101
|
Shah A, Lenka A, Saini J, Wagle S, Naduthota RM, Yadav R, Pal PK, Ingalhalikar M. Altered Brain Wiring in Parkinson's Disease: A Structural Connectome-Based Analysis. Brain Connect 2017; 7:347-356. [DOI: 10.1089/brain.2017.0506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Apurva Shah
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Abhishek Lenka
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Shivali Wagle
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Rajini M. Naduthota
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Madhura Ingalhalikar
- Department of Electronics and Telecommunications, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| |
Collapse
|
102
|
Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev Neurosci 2017; 28:509-536. [DOI: 10.1515/revneuro-2016-0068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
AbstractParkinson’s disease (PD) is histologically characterized by the accumulation of α-synuclein particles, known as Lewy bodies. The second most common neurodegenerative disorder, PD is widely known because of the typical motor manifestations of active tremor, rigidity, and postural instability, while several prodromal non-motor symptoms including REM sleep behavior disorders, depression, autonomic disturbances, and cognitive decline are being more extensively recognized. Motor symptoms most commonly arise from synucleinopathy of nigrostriatal pathway. Glutamatergic, γ-aminobutyric acid (GABA)ergic, cholinergic, serotoninergic, and endocannabinoid neurotransmission systems are not spared from the global cerebral neurodegenerative assault. Wide intrabasal and extrabasal of the basal ganglia provide enough justification to evaluate network circuits disturbance of these neurotransmission systems in PD. In this comprehensive review, English literature in PubMed, Science direct, EMBASE, and Web of Science databases were perused. Characteristics of dopaminergic and non-dopaminergic systems, disturbance of these neurotransmitter systems in the pathophysiology of PD, and their treatment applications are discussed.
Collapse
Affiliation(s)
- Hossein Sanjari Moghaddam
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Student Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zare-Shahabadi
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| |
Collapse
|
103
|
Napoli E. Endogenous repair mechanisms enhanced in Parkinson's disease following stem cell therapy. Brain Circ 2017; 3:163-166. [PMID: 30276319 PMCID: PMC6057692 DOI: 10.4103/bc.bc_22_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022] Open
Abstract
This mini-review highlights the innovative observation that transplanted human neural stem cells can bring about endogenous brain repair through the stimulation of multiple regenerative processes in the neurogenic area (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease (PD). In addition, we convey that identifying anti-inflammatory cytokines, therapeutic proteomes, and neurotrophic factors within the SVZ may be essential to induce brain repair and behavioral recovery. This work opens up a new area of research for further understanding the pathology and treatment of PD. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California Davis, Davis, California, 95616 USA
| |
Collapse
|
104
|
Tang H, Gao Y, Zhang Q, Nie K, Zhu R, Gao L, Feng S, Wang L, Zhao J, Huang Z, Zhang Y, Wang L. Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson's disease via microvascular pathologys. Behav Brain Res 2017; 333:286-294. [PMID: 28578987 DOI: 10.1016/j.bbr.2017.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
To date, the role of microvascular pathology and chronic cerebral hypoperfusion (CHH) in the development of mild cognitive impairment in Parkinson's disease (PD-MCI) is unclear. Here, we investigated how the combined injury through interaction of CHH and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity act as an exacerbating element to damagae cognitive fuction in a mouse model. In the present study, C57BL/6 mice underwent MPTP injection. Subjects were classified into a PD with normal cognitive performance (PDCN) group or a PD-MCI group using the Morris Water Maze test. Further, CHH was induced by stenosis of the bilateral common carotid arteries (BCCAs). Consequently, the animals were divided into 7 groups: they are control, sham, BCCAs, PDCN, PD-MCI, PDCN+BCCAs and PD-MCI+BCCAs. The Morris Water Maze test, open field test, histological investigation and western blotting were performed to analyze cerebral microvascular impairment in each group. The results showed that CHH and MPTP injection caused spatial memory and behavioral impairment, accompanied by microvascular impairment and down-regulation of ZO-1 and Occludin at the protein level compared to the control group. The above injuries were synergistically exacerbated in the PDCN+BCCAs group and the PD-MCI+BCCAs group, which paralleled the elevated expression of p-MAPK and p-Akt. In short, our data demonstrate that CHH and MPTP caused cognitive and microvascular impairment separately. Moreover, CHH may exacerbate cognitive impairment in a mouse model of PD. The study provides a new opportunity for understanding the pathogenesis of PD-MCI.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China; Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Qingxi Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Kun Nie
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Ruiming Zhu
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Liang Gao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Shujun Feng
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Limin Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Jiehao Zhao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zhiheng Huang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute,106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
105
|
Napoli E, Borlongan CV. Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts. Stem Cells 2017; 35:1443-1445. [DOI: 10.1002/stem.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences; University of California Davis; Davis California USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair; University of South Florida College of Medicine; Tampa Florida USA
| |
Collapse
|
106
|
Li X, Xing Y, Schwarz ST, Auer DP. Limbic grey matter changes in early Parkinson's disease. Hum Brain Mapp 2017; 38:3566-3578. [PMID: 28464508 PMCID: PMC6866728 DOI: 10.1002/hbm.23610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate local and network‐related changes of limbic grey matter in early Parkinson's disease (PD) and their inter‐relation with non‐motor symptom severity. We applied voxel‐based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross‐sectional estimates of age‐related grey matter change were compared between subjects with early PD (n = 366) and age‐matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild‐moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age‐related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp 38:3566–3578, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xingfeng Li
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Stefan T Schwarz
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
107
|
Györfi O, Nagy H, Bokor M, Moustafa AA, Rosenzweig I, Kelemen O, Kéri S. Reduced CA2-CA3 Hippocampal Subfield Volume Is Related to Depression and Normalized by l-DOPA in Newly Diagnosed Parkinson's Disease. Front Neurol 2017; 8:84. [PMID: 28367136 PMCID: PMC5355434 DOI: 10.3389/fneur.2017.00084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
Hippocampal dysfunctions may play an important role in the non-motor aspects of Parkinson’s disease (PD), including depressive and cognitive symptoms. Fine structural alterations of the hippocampus and their relationship with symptoms and medication effects are unknown in newly diagnosed PD. We measured the volume of hippocampal subfields in 35 drug-naïve, newly diagnosed PD patients without cognitive impairment and 30 matched healthy control individuals. Assessments were performed when the patients did not receive medications and after a 24-week period of l-DOPA treatment. We obtained a T1-weighted 3D magnetization-prepared rapid acquisition gradient echo image at each assessment. FreeSurfer v6.0 was used for image analysis. Results revealed a selectively decreased CA2–CA3 volume in non-medicated PD patients, which was normalized after the 24-week treatment period. Higher depressive symptoms were associated with smaller CA2–CA3 volumes. These results indicate that the CA2–CA3 subfield is structurally affected in the earliest stage of PD in the absence of cognitive impairment. This structural anomaly, normalized by l-DOPA, is related to depressive non-motor symptoms.
Collapse
Affiliation(s)
- Orsolya Györfi
- Department of Neurology, Nyírö Gyula Hospital, National Institute of Psychiatry and Addictions , Budapest , Hungary
| | - Helga Nagy
- National Institute for Medical Rehabilitation, Budapest, Hungary; Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Magdolna Bokor
- Department of Neurology, Nyírö Gyula Hospital, National Institute of Psychiatry and Addictions , Budapest , Hungary
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW, Australia; Marcs Institute for Brain and Behavior, Western Sydney University, Sydney, NSW, Australia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, IOPPN, King's College and Imperial College London, London, UK; Sleep Disorders Centre, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Oguz Kelemen
- Faculty of Medicine, Department of Behavioral Sciences, University of Szeged , Szeged , Hungary
| | - Szabolcs Kéri
- Department of Neurology, Nyírö Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary; Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary; Faculty of Medicine, Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
108
|
Pramipexole restores depressed transmission in the ventral hippocampus following MPTP-lesion. Sci Rep 2017; 7:44426. [PMID: 28290500 PMCID: PMC5349604 DOI: 10.1038/srep44426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
The hippocampus has a significant association with memory, cognition and emotions. The dopaminergic projections from both the ventral tegmental area and substantia nigra are thought to be involved in hippocampal activity. To date, however, few studies have investigated dopaminergic innervation in the hippocampus or the functional consequences of reduced dopamine in disease models. Further complicating this, the hippocampus exhibits anatomical and functional differentiation along its dorso-ventral axis. In this work we investigated the role of dopamine on hippocampal long term potentiation using D-amphetamine, which stimulates dopamine release, and also examined how a dopaminergic lesion affects the synaptic transmission across the anatomic subdivisions of the hippocampus. Our findings indicate that a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced dopaminergic lesion has time-dependent effects and impacts mainly on the ventral region of the hippocampus, consistent with the density of dopaminergic innervation. Treatment with a preferential D3 receptor agonist pramipexole partly restored normal synaptic transmission and Long-Term Potentiation. These data suggest a new mechanism to explain some of the actions of pramipexole in Parkinson´s disease.
Collapse
|
109
|
Darbinyan L, Hambardzumyan L, Simonyan K, Chavushyan V, Manukyan L, Sarkisian V. Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. PATHOPHYSIOLOGY 2017; 24:23-30. [DOI: 10.1016/j.pathophys.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
|
110
|
Rink C, Görtzen A, Veh RW, Prüss H. Serum antibodies targeting neurons of the monoaminergic systems in Guillain-Barré syndrome. J Neurol Sci 2017; 372:318-323. [DOI: 10.1016/j.jns.2016.11.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/05/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
|
111
|
Schneider CB, Linse K, Schönfeld R, Brown S, Koch R, Reichmann H, Leplow B, Storch A. Spatial learning deficits in Parkinson's disease with and without mild cognitive impairment. Parkinsonism Relat Disord 2016; 36:83-88. [PMID: 28027851 DOI: 10.1016/j.parkreldis.2016.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Several MRI studies have demonstrated hippocampal atrophy in Parkinson's disease (PD), a structure considered a key element in spatial learning. Despite this, no study has been undertaken to investigate spatial navigation in PD using a virtual version of the Morris water maze, which is the gold standard for testing hippocampal function in rodents. METHODS We studied 17 cognitively unimpaired PD patients, 12 PD patients with mild cognitive impairment (MCI) and 15 controls in a virtual water maze procedure. RESULTS Measured by the main outcome parameters latency to locate the target and heading error (average difference between direction of movement toward anticipated target and real direction toward the target), controls performed significantly better on the virtual water maze task than cognitively unimpaired PD patients or PD patients with MCI, while there was no significant difference between latter two groups. CONCLUSIONS The virtual water maze test differentiates PD patients from controls, but does not distinguish between cognitively normal and cognitively impaired PD patients, indicating a possible dopamine dependent component in spatial learning. Spatial performance deficits might thus constitute very early signs of dopamine depletion independent of the presence of MCI in Parkinson's disease.
Collapse
Affiliation(s)
| | - Katharina Linse
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Sebastian Brown
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Rainer Koch
- Department of Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bernd Leplow
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Alexander Storch
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Department of Neurology, University of Rostock, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany.
| |
Collapse
|
112
|
Chen M, Xia D, Min C, Zhao X, Chen Y, Liu L, Li X. Neonatal repetitive pain in rats leads to impaired spatial learning and dysregulated hypothalamic-pituitary-adrenal axis function in later life. Sci Rep 2016; 6:39159. [PMID: 27966656 PMCID: PMC5155224 DOI: 10.1038/srep39159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023] Open
Abstract
Preterm birth is a major health issue. As part of their life-saving care, most preterm infants require hospitalization and are inevitably exposed to repetitive skin-breaking procedures. The long-term effects of neonatal repetitive pain on cognitive and emotional behaviors involving hypothalamic-pituitary-adrenal (HPA) axis function in young and adult rats are unknown. From P8 to P85, mechanical hypersensitivity of the bilateral hindpaws was observed in the Needle group (P < 0.001). Compared with the Tactile group, the Needle group took longer to find the platform on P30 than on P29 (P = 0.03), with a decreased number of original platform site crossings during the probe trial of the Morris water maze test (P = 0.026). Moreover, the Needle group spent more time and took longer distances in the central area than the Tactile group in the Open-field test, both in prepubertal and adult rats (P < 0.05). The HPA axis function in the Needle group differed from the Tactile group (P < 0.05), with decreased stress responsiveness in prepuberty and puberty (P < 0.05) and increased stress responsiveness in adulthood (P < 0.05). This study indicates that repetitive pain that occurs during a critical period may cause severe consequences, with behavioral and neuroendocrine disturbances developing through prepuberty to adult life.
Collapse
Affiliation(s)
- Mengying Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Dongqing Xia
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiting Min
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yinhua Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
113
|
Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson's disease. NEUROIMAGE-CLINICAL 2016; 14:37-42. [PMID: 28116240 PMCID: PMC5226850 DOI: 10.1016/j.nicl.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/14/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
Abstract
Objective Hippocampal atrophy has been associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). However, literature on how hippocampal atrophy affects the pathophysiology of cognitive impairment in PD has been limited. Previous studies assessed the hippocampus as an entire entity instead of their individual subregions. We studied the progression of cognitive status in PD subjects over 18 in relation to hippocampal subfields atrophy. Methods 65 PD subjects were included. Using the MDS task force criteria, PD subjects were classified as either having no cognitive impairment (PD-NCI) or PD-MCI. We extended the study by investigating the hippocampal subfields atrophy patterns in those who converted from PD-NCI to PD-MCI (PD-converters) compared to those who remained cognitively stable (PD-stable) over 18 months. Freesurfer 6.0 was used to perform the automated segmentation of the hippocampus into thirteen subregions. Results PD-MCI showed lower baseline volumes in the left fimbria, right CA1, and right HATA; and lower global cognition scores compared to PD-NCI. Baseline right CA1 was also correlated with baseline attention. Over 18 months, decline in volumes of CA2–3 and episodic memory were also seen in PD-converters compared to PD-stable. Baseline volumes of GC-DG, right CA4, left parasubiculum, and left HATA were predictive of the conversion from PD-NCI to PD-MCI. Conclusion The findings from this study add to the anatomical knowledge of hippocampal subregions in PD, allowing us to understand the unique functional contribution of each subfield. Structural changes in the hippocampus subfields could be early biomarkers to detect cognitive impairment in PD. Hippocampal subfields atrophy could detect cognitive impairment in PD. Each hippocampal subfields has a unique functional contribution. Baseline hippocampal subfields volumes predicted conversion to from NCI to MCI.
Collapse
|
114
|
Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, Toni I, Baldassarre G. Parkinson's disease as a system-level disorder. NPJ PARKINSONS DISEASE 2016; 2:16025. [PMID: 28725705 PMCID: PMC5516580 DOI: 10.1038/npjparkd.2016.25] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/20/2016] [Accepted: 10/11/2016] [Indexed: 01/08/2023]
Abstract
Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson’s disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and other cerebral components on Parkinsonian symptoms. In particular, the basal ganglia work closely in concert with cortex and cerebellum to support motor and cognitive functions. This article proposes a theoretical framework for understanding Parkinson’s disease as caused by the dysfunction of the entire basal ganglia–cortex–cerebellum system rather than by the basal ganglia in isolation. In particular, building on recent evidence, we propose that the three key symptoms of tremor, freezing, and impairments in action sequencing may be explained by considering partially overlapping neural circuits including basal ganglia, cortical and cerebellar areas. Studying the involvement of this system in Parkinson’s disease is a crucial step for devising innovative therapeutic approaches targeting it rather than only the basal ganglia. Possible future therapies based on this different view of the disease are discussed.
Collapse
Affiliation(s)
- Daniele Caligiore
- Laboratory of Computational Embodied Neuroscience (LOCEN), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR), Roma, Italy
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke (NINDS), Medical Neurology Branch, Bethesda, MD, USA
| | | | | | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience (LOCEN), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR), Roma, Italy
| |
Collapse
|
115
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
116
|
Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson's disease. Sci Rep 2016; 6:33762. [PMID: 27646647 PMCID: PMC5028727 DOI: 10.1038/srep33762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD.
Collapse
|
117
|
Duchesne C, Gheysen F, Bore A, Albouy G, Nadeau A, Robillard M, Bobeuf F, Lafontaine A, Lungu O, Bherer L, Doyon J. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals. Neuroimage Clin 2016; 12:559-569. [PMID: 27689020 PMCID: PMC5031470 DOI: 10.1016/j.nicl.2016.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 09/10/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND Aerobic exercise training (AET) has been shown to provide general health benefits, and to improve motor behaviours in particular, in individuals with Parkinson's disease (PD). However, the influence of AET on their motor learning capacities, as well as the change in neural substrates mediating this effect remains to be explored. OBJECTIVE In the current study, we employed functional Magnetic Resonance Imaging (fMRI) to assess the effect of a 3-month AET program on the neural correlates of implicit motor sequence learning (MSL). METHODS 20 healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+ 5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after the AET program, participants' brain was scanned while performing an implicit version of the serial reaction time task. RESULTS Brain data revealed pre-post MSL-related increases in functional activity in the hippocampus, striatum and cerebellum in PD patients, as well as in the striatum in HC individuals. Importantly, the functional brain changes in PD individuals correlated with changes in aerobic fitness: a positive relationship was found with increased activity in the hippocampus and striatum, while a negative relationship was observed with the cerebellar activity. CONCLUSION Our results reveal, for the first time, that exercise training produces functional changes in known motor learning related brain structures that are consistent with improved behavioural performance observed in PD patients. As such, AET can be a valuable non-pharmacological intervention to promote, not only physical fitness in early PD, but also better motor learning capacity useful in day-to-day activities through increased plasticity in motor related structures.
Collapse
Affiliation(s)
- C. Duchesne
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - F. Gheysen
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Ghent University, Ghent, Belgium
| | - A. Bore
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
| | - G. Albouy
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - A. Nadeau
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - M.E. Robillard
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
| | - F. Bobeuf
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - A.L. Lafontaine
- McGill Movement Disorder Clinic, McGill University, Montréal, Québec, Canada
| | - O. Lungu
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychiatrie, Université de Montréal, Montréal, Québec, Canada
- Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, Montréal, Québec, Canada
| | - L. Bherer
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - J. Doyon
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
118
|
Ferrazzoli D, Carter A, Ustun FS, Palamara G, Ortelli P, Maestri R, Yücel M, Frazzitta G. Dopamine Replacement Therapy, Learning and Reward Prediction in Parkinson's Disease: Implications for Rehabilitation. Front Behav Neurosci 2016; 10:121. [PMID: 27378872 PMCID: PMC4906006 DOI: 10.3389/fnbeh.2016.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
The principal feature of Parkinson’s disease (PD) is the impaired ability to acquire and express habitual-automatic actions due to the loss of dopamine in the dorsolateral striatum, the region of the basal ganglia associated with the control of habitual behavior. Dopamine replacement therapy (DRT) compensates for the lack of dopamine, representing the standard treatment for different motor symptoms of PD (such as rigidity, bradykinesia and resting tremor). On the other hand, rehabilitation treatments, exploiting the use of cognitive strategies, feedbacks and external cues, permit to “learn to bypass” the defective basal ganglia (using the dorsolateral area of the prefrontal cortex) allowing the patients to perform correct movements under executive-volitional control. Therefore, DRT and rehabilitation seem to be two complementary and synergistic approaches. Learning and reward are central in rehabilitation: both of these mechanisms are the basis for the success of any rehabilitative treatment. Anyway, it is known that “learning resources” and reward could be negatively influenced from dopaminergic drugs. Furthermore, DRT causes different well-known complications: among these, dyskinesias, motor fluctuations, and dopamine dysregulation syndrome (DDS) are intimately linked with the alteration in the learning and reward mechanisms and could impact seriously on the rehabilitative outcomes. These considerations highlight the need for careful titration of DRT to produce the desired improvement in motor symptoms while minimizing the associated detrimental effects. This is important in order to maximize the motor re-learning based on repetition, reward and practice during rehabilitation. In this scenario, we review the knowledge concerning the interactions between DRT, learning and reward, examine the most impactful DRT side effects and provide suggestions for optimizing rehabilitation in PD.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Parkinson's disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital Gravedona ed Uniti (Como), Italy
| | - Adrian Carter
- UQ Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash UniversityMelbourne, VIC, Australia
| | - Fatma S Ustun
- Neuroscience Graduate Program and National Magnetic Resonance Research Center (UMRAM), Bilkent University Ankara, Turkey
| | - Grazia Palamara
- Department of Parkinson's disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital Gravedona ed Uniti (Como), Italy
| | - Paola Ortelli
- Department of Parkinson's disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital Gravedona ed Uniti (Como), Italy
| | - Roberto Maestri
- Department of Biomedical Engineering, Scientific Institute of Montescano, S. Maugeri Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Montescano (Pavia), Italy
| | - Murat Yücel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University Melbourne, VIC, Australia
| | - Giuseppe Frazzitta
- Department of Parkinson's disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital Gravedona ed Uniti (Como), Italy
| |
Collapse
|
119
|
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802-18. [PMID: 26851597 DOI: 10.1016/j.drudis.2016.01.013] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
120
|
Flores-Cuadrado A, Ubeda-Bañon I, Saiz-Sanchez D, de la Rosa-Prieto C, Martinez-Marcos A. Hippocampal α-synuclein and interneurons in Parkinson's disease: Data from human and mouse models. Mov Disord 2016; 31:979-88. [DOI: 10.1002/mds.26586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alicia Flores-Cuadrado
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha; Ciudad Real Spain
| | - Isabel Ubeda-Bañon
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha; Ciudad Real Spain
| | - Daniel Saiz-Sanchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha; Ciudad Real Spain
| | - Carlos de la Rosa-Prieto
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha; Ciudad Real Spain
| | - Alino Martinez-Marcos
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha; Ciudad Real Spain
| |
Collapse
|
121
|
Dermentzaki G, Paschalidis N, Politis PK, Stefanis L. Complex Effects of the ZSCAN21 Transcription Factor on Transcriptional Regulation of α-Synuclein in Primary Neuronal Cultures and in Vivo. J Biol Chem 2016; 291:8756-72. [PMID: 26907683 DOI: 10.1074/jbc.m115.704973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is strongly implicated in Parkinson disease (PD). PD pathogenesis is linked to increased SNCA levels; however, the transcriptional elements that control SNCA expression are still elusive. Previous experiments in PC12 cells demonstrated that the transcription factor zinc finger and SCAN domain containing 21 (ZSCAN21) plays an important regulatory role in SNCA transcription. Currently, we characterized the role of ZSCAN21 in SNCA transcription in primary neuronal cultures and in vivo We found that ZSCAN21 is developmentally expressed in neurons in different rat brain regions. We confirmed its binding in the intron 1 region of SNCA in rat cortical cultures. Lentivirus-mediated silencing of ZSCAN21 increased significantly SNCA promoter activity, mRNA, and protein levels in such cultures. In contrast, ZSCAN21 silencing reduced SNCA in neurosphere cultures. Interestingly, ZSCAN21 overexpression in cortical neurons led to robust mRNA but negligible protein expression, suggesting that ZSCAN21 protein levels are tightly regulated post-transcriptionally and/or post-translationally in primary neurons. Efficient adeno-associated virus-mediated knockdown of ZSCAN21 in the postnatal and adult hippocampus, an area linked with non-motor PD symptoms, revealed no significant alterations in SNCA levels. Overall, our study demonstrates that ZSCAN21 is involved in the transcriptional regulation of SNCA in primary neuronal cultures, but the direction of the effect is variable, likely depending on neuronal maturation. However, the unaltered SNCA levels observed following ZSCAN21 down-regulation in the rat brain, possibly due to compensatory mechanisms, imply that ZSCAN21 is not a master regulator of SNCA in vivo.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Nikolaos Paschalidis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Panagiotis K Politis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Leonidas Stefanis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and the Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Hospital Attikon, Athens 12462, Greece,
| |
Collapse
|
122
|
Muñoz MD, Antolín-Vallespín M, Tapia-González S, Sánchez-Capelo A. Smad3 deficiency inhibits dentate gyrus LTP by enhancing GABAA neurotransmission. J Neurochem 2016; 137:190-9. [PMID: 26826552 DOI: 10.1111/jnc.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/07/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-β signaling through intracellular Smad3 has been implicated in Parkinson's disease (PD) and it fulfills an important role in the neurogenesis and synaptic plasticity that occurs in the adult dentate gyrus (DG). The long-term potentiation (LTP) induced in the DG by high-frequency stimulation of the medial perforant pathway is abolished in the DG of Smad3-deficient mice, but not in the CA1 hippocampal region. Here, we show that NMDA- and AMPA-type glutamate receptors do not participate in the inhibition of LTP associated with Smad3 deficiency. Moreover, there is no difference in the hippocampal GAD65 and GAD67 content, suggesting that GABA biosynthesis remains unaffected. Increased conductance and higher action potential firing thresholds were evident in intracellular recordings of granule cells from Smad3 deficient mice. Interestingly, phasic and tonic GABAA receptor (GABAA R)-mediated neurotransmission is enhanced in the DG of Smad3-deficient mice, and LTP induction can be rescued by inhibiting GABAA R with picrotoxin. Hence, Smad3 signaling in the DG appears to be necessary to induce LTP by regulating GABAA neurotransmission, suggesting a central role of this intracellular signaling pathway in the hippocampal brain plasticity related to learning and memory. Smad3 deficient mice represent a new and interesting model of Parkinson's disease, displaying hippocampal dysfunctions that include decreased neurogenesis and the failure to induce LTP in the dentate gyrus. Here we show that Smad3 deficiency inhibits LTP induction by enhancing phasic and tonic GABAA receptor-mediated neurotransmission, while LTP induction can be rescued with a GABAA receptor antagonist. Alteration of GABA neurotransmission is thought to produce hippocampal cognitive dysfunction in Down's syndrome or Alzheimer's disease, and here we provide new insights into the hippocampal changes in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- M Dolores Muñoz
- Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Mónica Antolín-Vallespín
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Silvia Tapia-González
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Amelia Sánchez-Capelo
- CIBERNED - Ser. Neurobiología - Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| |
Collapse
|
123
|
Calabresi P, Ghiglieri V, Mazzocchetti P, Corbelli I, Picconi B. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0184. [PMID: 26009763 DOI: 10.1098/rstb.2014.0184] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Veronica Ghiglieri
- Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Piazza Ermini 1, Perugia 06123, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy
| | - Barbara Picconi
- Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| |
Collapse
|
124
|
Succinobucol, a Non-Statin Hypocholesterolemic Drug, Prevents Premotor Symptoms and Nigrostriatal Neurodegeneration in an Experimental Model of Parkinson's Disease. Mol Neurobiol 2016; 54:1513-1530. [PMID: 26852411 DOI: 10.1007/s12035-016-9747-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by non-motor and motor disabilities. This study investigated whether succinobucol (SUC) could mitigate nigrostriatal injury caused by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice. Moreover, the effects of SUC against MPTP-induced behavioral impairments and neurochemical changes were also evaluated. The quantification of tyrosine hydroxylase-positive (TH+) cells was also performed in primary mesencephalic cultures to evaluate the effects of SUC against 1-methyl-4-phenylpyridinium (MPP+) toxicity in vitro. C57BL/6 mice were treated with SUC (10 mg/kg/day, intragastric (i.g.)) for 30 days, and thereafter, animals received MPTP infusion (1 mg/nostril) and SUC treatment continued for additional 15 days. MPTP-infused animals displayed significant non-motor symptoms including olfactory and short-term memory deficits evaluated in the olfactory discrimination, social recognition, and water maze tasks. These behavioral impairments were accompanied by inhibition of mitochondrial NADH dehydrogenase activity (complex I), as well as significant decrease of TH and dopamine transporter (DAT) immunoreactivity in the substantia nigra pars compacta and striatum. Although SUC treatment did not rescue NADH dehydrogenase activity inhibition, it was able to blunt MPTP-induced behavioral impairments and prevented the decrease in TH and DAT immunoreactivities in substantia nigra (SN) and striatum. SUC also suppressed striatal astroglial activation and increased interleukin-6 levels in MPTP-intoxicated mice. Furthermore, SUC significantly prevented the loss of TH+ neurons induced by MPP+ in primary mesencephalic cultures. These results provide new evidence that SUC treatment counteracts early non-motor symptoms and neurodegeneration/neuroinflammation in the nigrostriatal pathway induced by intranasal MPTP administration in mice by modulating events downstream to the mitochondrial NADH dehydrogenase inhibition.
Collapse
|
125
|
Thurm F, Schuck NW, Fauser M, Doeller CF, Stankevich Y, Evens R, Riedel O, Storch A, Lueken U, Li SC. Dopamine modulation of spatial navigation memory in Parkinson's disease. Neurobiol Aging 2016; 38:93-103. [DOI: 10.1016/j.neurobiolaging.2015.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023]
|
126
|
Tian R, Hou Z, Hao S, Wu W, Mao X, Tao X, Lu T, Liu B. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Brain Res 2016; 1637:1-13. [PMID: 26826009 DOI: 10.1016/j.brainres.2016.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.
Collapse
Affiliation(s)
- Runfa Tian
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Weichuan Wu
- Department of Neurosurgery, Baoan Central Hospital, Shenzhen 518102, PR China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Xiaogang Tao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Te Lu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China; Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, PR China; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing 100050, PR China; Department of Neurotrauma, General Hospital of Armed Police Forces, Beijing 100039, PR China.
| |
Collapse
|
127
|
Bologna M, Suppa A, Conte A, Latorre A, Rothwell JC, Berardelli A. Are studies of motor cortex plasticity relevant in human patients with Parkinson’s disease? Clin Neurophysiol 2016; 127:50-59. [DOI: 10.1016/j.clinph.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
|
128
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
129
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|
130
|
Zhou JJ, Zhai SY, Zhang HN, Wang YH, Pu XP. Neuroprotective effects of 3-O-demethylswertipunicoside against MPTP-induced Parkinson's disease in vivo and its antioxidant properties in vitro. Brain Res 2015. [PMID: 26210618 DOI: 10.1016/j.brainres.2015.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3-O-demethylswertipunicoside (3-ODS) has been reported to protect dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP(+)) in PC12 cells. Here, we investigate the neuroprotective effects in vivo and antioxidant activities in vitro of 3-ODS. In the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD), 3-ODS dose-dependently improved motor coordination (as shown by rotarod test), increased the contents of dopamine (DA) and its metabolites in the striatum, and increased the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN). In addition, 3-ODS also increased the spine density in hippocampal CA1 neurons. In antioxidant assays, 3-ODS showed a strong capacity in scavenging hydroxyl radical, superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical in a concentration-dependent manner. Taken together, we conclude that 3-ODS attenuates the PD-related motor deficits mainly through its neuroprotective effects, growth-promoting effects on spine density, and its antioxidant activities.
Collapse
Affiliation(s)
- Jun-Jun Zhou
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Pharmacology, Dalian Medical University, Dalian 116044, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Shen-Yu Zhai
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hui-Nan Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yue-Hua Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
131
|
Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology 2015; 85:1795-805. [PMID: 26475693 DOI: 10.1212/wnl.0000000000002137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Anhar Hassan
- From the Department of Neurology, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
132
|
Schlachetzki JCM, Grimm T, Schlachetzki Z, Ben Abdallah NMB, Ettle B, Vöhringer P, Ferger B, Winner B, Nuber S, Winkler J. Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein. J Neurosci Res 2015; 94:62-73. [PMID: 26451750 DOI: 10.1002/jnr.23677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Nonmotor symptoms of cognitive and affective nature are present in premotor and motor stages of Parkinson's disease (PD). Neurogenesis, the generation of new neurons, persists throughout the mammalian life span in the hippocampal dentate gyrus. Adult hippocampal neurogenesis may be severely affected in the course of PD, accounting for some of the neuropsychiatric symptoms such as depression and cognitive impairment. Two important PD-related pathogenic factors have separately been attributed to contribute to both PD and adult hippocampal neurogenesis: dopamine depletion and accumulation of α-synuclein (α-syn). In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model, altered neurogenesis has been linked merely to a reduced dopamine level. Here, we seek to determine whether a distinct endogenous α-syn expression pattern is associated, possibly contributing to the hippocampal neurogenic deficit. We observed a persistent reduction of striatal dopamine and a loss of tyrosine hydroxylase-expressing neurons in the substantia nigra pars compacta in contrast to a complete recovery of tyrosine hydroxylase-immunoreactive dopaminergic fibers within the striatum. However, dopamine levels in the hippocampus were significantly decreased. Survival of newly generated neurons was significantly reduced and paralleled by an accumulation of truncated, membrane-associated, insoluble α-syn within the hippocampus. Specifically, the presence of truncated α-syn species was accompanied by increased activity of calpain-1, a calcium-dependent protease. Our results further substantiate the broad effects of dopamine loss in PD-susceptible brain nuclei, gradually involved in the PD course. Our findings also indicate a detrimental synergistic interplay between dopamine depletion and posttranslational modification of α-syn, contributing to impaired hippocampal plasticity in PD.
Collapse
Affiliation(s)
- Johannes C M Schlachetzki
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Grimm
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zinayida Schlachetzki
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nada M B Ben Abdallah
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrizia Vöhringer
- Department of CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Boris Ferger
- Department of CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Beate Winner
- Interdisciplinary Center for Clinical Research Junior Research Group III, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Nuber
- Department of Psychiatry and Neurosciences, University of California, San Diego, La Jolla, California
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
133
|
Calabresi P, Picconi B, Tozzi A, Ghiglieri V. Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat Disord 2015; 22 Suppl 1:S65-8. [PMID: 26372625 DOI: 10.1016/j.parkreldis.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy; Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Barbara Picconi
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alessandro Tozzi
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Università degli Studi di Perugia, Dipartimento Medicina Sperimentale, Perugia, Italy
| | - Veronica Ghiglieri
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Università degli Studi di Perugia, Dipartmento di Filosofia, Scienze Sociali, Umane e della Formazione, Perugia, Italy
| |
Collapse
|
134
|
Abstract
ABSTRACT
Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mark Denham
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
| | - J. Carlos Villaescusa
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| |
Collapse
|
135
|
Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol 2015; 78:441-53. [PMID: 25279404 DOI: 10.1111/bcp.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer's disease and Parkinson's disease.
Collapse
|
136
|
Ricciardi L, De Nigris F, Specchia A, Fasano A. Homotaurine in Parkinson's disease. Neurol Sci 2015; 36:1581-7. [PMID: 25894843 DOI: 10.1007/s10072-015-2201-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
Abstract
Homotaurine is a natural compound of red algae, which has been demonstrated to have a neuroprotective effect and has been evaluated as a possible therapeutic agent for Alzheimer's disease. This was a single blind, randomized, controlled study to evaluate the safety and efficacy of homotaurine in patients with Parkinson's disease (PD) and cognitive impairment. Patients were evaluated at baseline and 6 months later. Assessments included, the evaluation of: motor and non-motor conditions and complications (Unified Parkinson's Disease Rating Scale, UPDRS); disability and quality of life; depression; excessive daytime sleepiness and fatigue. An extensive neuropsychological tests battery was administered evaluating specific cognitive domains: memory, phonemic verbal fluency, executive functions and selective visual attention. After baseline testing, patients were allocated to one of the two groups: (A) treatment group: patients treated with homotaurine 100 mg; (B) control group: patients not treated with homotaurine. Forty-seven patients were evaluated at baseline, 24 (51 %) completed the study (PD-homotaurine: n = 11; 44 % and PD-controls: n = 13; 59 %); discontinuation rate was similar across subjects (p = 1.0). Intention to treat analyses to evaluate homotaurine safety showed mild side effects (gastrointestinal upsetting) in 3 patients. Per protocol analyses of homotaurine efficacy showed no difference between groups. Within group analyses showed that PD-homotaurine patients had better score at UPDRS-I at the end of the study compared to baseline (p = 0.017) and at Epworth Sleepiness Scale (p = 0.01). No other differences were found. No significant difference arose for the PD-ctrl group. Homotaurine is a safe drug. Our data suggest a beneficial effect of homotaurine on excessive sleepiness. Future studies are encouraged to confirm this promising role of homotaurine in promoting the sleep/awake cycle in patients with PD.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK,
| | | | | | | |
Collapse
|
137
|
Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol 2015; 172:2354-68. [PMID: 25560396 DOI: 10.1111/bph.13061] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. EXPERIMENTAL APPROACHES I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. KEY RESULTS Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) -induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg(-1) ) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP(+) ) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. CONCLUSIONS AND IMPLICATIONS Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models.
Collapse
Affiliation(s)
- Guoqi Zhu
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | | | | | | |
Collapse
|
138
|
Nyberg EM, Tanabe J, Honce JM, Krmpotich T, Shelton E, Hedeman J, Berman BD. Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes. Parkinsonism Relat Disord 2015; 21:536-40. [PMID: 25817514 DOI: 10.1016/j.parkreldis.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder associated with gray matter atrophy. Cortical atrophy patterns may further help distinguish between PD motor subtypes. Comparable differences in subcortical volumes have not been found. METHODS Twenty-one cognitively intact and treated PD patients, including 12 tremor dominant (TD) subtype, Nine postural instability gait dominant (PIGD) subtype, and 20 matched healthy control subjects underwent 3.0 T high-resolution structural MRI scanning. Subcortical volumetric analysis was performed using FreeSurfer and shape analysis was performed with FIRST to assess for differences between PD patients and controls and between PD subtypes. RESULTS No significant differences in subcortical volumes were found between motor PD subtypes, but comparing grouped PD patients with controls revealed a significant increase in hippocampal volume in PD patients (p = 0.03). A significant shape difference was detected in the right nucleus accumbens (NAcc) between PD and controls and between motor subtypes. Shape differences were driven by positive deviations in the TD subtype. Correlation analysis revealed a trend between hippocampal volume and decreasing MDS-UPDRS (p = 0.06). CONCLUSION While no significant differences in subcortical volumes between PD motor subtypes were found, increased hippocampal volumes were observed in PD patients compared to controls. Right NAcc shape differences in PD patients were driven by changes in the TD subtype. These unexpected findings may be related to the effects of chronic dopaminergic replacement on the mesolimbic pathway. Further studies are needed to replicate and determine the clinical significance of such morphologic changes.
Collapse
Affiliation(s)
- Eric M Nyberg
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Jody Tanabe
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Justin M Honce
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Theodore Krmpotich
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Erika Shelton
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States
| | - Jessica Hedeman
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States
| | - Brian D Berman
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
139
|
Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties. JOURNAL OF NEURODEGENERATIVE DISEASES 2015; 2015:313702. [PMID: 26317011 PMCID: PMC4437346 DOI: 10.1155/2015/313702] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were observed not only in the CA1 and CA3 subfields of the hippocampus, but also in the temporal cortex. In conclusion, we showed that VA partly reversed the behavioral, neurochemical, histological, and immunohistochemical alterations observed in the untreated 6-OHDA-lesioned animals. These effects are probably related to the drug anti-inflammatory activity and strongly suggest that VA is a potential candidate to be included in translational studies for the treatment of neurodegenerative diseases as PD.
Collapse
|
140
|
Samuel M, Rodriguez-Oroz M, Antonini A, Brotchie JM, Ray Chaudhuri K, Brown RG, Galpern WR, Nirenberg MJ, Okun MS, Lang AE. Management of impulse control disorders in Parkinson's disease: Controversies and future approaches. Mov Disord 2015; 30:150-9. [PMID: 25607799 PMCID: PMC5077247 DOI: 10.1002/mds.26099] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 02/01/2023] Open
Abstract
Impulse control disorders in Parkinson's disease are a group of impulsive behaviors most often associated with dopaminergic treatment. Presently, there is a lack of high quality evidence available to guide their management. This manuscript reviews current management strategies, before concentrating on the concept of dopamine agonist withdrawal syndrome and its implications for the management of impulse control disorders. Further, we focus on controversies, including the role of more recently available anti-parkinsonian drugs, and potential future approaches involving routes of drug delivery, nonpharmacological treatments (such as cognitive behavioral therapy and deep brain stimulation), and other as yet experimental strategies.
Collapse
Affiliation(s)
- Michael Samuel
- Department of Neurology, National Parkinson Foundation International Centre of Excellence, King's College Hospital, King's Health Partners, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Sokolova IV, Schneider CJ, Bezaire M, Soltesz I, Vlkolinsky R, Nelson GA. Proton Radiation Alters Intrinsic and Synaptic Properties of CA1 Pyramidal Neurons of the Mouse Hippocampus. Radiat Res 2015; 183:208-18. [DOI: 10.1667/rr13785.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Irina V. Sokolova
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Calvin J. Schneider
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Marianne Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Roman Vlkolinsky
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
142
|
van Mierlo TJ, Chung C, Foncke EM, Berendse HW, van den Heuvel OA. Depressive symptoms in Parkinson's disease are related to decreased hippocampus and amygdala volume. Mov Disord 2015; 30:245-52. [DOI: 10.1002/mds.26112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tom J. van Mierlo
- Department of Neurology; VU University Medical Center (VUmc); Amsterdam The Netherlands
| | - Chin Chung
- Department of Neurology; VU University Medical Center (VUmc); Amsterdam The Netherlands
| | - Elisabeth M. Foncke
- Department of Neurology; VU University Medical Center (VUmc); Amsterdam The Netherlands
| | - Henk W. Berendse
- Department of Neurology; VU University Medical Center (VUmc); Amsterdam The Netherlands
- Neuroscience Campus Amsterdam; Amsterdam The Netherlands
| | - Odile A. van den Heuvel
- Neuroscience Campus Amsterdam; Amsterdam The Netherlands
- Department of Psychiatry; VUmc; Amsterdam The Netherlands
- Department of Anatomy & Neurosciences; VUmc; Amsterdam The Netherlands
| |
Collapse
|
143
|
Klooster NB, Cook SW, Uc EY, Duff MC. Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension. Front Hum Neurosci 2015; 8:1054. [PMID: 25628556 PMCID: PMC4292316 DOI: 10.3389/fnhum.2014.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/17/2014] [Indexed: 11/13/2022] Open
Abstract
Hand gesture, a ubiquitous feature of human interaction, facilitates communication. Gesture also facilitates new learning, benefiting speakers and listeners alike. Thus, gestures must impact cognition beyond simply supporting the expression of already-formed ideas. However, the cognitive and neural mechanisms supporting the effects of gesture on learning and memory are largely unknown. We hypothesized that gesture's ability to drive new learning is supported by procedural memory and that procedural memory deficits will disrupt gesture production and comprehension. We tested this proposal in patients with intact declarative memory, but impaired procedural memory as a consequence of Parkinson's disease (PD), and healthy comparison participants with intact declarative and procedural memory. In separate experiments, we manipulated the gestures participants saw and produced in a Tower of Hanoi (TOH) paradigm. In the first experiment, participants solved the task either on a physical board, requiring high arching movements to manipulate the discs from peg to peg, or on a computer, requiring only flat, sideways movements of the mouse. When explaining the task, healthy participants with intact procedural memory displayed evidence of their previous experience in their gestures, producing higher, more arching hand gestures after solving on a physical board, and smaller, flatter gestures after solving on a computer. In the second experiment, healthy participants who saw high arching hand gestures in an explanation prior to solving the task subsequently moved the mouse with significantly higher curvature than those who saw smaller, flatter gestures prior to solving the task. These patterns were absent in both gesture production and comprehension experiments in patients with procedural memory impairment. These findings suggest that the procedural memory system supports the ability of gesture to drive new learning.
Collapse
Affiliation(s)
- Nathaniel B Klooster
- Neuroscience Graduate Program, University of Iowa Iowa City, IA, USA ; DeLTA Center, University of Iowa Iowa City, IA, USA
| | - Susan W Cook
- DeLTA Center, University of Iowa Iowa City, IA, USA ; Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Ergun Y Uc
- Department of Neurology, University of Iowa Iowa City, IA, USA ; Neurology Service, Veterans Affairs Medical Center Iowa City, IA, USA
| | - Melissa C Duff
- Neuroscience Graduate Program, University of Iowa Iowa City, IA, USA ; DeLTA Center, University of Iowa Iowa City, IA, USA ; Department of Neurology, University of Iowa Iowa City, IA, USA ; Department of Communication Sciences and Disorders, University of Iowa Iowa City, IA, USA
| |
Collapse
|
144
|
Diógenes MJ, Ribeiro JA, Sebastião AM. Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson’s Disease. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-20273-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
145
|
Christopher L, Duff-Canning S, Koshimori Y, Segura B, Boileau I, Chen R, Lang AE, Houle S, Rusjan P, Strafella AP. Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Ann Neurol 2014; 77:269-80. [PMID: 25448687 DOI: 10.1002/ana.24323] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/04/2014] [Accepted: 11/22/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Patients with Parkinson disease (PD) and mild cognitive impairment (MCI) are vulnerable to dementia and frequently experience memory deficits. This could be the result of dopamine dysfunction in corticostriatal networks (salience, central executive networks, and striatum) and/or the medial temporal lobe. Our aim was to investigate whether dopamine dysfunction in these regions contributes to memory impairment in PD. METHODS We used positron emission tomography imaging to compare D2 receptor availability in the cortex and striatal (limbic and associative) dopamine neuron integrity in 4 groups: memory-impaired PD (amnestic MCI; n = 9), PD with nonamnestic MCI (n = 10), PD without MCI (n = 11), and healthy controls (n = 14). Subjects were administered a full neuropsychological test battery for cognitive performance. RESULTS Memory-impaired patients demonstrated more significant reductions in D2 receptor binding in the salience network (insular cortex and anterior cingulate cortex [ACC] and the right parahippocampal gyrus [PHG]) compared to healthy controls and patients with no MCI. They also presented reductions in the right insula and right ACC compared to nonamnestic MCI patients. D2 levels were correlated with memory performance in the right PHG and left insula of amnestic patients and with executive performance in the bilateral insula and left ACC of all MCI patients. Associative striatal dopamine denervation was significant in all PD patients. INTERPRETATION Dopaminergic differences in the salience network and the medial temporal lobe contribute to memory impairment in PD. Furthermore, these findings indicate the vulnerability of the salience network in PD and its potential role in memory and executive dysfunction.
Collapse
Affiliation(s)
- Leigh Christopher
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging, and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson's disease. Mov Disord 2014; 29:634-50. [PMID: 24757112 DOI: 10.1002/mds.25857] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022] Open
Abstract
The recent formalization of clinical criteria for Parkinson's disease with dementia (PDD) codifies many studies on this topic, including those assessing biological correlates. These studies show that the emergence of PDD occurs on the background of severe dopamine deficits with, the main pathological drivers of cognitive decline being a synergistic effect between alpha-synuclein and Alzheimer's disease pathology. The presence of these pathologies correlates with a marked loss of limbic and cortically projecting dopamine, noradrenaline, serotonin, and acetylcholine neurons, although the exact timing of these relationships remains to be determined. Genetic factors, such as triplications in the α-synuclein gene, lead to a clear increased risk of PDD, whereas others, such as parkin mutations, are associated with a reduced risk of PDD. The very recent formalization of clinical criteria for PD with mild cognitive impairment (PD-MCI) allows only speculation on its biological and genetic bases. Critical assessment of animal models shows that chronic low-dose MPTP treatment in primates recapitulates PD-MCI over time, enhancing the current biological concept of PD-MCI as having enhanced dopamine deficiency in frontostriatal pathways as well as involvement of other neurotransmitter systems. Data from other animal models support multiple transmitter involvement in cognitive impairment in PD. Whereas dopamine dysfunction has been highlighted because of its obvious role in PD, the role of the other neurotransmitter systems, neurodegenerative pathologies, and genetic factors in PD-MCI remains to be fully elucidated.
Collapse
Affiliation(s)
- Glenda M Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
147
|
Giráldez-Pérez RM, Antolín-Vallespín M, Muñoz MD, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson's disease. Acta Neuropathol Commun 2014; 2:176. [PMID: 25497491 PMCID: PMC4272812 DOI: 10.1186/s40478-014-0176-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
Collapse
Affiliation(s)
- Rosa María Giráldez-Pérez
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
- />Departamento Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Mónica Antolín-Vallespín
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - María Dolores Muñoz
- />Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - Amelia Sánchez-Capelo
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| |
Collapse
|
148
|
Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:221-39. [PMID: 24997036 DOI: 10.1007/978-1-4939-0897-4_10] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We recently coined the phrase 'psychobiotics' to describe an emerging class of probiotics of relevance to psychiatry [Dinan et al., Biol Psychiatry 2013;74(10):720-726]. Such "mind-altering" probiotics may act via their ability to produce various biologically active compounds, such as peptides and mediators normally associated with mammalian neurotransmission. Several molecules with neuroactive functions such as gamma-aminobutyric acid (GABA), serotonin, catecholamines and acetylcholine have been reported to be microbially-derived, many of which have been isolated from bacteria within the human gut. Secreted neurotransmitters from bacteria in the intestinal lumen may induce epithelial cells to release molecules that in turn modulate neural signalling within the enteric nervous system and consequently signal brain function and behaviour of the host. Consequently, neurochemical containing/producing probiotic bacteria may be viewed as delivery vehicles for neuroactive compounds and as such, probiotic bacteria may possibly have the potential as a therapeutic strategy in the prevention and/or treatment of certain neurological and neurophysiological conditions.
Collapse
Affiliation(s)
- Rebecca Wall
- Alimentary Pharmabiotic Centre, Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
149
|
Liu L, Xie K, Chen H, Dong X, Li Y, Yu Y, Wang G, Yu Y. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res 2014; 1589:78-92. [DOI: 10.1016/j.brainres.2014.09.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
|
150
|
Rocca MA, Parisi L, Pagani E, Copetti M, Rodegher M, Colombo B, Comi G, Falini A, Filippi M. Regional but Not Global Brain Damage Contributes to Fatigue in Multiple Sclerosis. Radiology 2014; 273:511-20. [DOI: 10.1148/radiol.14140417] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|