID: 10973792 DOI: 10.1006/bbrc.2000.3371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the relationship of polyisoprenyl phosphate (PIPP) remodeling and signaling to the activation state of human neutrophils (PMN), we examined the impact of leukotriene B(4) (LTB(4)) on the conversion of a unique bioactive isoprenoid (presqualene diphosphate: PSDP), recently identified as a novel endogenous signaling molecule. LTB(4) initiated rapid decrements in total PSDP that were concurrent with the respiratory burst (e.g., O(-2) formation). PSDP was identified in nuclear (39%)-, granule (36%)-, and plasma membrane (16%)-containing fractions of PMN. LTB(4) receptor (BLT) activation led to a decrease in nuclear PSDP and concomitant increase in granule-associated PSDP. In addition, PMN nuclei displayed PSDP associated with chromatin as established by mass spectrometry. Together, these results indicate that PSDP is present in membranes and receptor activation rapidly initiates subcellular PIPP remodeling (i.e., conversion) and distribution predominantly to granule membranes. Moreover, identification of nuclear PSDP provides the basis for novel roles for PIPP and PSDP in nuclear-associated signaling events.
Collapse
Affiliation(s)
- B D Levy
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
104
|
A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids: application to N-acylethanolamine formation in vitro. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33466-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
105
|
Varga A, Hansson P, Johnson G, Alling C. Normalization rate and cellular localization of phosphatidylethanol in whole blood from chronic alcoholics. Clin Chim Acta 2000; 299:141-50. [PMID: 10900300 DOI: 10.1016/s0009-8981(00)00291-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylethanol (PEth) is an abnormal phospholipid which is formed in the presence of ethanol, via the action of phospholipase D (PLD). PEth in blood is a potential marker of alcohol abuse. The present study was made to determine the compartmentalization and the elimination rate of PEth in human whole blood. PEth was assayed by an improved HPLC technique, with evaporative light-scattering detection. Blood from six alcoholic males was separated into different blood cell fractions. The PEth concentration in whole blood was 2.5+/-0.9 and 1.9+/-1.1 micromol/l in erythrocytes. Only one subject had detectable PEth in the mononuclear cells. Fifteen patients (13 men, two women) with chronic alcoholism, were followed as inpatients, after admission to an alcohol detoxification clinic. PEth, carbohydrate-deficient transferrin (CDT) and gamma-glutamyltransferase (GGT) were measured on days 1, 3, 5 and 7 after admission. Linear regression analysis of logarithmic PEth values in individuals, with measurable PEth at day 1, gave a good fit (P<0.001) with the one-compartment elimination model. The half-life was calculated as 4.0+/-0.7 days. A weak significance (P<0.05) was observed in the correlation of PEth at day 1 and half-life values of the same subjects.
Collapse
Affiliation(s)
- A Varga
- Department of Medical Neurochemistry, Institute of Laboratory Medicine, Lund University, S-221 85, Lund, Sweden.
| | | | | | | |
Collapse
|
106
|
van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. PLANT PHYSIOLOGY 2000; 123:1507-16. [PMID: 10938366 PMCID: PMC59106 DOI: 10.1104/pp.123.4.1507] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2000] [Accepted: 04/07/2000] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since PA formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.
Collapse
Affiliation(s)
- A H van der Luit
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
107
|
Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 2000; 39:315-91. [PMID: 10856601 DOI: 10.1016/s0163-7827(00)00009-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B 8000 FWB, Bahia Blanca, Argentina.
| | | | | | | | | | | |
Collapse
|
108
|
Xu L, Shen Y, Joseph T, Bryant A, Luo JQ, Frankel P, Rotunda T, Foster DA. Mitogenic phospholipase D activity is restricted to caveolin-enriched membrane microdomains. Biochem Biophys Res Commun 2000; 273:77-83. [PMID: 10873567 DOI: 10.1006/bbrc.2000.2907] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of several signaling oncogenes. PLD activity is also elevated in response to peptide growth factors, indicating that PLD likely plays an important role in mitogenic signaling. Many proteins that mediate mitogenic signaling are localized in caveolin-enriched membrane microdomains (CEMMs). We report here that the elevated PLD activity in NIH 3T3 cells transformed by activated oncogenic forms of Src, Ras, and Raf is largely restricted to the CEMMs. Likewise, the PLD activity stimulated by epidermal growth factor is also restricted to the CEMMs. Although both PLD1 and PLD2 were found in CEMMs, neither was particularly enriched in the CEMMs of the transformed relative to the parental cells, indicating that it is the specific activity of PLD that is increased in the CEMMs. An apparent PLD substrate specificity in transformed cells for phosphatidylcholine lacking arachidonate acyl groups is also explained by the localization of activity in the CEMMs where [(3)H]arachidonate-labeled PC was excluded. These data indicate that mitogenic signals through PLD are initiated in CEMMs where many signaling molecules colocalize.
Collapse
Affiliation(s)
- L Xu
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York, New York, 10021 USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Bobeszko M, Dygas A, Nalepa I, Barańska J. Different regulation of phospholipase D activity in glioma C6 cells by sphingosine, propranolol, imipramine and phorbol ester. Cell Signal 2000; 12:399-404. [PMID: 10889469 DOI: 10.1016/s0898-6568(00)00078-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In has been found that sphingosine, propranolol, imipramine and phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA) have a stimulatory effect on phospholipase D activity in glioma C6 cells. The cells were prelabelled with [1-(14)C]palmitic acid and phospholipase D-mediated synthesis of [(14)C]phosphatidylethanol was measured. The enhancing effect of TPA was almost completely blocked by a specific protein kinase C inhibitor, GF 109203X. In contrast, GF 109203X failed to inhibit the sphingosine, imipramine and propranolol stimulatory effects, indicating that their stimulation was independent of protein kinase C. The effect of TPA on phospholipase D was also blocked by imipramine and propranolol, whereas sphingosine additively potentiated TPA-mediated phospholipase D activity, both at shorter and longer (2-60 min) times of incubation. These results suggest that in glioma C6 cells, sphingosine is not only involved in a different phospholipase D activation than the TPA regulatory system, but also that it operates in a different compartment of the cell.
Collapse
Affiliation(s)
- M Bobeszko
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteura Street, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
110
|
Kötter K, Ji a S, von Eichel-Streiber C, Park JB, Ryu SH, Klein J. Activation of astroglial phospholipase D activity by phorbol ester involves ARF and Rho proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:153-62. [PMID: 10832096 DOI: 10.1016/s1388-1981(00)00036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%. In contrast, inactivation of proteins of the Ras family by Clostridium sordellii lethal toxin 1522 did not affect PLD activation. In parallel experiments, serum-induced PLD activation was sensitive to brefeldin A, but not to Ro 31-8220 and not to clostridial toxins. We conclude that, in astrocytes, the PLD isoform which is activated by phorbol ester requires PKC, ARF and Rho proteins for full activity and probably represents PLD1.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Germany
| | | | | | | | | | | |
Collapse
|
111
|
Coletti D, Silvestroni L, Naro F, Molinaro M, Adamo S, Palleschi S. Vesicle-mediated phosphatidylcholine reapposition to the plasma membrane following hormone-induced phospholipase D activation. Exp Cell Res 2000; 256:94-104. [PMID: 10739656 DOI: 10.1006/excr.2000.4812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activation involved in signal transduction may lead to the hydrolysis of conspicuous amounts of phosphatidylcholine (PC). This study shows that PLD activation significantly alters the plasma membrane (PM) environment and the membrane exchange dynamics. PC-PLD activation in vasopressin (AVP)-stimulated L6 myogenic cells was accompanied by increased exocytosis and decreased membrane fluidity, as shown by transmission EM and fluorescence spectroscopy of trimethylammonium-diphenyl-hexatriene. AVP-induced exocytosis appeared to be brefeldin A-insensitive. PLD inhibition by Zn(2+) and PC de novo synthesis inhibition by hexadecylphosphocholine abolished AVP-induced vesicle traffic. Upon AVP stimulation, metabolically labeled PC decreased in PM, then transiently increased in microsomes, and returned to the prestimulus level in the PM within 5 min, a phenomenon requiring PC neosynthesis and microtubule functionality. Vesicle traffic with similar features was also observed after endothelin-1-induced PC-PLD activation in rat peritubular myoid cells. These results indicate that, in nonsecretory cells, exocytosis coupled to PC de novo synthesis restores PM-PC, conspicuously consumed during PLD-mediated signal transduction.
Collapse
Affiliation(s)
- D Coletti
- Department of Histology and Medical Embryology, University "La Sapienza,", Rome, Italy
| | | | | | | | | | | |
Collapse
|
112
|
Waring M, Drappatz J, Weichel O, Seimetz P, Sarri E, Böckmann I, Kempter U, Valeva A, Klein J. Modulation of neuronal phospholipase D activity under depolarizing conditions. FEBS Lett 1999; 464:21-4. [PMID: 10611476 DOI: 10.1016/s0014-5793(99)01669-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuronal phospholipase D (PLD) activity was hypothesized to be involved in vesicle trafficking and endocytosis and, possibly, transmitter release. We here report that prolonged depolarization of rat hippocampal slices by potassium chloride (KCl) or 4-aminopyridine inhibited PLD activity. Similarly, PLD activity in rat cortical synaptosomes was significantly inhibited by depolarizing agents including veratridine and ouabain. Inhibition of calcium/calmodulin kinase II (CaMKII) which positively modulates synaptosomal PLD activity [Sarri et al. (1998) FEBS Lett. 440, 287-290] by KN-62 caused a further reduction of PLD activity in depolarized synaptosomes. Depolarization-induced inhibition of PLD activity was apparently not due to transmitter release or activation of other kinases. We observed, however, that KCl-induced depolarization caused an increase of inositol phosphates and a reduction of the synaptosomal pool of phosphatidylinositol-4, 5-bisphosphate (PIP(2)). Moreover, in synaptosomes permeabilized with Staphylococcus aureus alpha-toxin, PLD activation induced by calcium was abolished by neomycin, a PIP(2) chelator. We conclude that depolarizing conditions cause an inhibition of neuronal PLD activity which is likely due to breakdown of PIP(2), a required cofactor for PLD activity. Our findings suggest that neuronal PLD activity is regulated by synaptic activity.
Collapse
Affiliation(s)
- M Waring
- Department of Pharmacology, University of Mainz, Obere Zahlbacher Str. 67, D-55101, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
|