101
|
Haavik Taylor H, Murphy BA. Altered cortical integration of dual somatosensory input following the cessation of a 20 min period of repetitive muscle activity. Exp Brain Res 2006; 178:488-98. [PMID: 17136532 DOI: 10.1007/s00221-006-0755-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 10/08/2006] [Indexed: 11/30/2022]
Abstract
The adult human central nervous system (CNS) retains its ability to reorganize itself in response to altered afferent input. Intracortical inhibition is thought to play an important role in central motor reorganization. However, the mechanisms responsible for altered cortical sensory maps remain more elusive. The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a period of repetitive contractions. To achieve this, the dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was utilized in 14 subjects. SEPs were recorded following median and ulnar nerve stimulation at the wrist (1 ms square wave pulse, 2.47 Hz, 1x motor threshold). SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25 and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. There was a significant increase in the MU/M + U ratio for both cortical SEP components following the 20 min repetitive contraction task, i.e. the N20-P25 complex, and the P22-N30 SEP complex. These cortical ratio changes appear to be due to a reduced ability to suppress the dual input, as there was also a significant increase in the amplitude of the MU recordings for the same two cortical SEP peaks (N20-P25 and P22-N30) following the typing task. No changes were observed following a control intervention. The N20 (S1) changes may reflect the mechanism responsible for altering the boundaries of cortical sensory maps, changing the way the CNS perceives and processes information from adjacent body parts. The N30 changes may be related to the intracortical inhibitory changes shown previously with both single and paired pulse TMS. These findings may have implications for understanding the role of the cortex in the initiation of overuse injuries.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Human Neurophysiology and Rehabilitation Laboratory, Department of Sport and Exercise Science, Tamaki Campus, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
102
|
Urgesi C, Candidi M, Fabbro F, Romani M, Aglioti SM. Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker's posture. Eur J Neurosci 2006; 23:2522-30. [PMID: 16706859 DOI: 10.1111/j.1460-9568.2006.04772.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcranial magnetic stimulation (TMS) studies report that viewing a given action performed by a model activates the neural representation of the onlooker's muscles that are activated during the actual execution of the observed action. Here we sought to determine whether this mirror observation-execution facilitation reflects only muscular specificity or whether it is also influenced by postural congruency between onlooker/model body parts. We recorded motor potentials evoked by single-pulse TMS from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during observation of the right index and little finger abduction/adduction movements of models who kept their hands in a palm-down or palm-up position. Moreover, in different experiments observers kept their right hand palm down or palm up. Selective motor facilitation was observed during observation of movements that map the motor function of the targeted muscles, regardless of the posture of the observed hand. Modulation of FDI, however, was obtained only when participants kept their hand palm down; by contrast, modulation of ADM was obtained only when participants kept their hand palm up. Interestingly, electromyographic recordings showed that FDI is mostly active when index abduction/adduction movements are performed in the palm-down position, whereas ADM is mostly active when little finger abduction/adduction movements are performed in the palm-up position. Results show that the influence of the onlooker's hand posture is comparable in action execution and observation, thus indicating a fine-grain functional correspondence between these two processes.
Collapse
Affiliation(s)
- Cosimo Urgesi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Fisiologia Umana, Università di Verona, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
103
|
Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM. Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage 2006; 32:1326-34. [PMID: 16806985 DOI: 10.1016/j.neuroimage.2006.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/13/2006] [Accepted: 05/02/2006] [Indexed: 11/23/2022] Open
Abstract
The aim of this paper was to deepen understanding about the role played by brain plasticity in obtaining clinical recovery. Eighteen patients, who had recovered partially or totally from dysfunctions due to a monohemispheric infarction within the middle cerebral artery territory, underwent magnetoencephalographic (MEG) recordings of rolandic areas cerebral activity both in rest state (spectral power properties) and in response to the electrical stimulation of the contralateral median nerve (M20 and M30 cortical sources). MEG evaluation was performed in acute (T0: mean 5 days from ischemic attach) and post-acute phase (T1: median 6 months). At T1, all the inter-hemispheric asymmetries were reduced for both spontaneous and evoked activity parameters with respect to T0. In post-acute phase, lower cortical excitability, higher delta and theta power and lower spectral entropy were associated to a worse clinical state. An unusual recruitment-as revealed by an excessive inter-hemispheric asymmetry of M20 cortical source position-correlated with higher level of clinical amelioration in the patients who showed a partial recovery. In addition to confirmative evidence that "normalization" of neural activity in both the affected and unaffected hemispheres subtends best clinical recovery, present data provide support to the positive role of cerebral plasticity phenomena--i.e. unusual neural recruitments--to regain lost functions in those patients unable to achieve total recovery.
Collapse
Affiliation(s)
- Franca Tecchio
- Department of Neuroscience, MEG Unit, Istituto di Scienze e Tecnologie della Cognizione (ISTC)-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Urushihara R, Murase N, Rothwell JC, Harada M, Hosono Y, Asanuma K, Shimazu H, Nakamura K, Chikahisa S, Kitaoka K, Sei H, Morita Y, Kaji R. Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow. Neuroimage 2006; 31:699-709. [PMID: 16466934 DOI: 10.1016/j.neuroimage.2005.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Revised: 11/25/2005] [Accepted: 12/15/2005] [Indexed: 11/30/2022] Open
Abstract
Somatosensory-evoked potentials (SEPs) are attenuated by movement. This phenomenon of 'gating' reflects sensorimotor integration for motor control. The frontal N30 component after median nerve stimulation was shown to be reduced in amplitude prior to hand movement. To investigate the mechanism of this sensory gating, we recorded median SEPs immediately before and after application of monophasic very low-frequency (0.2 Hz) repetitive transcranial magnetic stimulation (rTMS) of 250 stimuli over motor cortex (MC), premotor cortex (PMC), or supplementary motor area (SMA) in 9 healthy volunteers. The stimulus intensity for MC or PMC was set 85% of the resting motor threshold for the hand muscle, and that for SMA was at the active motor threshold for the leg muscle. SEPs showed significant increases in amplitudes of the frontal N30 component after PMC stimulation, but not after SMA or MC stimulation. Low-frequency (1 Hz) biphasic stimulation over PMC showed no significant N30 changes in 6 out of 9 subjects tested, indicating the effect being specific for 0.2 Hz monophasic stimulation. To examine the functional anatomy of the N30 change, single photon emission computed tomography was performed immediately before and after monophasic 0.2 Hz rTMS over PMC in all the 9 subjects. Regional cerebral blood flow showed significant increases mainly in PMC and prefrontal cortex, indicating the involvement of these cortical areas in sensory input gating for motor control.
Collapse
Affiliation(s)
- Ryo Urushihara
- Department of Clinical Neuroscience, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Tecchio F, Porcaro C, Zappasodi F, Pesenti A, Ercolani M, Rossini PM. Cortical short-term fatigue effects assessed via rhythmic brain-muscle coherence. Exp Brain Res 2006; 174:144-51. [PMID: 16604318 DOI: 10.1007/s00221-006-0432-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
This study is aimed at assessing the short-term effects of muscular fatigue on the sensorimotor areas organization in the left and right hemispheres. Magnetoencephalographic (MEG) and electromyographic (EMG) activities were simultaneously recorded during the execution of a non-fatiguing motor task, performed before and after a task known to induce muscle fatigue (Fatigue). Coherence between cerebral and muscular rhythms as well as cerebral and muscular rhythms spectral densities were estimated during this non-fatiguing task and at rest. The MEG-EMG coherence in the beta band (13-32 Hz) was higher after than before Fatigue. The background activity reduction during contraction with respect to rest (i.e. the cerebral reactivity) was less evident after than before Fatigue in the gamma (33-45 Hz) and beta bands. When differentiating subjects on the base of Fatigue endurance times, while a huge inter-subject variability was found, an evident intra-subject similarity was observed for left and right arms, suggesting that resistance to fatigue is more an individual ability than a motor skill differentiated for the dominant and non-dominant side. In conclusion, signs of a more selective neural recruitment, more coupled with muscular activity, appeared as short-term effects of muscular fatigue in primary sensorimotor cortical areas. Evidence suggested that the reduction of cortical recruitment and the increased cortico-muscular coupling are distinct mechanisms.
Collapse
Affiliation(s)
- Franca Tecchio
- ISTC-CNR, Unità MEG, Dipartimento di Neuroscienze, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
106
|
Insola A, Mazzone P, Valeriani M. Somatosensory evoked potential and clinical changes after electrode implant in basal ganglia of parkinsonian patients. Muscle Nerve 2006; 32:791-7. [PMID: 16124001 DOI: 10.1002/mus.20430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Median nerve somatosensory evoked potentials (SEPs) were recorded in three parkinsonian patients who underwent electrode implant in the subthalamic nucleus and/or globus pallidus for chronic deep brain stimulation (DBS). SEPs were evoked before surgery, in a medication-free condition, and after the functional stereotactic procedure, before beginning DBS. In order to evaluate the timing of the SEP changes after the electrode implant, in three further patients SEPs were recorded within the operating theater, before and immediately after the implantation. Patients' symptoms improved immediately after the electrode implant, and both N20 and N30 amplitudes increased in the postsurgical SEP recording. The clinical and neurophysiological effects observed after surgery, before commencing DBS, can be explained by microdamage in the target nucleus following the electrode implant. They occurred also in the patients studied in the operating theater, thus suggesting that they occur immediately after the stereotactic procedure. Our results suggest that the circuitries between the basal ganglia and the primary sensorimotor cortex may be modified not only by DBS but also by microdamage due to surgery and that they exert an important influence on SEP amplitude.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, Centro Traumatologico Ortopedico, Rome, Italy
| | | | | |
Collapse
|
107
|
Mazzà C, Zok M, Della Croce U. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data. Gait Posture 2005; 21:425-31. [PMID: 15886132 DOI: 10.1016/j.gaitpost.2004.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 05/17/2004] [Indexed: 02/02/2023]
Abstract
The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.
Collapse
Affiliation(s)
- Claudia Mazzà
- Dipartimento di Scienze del Movimento Umano e dello Sport, Istituto Universitario di Scienze Motorie, Piazza Lauro de Bosis 6, 00194 Roma, Italy.
| | | | | |
Collapse
|
108
|
Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani GL, Aglioti SM. Neural Systems Underlying Observation of Humanly Impossible Movements: An fMRI Study. Cereb Cortex 2005; 15:1761-7. [PMID: 15728741 DOI: 10.1093/cercor/bhi053] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have indicated that largely overlapping parts of a complex, mainly fronto-parietal, neural network are activated during both observation and execution of an action. If these two processes are inextricably linked, increases of neural activity contingent upon action observation should be found only for movements that can actually be performed. Using functional magnetic resonance imaging, we investigated whether observation of possible and biomechanically impossible movements of fingers activated the same neural systems. Thirteen healthy subjects were scanned during observation of video-clips showing abduction/adduction movements of the right index or the little finger, which were defined as biomechanically possible or impossible according to the range of their angular displacement at the metacarpo-phalangeal joint. The mere observation of possible and impossible hand movements induced a selective activation of left precentral and left inferior frontal regions, thus indicating that motor-related areas map body actions even when they violate the constraints of human anatomy. An increase of the blood oxygen level-dependent signal selectively linked to observation of impossible hand movements was found in sensorimotor parietal regions. Our results suggest that while premotor areas code human actions regardless of whether they are biologically possible or impossible, sensorimotor parietal regions may be important for coding the plausibility of actions.
Collapse
Affiliation(s)
- Marcello Costantini
- Department of Clinical Sciences and Bio-imaging, University of Chieti G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
109
|
Möttönen R, Järveläinen J, Sams M, Hari R. Viewing speech modulates activity in the left SI mouth cortex. Neuroimage 2005; 24:731-7. [PMID: 15652308 DOI: 10.1016/j.neuroimage.2004.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 09/29/2004] [Accepted: 10/07/2004] [Indexed: 11/24/2022] Open
Abstract
The ability to internally simulate other persons' actions is important for social interaction. In monkeys, neurons in the premotor cortex are activated both when the monkey performs mouth or hand actions and when it views or listens to actions made by others. Neuronal circuits with similar "mirror-neuron" properties probably exist in the human Broca's area and primary motor cortex. Viewing other person's hand actions also modulates activity in the primary somatosensory cortex SI, suggesting that the SI cortex is related to the human mirror-neuron system. To study the selectivity of the SI activation during action viewing, we stimulated the lower lip (with tactile pulses) and the median nerves (with electric pulses) in eight subjects to activate their SI mouth and hand cortices while the subjects either rested, listened to other person's speech, viewed her articulatory gestures, or executed mouth movements. The 55-ms SI responses to lip stimuli were enhanced by 16% (P<0.01) in the left hemisphere during speech viewing whereas listening to speech did not modulate these responses. The 35-ms responses to median-nerve stimulation remained stable during speech viewing and listening. Own mouth movements suppressed responses to lip stimuli bilaterally by 74% (P<0.001), without any effect on responses to median-nerve stimuli. Our findings show that viewing another person's articulatory gestures activates the left SI cortex in a somatotopic manner. The results provide further evidence for the view that SI is involved in "mirroring" of other persons' actions.
Collapse
Affiliation(s)
- Riikka Möttönen
- Laboratory of Computational Engineering, Helsinki University of Technology, PO Box 3000, FIN-02015 HUT, Espoo, Finland.
| | | | | | | |
Collapse
|
110
|
Rossi S, Bartalini S, Ulivelli M, Mantovani A, Di Muro A, Goracci A, Castrogiovanni P, Battistini N, Passero S. Hypofunctioning of sensory gating mechanisms in patients with obsessive-compulsive disorder. Biol Psychiatry 2005; 57:16-20. [PMID: 15607295 DOI: 10.1016/j.biopsych.2004.09.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 08/20/2004] [Accepted: 09/21/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND In obsessive-compulsive disorder (OCD) patients, functional abnormalities in basal ganglia/precentral circuitries cause cortical hyperexcitability and lack of inhibitory control. These loops can be partly explored by median-nerve somatosensory evoked potentials (SEPs), which functionally reflect the brain responsiveness to somatosensory stimuli. In healthy humans, SEPs' amplitude during voluntary finger movements is lower than during muscular relaxation (i.e., sensory gating). Cortical hyperexcitability in OCD could be eventually responsible for a reduction of sensory gating. This might have pathophysiologic implications for motor compulsions. METHODS Median-nerve SEPs were recorded in 11 OCD patients and 9 healthy volunteers during muscle relaxation ("Relax") or finger movements of the stimulated hand ("Move"). Latencies and amplitudes of pre- and postcentral SEP components were compared between groups during "Relax" and "Move" conditions. RESULTS In OCD patients, the responsiveness to sensory stimuli was enhanced for precentral SEPs. Sensory gating ("Relax" vs. "Move") in control subjects involved both pre- and postcentral SEPs, the former being reduced in amplitude by approximately 60%. In OCD patients, sensory gating was spatially restricted to precentral SEP components and was significantly reduced compared with control subjects (approximately 30%). CONCLUSIONS Enhanced precentral SEPs and hypofunctioning of centrifugal sensory gating in OCD might reflect the inability to modulate sensory information due to a "tonic" high level of cortical excitability of motor and related areas, likely resulting from basal ganglia dysfunction. This might offer new insights into the pathophysiology of OCD.
Collapse
Affiliation(s)
- Simone Rossi
- Section of Neurology, Department of Neuroscience, Brain Stimulation and Evoked Potentials Lab, Policlinico Le Scotte, Viale Bracci, I-53100 University of Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gangitano M, Mottaghy FM, Pascual-Leone A. Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. Eur J Neurosci 2004; 20:2193-202. [PMID: 15450099 DOI: 10.1111/j.1460-9568.2004.03655.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using transcranial magnetic stimulation, we explored the properties of premotor mirror neurons during the passive observation of a reaching-grasping movement in human subjects. Two different experiments were run using video-clips as visual stimuli. Video-clips showed a normally performed (control stimulus) or an anomalous reaching-grasping movement executed by delaying the time of the appearance of the maximal finger aperture (experiment 1), or substituting it with an unpredictable closure (experiment 2). Motor evoked potentials were recorded at different time-points during the observation of the video-clips. Profiles of cortical excitability were drawn and compared with the kinematic profiles of the corresponding movement. Passive observation of the natural movement evoked a profile of cortical excitability that is in concordance with the timing of the kinematic profile of the shown finger movements. Observation of the uncommon movements did not exert any modulation (experiment 1) or evoked an activity that matched, at the beginning, the modulation obtained with observation of the natural movement (experiment 2). Results show that the resonant motor plan is loaded as whole at the beginning of observation and once started tends to proceed to its completion regardless of changes to the visual cues. The results exclude the possibility of a temporal fragmentation of the resonant plan, because activation of different populations of mirror neurons for each phase of the ongoing action. They further support the notion of the role of the mirror system as neural substrate for the observing-execution matching system and extend the current knowledge regarding mechanisms that trigger the internal representation of an action.
Collapse
Affiliation(s)
- Massimo Gangitano
- Laboratory for Magnetic Brain Stimulation, Division of Behavioural Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | |
Collapse
|
112
|
Nakamura A, Maess B, Knösche TR, Gunter TC, Bach P, Friederici AD. Cooperation of different neuronal systems during hand sign recognition. Neuroimage 2004; 23:25-34. [PMID: 15325349 DOI: 10.1016/j.neuroimage.2004.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 03/09/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022] Open
Abstract
Hand signs with symbolic meaning can often be utilized more successfully than words to communicate an intention; however, the underlying brain mechanisms are undefined. The present study using magnetoencephalography (MEG) demonstrates that the primary visual, mirror neuron, social recognition and object recognition systems are involved in hand sign recognition. MEG detected well-orchestrated multiple brain regional electrical activity among these neuronal systems. During the assessment of the meaning of hand signs, the inferior parietal, superior temporal sulcus (STS) and inferior occipitotemporal regions were simultaneously activated. These three regions showed similar time courses in their electrical activity, suggesting that they work together during hand sign recognition by integrating information in the ventral and dorsal pathways through the STS. The results also demonstrated marked right hemispheric predominance, suggesting that hand expression is processed in a manner similar to that in which social signs, such as facial expressions, are processed.
Collapse
Affiliation(s)
- Akinori Nakamura
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
113
|
Oouchida Y, Okada T, Nakashima T, Matsumura M, Sadato N, Naito E. Your hand movements in my somatosensory cortex: a visuo-kinesthetic function in human area 2. Neuroreport 2004; 15:2019-23. [PMID: 15486474 DOI: 10.1097/00001756-200409150-00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Does viewing someone's actions activate a viewer's somatosensory cortex? We tested if visual information of limb movements activated limb sections in somatosensory areas that are normally engaged in kinesthetic processing of the limb. We showed, with functional magnetic resonance imaging in 17 right-handed healthy subjects, that passive observation of flexion-extension movements of an experimenter's right hand activated the observer's contralateral hand section of area 2 which is involved in kinesthetic processing of right hand movements. This could be interpreted as a pragmatic function of the brain that permits visual information to reach the somatosensory area, and suggests human area 2 has an association function between kinesthesia and vision.
Collapse
Affiliation(s)
- Yutaka Oouchida
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
114
|
Muthukumaraswamy SD, Johnson BW. Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol 2004; 115:1760-6. [PMID: 15261854 DOI: 10.1016/j.clinph.2004.03.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We characterised the spectral response of the EEG to median nerve stimulation using wavelet analysis, and compared the relative magnitudes of effect of several different action-observation conditions on the beta and mu 'rebound' rhythms. METHODS EEG responses to median nerve stimulation were recorded from 8 normal adult subjects during baseline or action-observation conditions. Analysis was performed by convolution of the EEG with a family of wavelets. RESULTS Decreased power in the mu and beta bands characterized the EEG following median nerve stimulation until 500 ms post-stimulus, followed by increased amplitudes ('rebound') of both rhythms. Execution of movement, observation of object-directed movement and observation of somatosensory stimulation all caused a decreased rebound of the beta rhythm whereas observation of aimless thumb movement did not. CONCLUSIONS Wavelet analysis of the EEG extracted similar features reported in previous studies using bandpass filtering with respect to the activation state of the motor cortex during action observation. Further, our results show that observation of somatosensory stimulation alone is sufficient to cause significant modulation of motor cortex activity. SIGNIFICANCE These results add further details as to what stimuli can activate the human mirror neuron system and the analytical techniques used may be useful for future studies of clinical populations such as autistic patients.
Collapse
Affiliation(s)
- Suresh D Muthukumaraswamy
- Department of Psychology, Research Centre for Cognitive Neuroscience, University of Auckland, Private Bag 92019, Auckland 1003, New Zealand.
| | | |
Collapse
|
115
|
Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. ACTA ACUST UNITED AC 2004; 19:195-201. [PMID: 15019715 DOI: 10.1016/j.cogbrainres.2003.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2003] [Indexed: 11/21/2022]
Abstract
Recent electrophysiological studies have shown that the human electroencephalographic mu rhythm is suppressed during the observation of actions performed by other persons, an effect that may be functionally related to the behaviour of so-called "mirror neurons" observed in area F5 of nonhuman primates. Because mirror neuron activity has been reported to be functionally specific to object-oriented actions, the present study was designed to determine if the human mu rhythm also exhibits this property. EEG measurements were obtained from 12 normal subjects while they observed either a precision grip of a manipulandum or an empty grip using the same hand position. Our results showed that the magnitude of the mu rhythm was significantly lower for the object grip condition than for the empty grip condition. These data support the notion that the human mu rhythm indexes a brain system that is functionally comparable to the monkey mirror neuron system. We propose that nonobject-directed actions may result in representational schemas that are either different or less salient than motorically equivalent actions that are directed toward objects.
Collapse
Affiliation(s)
- Suresh D Muthukumaraswamy
- Department of Psychology, Research Centre for Cognitive Neuroscience, Private Bag 92019, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
116
|
Babiloni C, Del Percio C, Babiloni F, Carducci F, Cincotti F, Moretti DV, Rossini PM. Transient human cortical responses during the observation of simple finger movements: a high-resolution EEG study. Hum Brain Mapp 2004; 20:148-57. [PMID: 14601141 PMCID: PMC6872072 DOI: 10.1002/hbm.10135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
High-resolution event-related potentials (ERPs) were used to model the hemispherical representation of the transient cortical responses relating to the observation of movement during execution (right or left aimless finger extension). Subjects were seated in front of the observed person and looked at both their own and the observer's hand to receive similar visual feedback during the two conditions. In a visual control condition, a diode light moved at the observed person's hand. A first potential accompanying the movement execution peaked at about +110 msec over the contralateral somatomotor areas. It was followed by a potential (P300) peaking at about +350 msec over the central midline. In contrast, the potentials accompanying the movement observation peaked later over parietal-occipital other than somatomotor areas (N200 peak, +200 msec; P300 peak, +400 msec). Notably, the N200 was maximum in left parietal area whereas the P300 was maximum in right parietal area regardless the side of the movement. They markedly differed by the potentials following the displacement of the diode light. These results suggest a rapid time evolution (approximately 200-400 msec) of the cortical responses characterizing the observation of aimless movements (as opposite to grasping or handling). The execution of these movements would mainly involve somatomotor cortical responses and would be scarcely founded on the visual feedback. In contrast, the observation of the same movements carried out by others would require dynamical responses of somatomotor and parietal-occipital areas (especially of the right hemisphere), possibly for a stringent visuospatial analysis of the motor event.
Collapse
Affiliation(s)
- Claudio Babiloni
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
117
|
Insola A, Le Pera D, Restuccia D, Mazzone P, Valeriani M. Reduction in amplitude of the subcortical low- and high-frequency somatosensory evoked potentials during voluntary movement: an intracerebral recording study. Clin Neurophysiol 2004; 115:104-11. [PMID: 14706476 DOI: 10.1016/j.clinph.2003.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate whether the reduction of amplitude of the scalp somatosensory evoked potentials (SEPs) during movement (gating) is due to an attenuation of the afferent volley at subcortical level. METHODS Median nerve SEPs were recorded from 9 patients suffering from Parkinson's disease, who underwent implant of intracerebral (IC) electrodes in the subthalamic nucleus or in the globus pallidum. SEPs were recorded from Erb's point ipsilateral to stimulation, from the scalp surface and from the IC leads, at rest and during a voluntary flexo-extension movement of the stimulated wrist. The recorded IC traces were submitted to an off-line filtering by a 300-1500 bandpass to obtain the high-frequency SEP bursts. RESULTS IC leads recorded a triphasic component (P1-N1-P2) from 14 to 22 ms of latency. The amplitudes of the scalp N20, P20 and N30 potentials and of the IC triphasic component were significantly decreased during movement, while the peripheral N9 amplitude remained unchanged. Also the IC bursts, whose frequency was around 1000 Hz, were reduced in amplitude by the voluntary movement. CONCLUSIONS Since the IC triphasic component is probably generated by neurons of the thalamic ventro-postero-lateral nucleus, which receive the somatosensory afferent volley, the P1-N1 amplitude reduction during movement suggests that the gating phenomenon involves also the subcortical structures.
Collapse
|
118
|
Tecchio F, Babiloni C, Zappasodi F, Vecchio F, Pizzella V, Romani GL, Rossini PM. Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields. Brain Res 2003; 986:63-70. [PMID: 12965230 DOI: 10.1016/s0006-8993(03)03171-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cortical sensory neurons synchronize their activity at multiple frequency bands after an external stimulation. In the somatosensory cortical areas, previous reports describe more discrete and somatotopically specific neural synchronization at the gamma band. Therefore, an efficient gamma synchronization of the neurons in primary somatosensory cortex (S1) may be expected to characterize the stimulus processing from the thumb, i.e. the hand's most skillful area. To test this hypothesis, neuromagnetic fields were evoked over human S1 by the electrical stimulation of the contralateral thumb or little finger. Neuronal synchronization was indexed by the spectral coherence of the evoked neuromagnetic fields overlying S1. The frequencies of interest were the beta (16-32 Hz) and gamma (36-46 Hz) bands. The global amount of the coherence was defined as the total event-related coherence (ERCoh) among all magnetic sensors overlying the S1. Results showed prevalent increment of beta ERCoh (20-32 Hz) after the little finger stimulation and of gamma ERCoh (36-44 Hz) after the thumb stimulation. These results suggest that the neural synchronization in S1, as revealed by the ERCoh, may vary in frequency as a function of the finger stimulated. In this framework, the neural synchronization at gamma band may characterize the cortical representation of thumb, functionally prevalent with respect to little finger in humans.
Collapse
|
119
|
Murphy BA, Haavik Taylor H, Wilson SA, Oliphant G, Mathers KM. Rapid reversible changes to multiple levels of the human somatosensory system following the cessation of repetitive contractions: a somatosensory evoked potential study. Clin Neurophysiol 2003; 114:1531-7. [PMID: 12888037 DOI: 10.1016/s1388-2457(03)00127-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Numerous somatosensory evoked potential (SEP) studies have provided clear evidence that during repetitive voluntary movement, the transmission of somatosensory afferent information is attenuated. The objective of this work was to determine if this gating phenomenon could persist beyond the period of repetitive movement. METHODS We recorded spinal, brainstem, and cortical SEPs to median nerve stimulation before and immediately after a modified 20 min repetitive typing task that did not involve the thenar muscles. RESULTS There were significant decreases in pre-central cortical and subcortical SEP amplitudes for several minutes following task cessation. CONCLUSIONS These results demonstrate the persistence of the gating phenomenon beyond the cessation of the actual repetitive movement. They also indicate that plastic changes do occur in cortical and subcortical components of the somatosensory system, following voluntary repetitive contractions. SIGNIFICANCE The persistence of changes in somatosensory processing beyond the period of repetitive activity may be relevant to the initiation of overuse injuries.
Collapse
Affiliation(s)
- B A Murphy
- Department of Sport and Exercise Science, Tamaki Campus, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
120
|
Rossi S, della Volpe R, Ginanneschi F, Ulivelli M, Bartalini S, Spidalieri R, Rossi A. Early somatosensory processing during tonic muscle pain in humans: relation to loss of proprioception and motor 'defensive' strategies. Clin Neurophysiol 2003; 114:1351-8. [PMID: 12842734 DOI: 10.1016/s1388-2457(03)00073-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE It is known that tonic muscle pain induced by a Levo-Ascorbic (L-AS) solution injected in a foot muscle can transiently modify both regional proprioception and stimulus perception. These findings are paralleled by changes of middle-latency lower-limb somatosensory evoked potentials (SEPs). However, little is known on the behaviourally relevant aspect whether eventual SEP pain-induced changes could be partly due to a sort of 'motor strategy' of subjects in the frame of a self-protective reaction towards the noxious stimulus. Movement and imagery of movements are in fact known to reduce mainly pre-central SEP amplitude (i.e. gating effect). METHODS Low-threshold afferents ulnar SEPs, psychophysical pain ratings and fingers' position sense were monitored in the time-course during L-AS injection in the right first dorsal interosseous muscle. Control experiments included SEPs (either following prevalent ulnar nerve low-threshold afferent stimulation or more conventional mixed nerve stimulation) during actual movements execution and imagery of movements of the right hand. RESULTS Tonic pain induced a significant reduction of the post-central N(20)-P(25)-N(33) complex and a significant increase of the N(18) wave. These changes, that were paralleled by distortion of the finger position sense, were delayed 2-5 min with respect to the maximal subjective pain sensation. Conversely, movement imagery tasks lead to a significant, selective, reduction of the pre-central N(30) complex. This wave was even more reduced during actual movements, in combination with a reduction of those post-central components peaking after the first activation of the primary sensory cortex. CONCLUSIONS Early sensory processing at cortical level is changed during tonic muscle pain, mainly for those components which may be theoretically involved in proprioceptive afferent elaboration. These changes are likely not due to subconscious or voluntary motor strategies of the subjects in the frame of a self-protective aversive reaction towards the noxious stimulus.
Collapse
Affiliation(s)
- Simone Rossi
- Dipartimento di Neuroscienze, Sezione Neurologia, U.O. Neurofisiopatologia, Università di Siena, Policlinico Le Scotte, Viale Bracci, I-53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
121
|
Kanovský P, Bares M, Rektor I. The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 2003; 114:981-91. [PMID: 12804666 DOI: 10.1016/s1388-2457(03)00068-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The somatosensory evoked potentials of the median nerve (SEP) were registered intracerebrally in 12 subjects to elucidate the origin of N30 component and its behavior in the motor 'gating' tasks. METHODS The recordings were done from the electrodes which were inserted within the cortex of frontal lobe in the pre-surgical phase of epilepsy surgery. The registrations focused on the precentral N30 SEP component and its behaviour under the 'gating' paradigms. Two different 'gating' paradigms, motor and mental, were used and the SEP then were recorded in 3 conditions: (1) normal (N) paradigm, during which the subjects were instructed not to perform any movement by the stimulated hand, or to mentally simulate the movement; (2) active movement (AM) paradigm, during which the subjects were instructed to perform the active movement as the internal motor sequence test by the fingers of the hand of the stimulated limb; (3) mental movement simulation (MMS), during which the subjects were instructed to only mentally simulate the movements performed in the previous paradigm, and this 'virtual' movement also involved the hand of the stimulated limb. The recordings were done at least twice in each paradigm and averaged runs of 2000 artefact-free sweeps were used for the analysis. RESULTS The results demonstrated that the precentral N30 component of SEP is generated only in the pre-motor area, either dorsolaterally or mesially, which consists of Brodmann's areas 6 and 8, and their borders. Only the N30 potentials recorded there in 7 subjects had a shape and character of 'near-field' potential. The behaviour of the N30 component when recorded in the AM and MMS paradigms was different depending on the fact of whether they were recorded dorsolaterally or mesially. When there was a clear 'near-field' N30 potential recorded mesially, there was a certain gating present during the AM paradigm, i.e. during the performance of movement. However, the gating caused by the mental movement simulation in the MMS paradigm was substantially more expressed, and the N30 wave practically disappeared in some cases. On the contrary, the gating of the N30 wave, recorded in the frontal dorsolateral premotor cortex (DLPC), was almost complete when the AM (active movement) paradigm was employed, and it was only partial when the MMS paradigm (mental movement simulation) was employed. CONCLUSIONS The results of N30 registrations in our group of patients strongly support the theory of separate generator (or generators) of the N30 wave within the premotor cortex. They also brought forward evidence that the dorsolateral premotor cortex (Brodmann's areas 6 and 8) serves as the substrate of the 'motor execution' process, and the mesial frontal cortex (Brodmann's area 6) serves as the substrate of the 'motor planning' process. Further research should focus on the mutual registration of neurophysiological phenomena and imaging phenomena to obtain new data, which will be able to more precisely elucidate the workings of the premotor cortex during the whole process of motor performance.
Collapse
Affiliation(s)
- Petr Kanovský
- First Department of Neurology, Masaryk University, St. Anne Hospital, Pekarská 53, 656 91, Brno, Czech Republic.
| | | | | |
Collapse
|
122
|
Kanno A, Nakasato N, Hatanaka K, Yoshimoto T. Ipsilateral area 3b responses to median nerve somatosensory stimulation. Neuroimage 2003; 18:169-77. [PMID: 12507453 DOI: 10.1006/nimg.2002.1283] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetoencephalography investigation of the somatosensory evoked fields for median nerve stimulation detected ipsilateral area 3b responses in 18 hemispheres of 14 (1 normal subject and 13 patients with brain diseases) among 482 consecutive subjects. The major three peaks in the ipsilateral response were named iP50m, iN75m, and iP100m, based on the current orientation in the posterior, anterior, and posterior directions and the latency of 52.7 +/- 6.2, 74.1 +/- 9.4, and 100.2 +/- 15.8 ms (mean +/- standard deviation), respectively. The moment of the iP50m dipole (9.4 +/- 5.7 nAm) was significantly smaller than that of the N20m dipole of the contralateral response (cN20m, 27.5 +/- 10.5 nAm, P < 0.0001). Dipoles of iP50m and cN20m were similarly localized on the posterior bank of the central sulcus. iP50m in the present study had the same current orientation as and peak latency similar to that of the first ipsilateral primary somatosensory response to lip stimulation in our previous report. Therefore, the somatosensory afferent pathway from the hand may reach directly to the ipsilateral area 3b at least in part of the human population.
Collapse
Affiliation(s)
- Akitake Kanno
- Ryogo Center, Kohnan Hospital, 4-20-1 Nagamachi-minami, Taihaku-ku, Sendai, Japan
| | | | | | | |
Collapse
|