101
|
Krämer J, Wiendl H, Meuth SG, Albrecht P. Combined Neurofilament Light and Optical Coherence Tomography Better Predicts Multiple Sclerosis Disease Activity Than Either Measure Alone. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1054. [PMID: 34348970 PMCID: PMC8362346 DOI: 10.1212/nxi.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Julia Krämer
- From the Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; and Department of Neurology (S.G.M., P.A.), University Hospital Düsseldorf, Germany.
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; and Department of Neurology (S.G.M., P.A.), University Hospital Düsseldorf, Germany
| | - Sven G Meuth
- From the Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; and Department of Neurology (S.G.M., P.A.), University Hospital Düsseldorf, Germany
| | - Philipp Albrecht
- From the Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; and Department of Neurology (S.G.M., P.A.), University Hospital Düsseldorf, Germany.
| |
Collapse
|
102
|
Tazarjani HD, Amini Z, Kafieh R, Ashtari F, Sadeghi E. Retinal OCT Texture Analysis for Differentiating Healthy Controls from Multiple Sclerosis (MS) with/without Optic Neuritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5579018. [PMID: 34337030 PMCID: PMC8298144 DOI: 10.1155/2021/5579018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease damaging the myelin sheath in the central and peripheral nervous system in the brain and spinal cord. Optic Neuritis (ON) is one of the most prevalent ocular demonstrations of MS. The current diagnosis protocol for MS is MRI, but newer modalities like Optical Coherence Tomography (OCT) are already of interest in early detection and progression analysis. OCT reveals the symptoms of MS in the Central Nervous System (CNS) through cross-sectional images from neural retinal layers. Previous works on OCT were mostly focused on the thickness of retinal layers; however, texture features seem also to have information in this regard. In this research, we introduce a new pipeline that constructs layer-stacked (LS) images containing data from each specific layer. A variety of texture features are then extracted from LS images to differentiate between healthy controls and ON/None-ON MS cases. Furthermore, the definition of texture extraction methods is tailored for this application. After performing a vast survey on available texture analysis methods, a treasury of powerful features is collected in this paper. As a primary work, this paper shows the ability of such features in the diagnosis of HC and MS (ON and None-ON) cases. Our findings show that the texture features are powerful to diagnose MS cases. Furthermore, adding information of conventional thickness values to texture features improves considerably the discrimination between most of the target groups including HC vs. MS, HC vs. MS-None-ON, and HC vs. MS-ON.
Collapse
Affiliation(s)
- Hamidreza Dehghan Tazarjani
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Amini
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahele Kafieh
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Ashtari
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Sadeghi
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
103
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|
104
|
Rzepiński Ł, Kucharczuk J, Maciejek Z, Grzybowski A, Parisi V. Spectral-Domain Optical Coherence Tomography Assessment in Treatment-Naïve Patients with Clinically Isolated Syndrome and Different Multiple Sclerosis Types: Findings and Relationship with the Disability Status. J Clin Med 2021; 10:jcm10132892. [PMID: 34209692 PMCID: PMC8268329 DOI: 10.3390/jcm10132892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV) using spectral-domain optical coherence tomography in treatment naïve patients with the clinically isolated syndrome (CIS) and different multiple sclerosis (MS) types. A total of 126 patients (15 CIS, 65 relapsing-remitting MS, 14 secondary progressive MS, 11 primary progressive MS, 21 benign MS) with or without optic neuritis (ON) history and 63 healthy age-similar controls were assessed. Concerning controls' eyes, pRNFL thickness was significantly reduced in CIS-ON eyes (p < 0.01), while both TMV and pRNFL thickness was decreased in all MS eyes regardless of ON history (p < 0.01). Significant differences in pRNFL thickness and TMV between MS variants were observed for non-ON eyes (p < 0.01), with the lowest values in benign and secondary progressive disease type, respectively. The pRNFL thickness was inversely correlated with Expanded Disability Status Scale (EDSS) score in non-ON subgroups (p < 0.01), whereas TMV was inversely correlated with EDSS score in both ON and non-ON subgroups (p < 0.01). Concluding, pRNFL thinning confirms optic nerve damage in CIS-ON eyes and appears to be disproportionately high with respect to the disability status of benign MS patients. The values of TMV and pRNFL in non-ON eyes significantly correspond to MS course heterogeneity and patients' disability than in ON eyes.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
- Correspondence:
| | - Jan Kucharczuk
- Department of Ophthalmology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Zdzisław Maciejek
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
- Neurology Department, Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Żołnierska 18, 10-561 Olsztyn, Poland;
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836 Poznan, Poland
| | | |
Collapse
|
105
|
Jakimovski D, Zivadinov R, Vaughn CB, Ozel O, Weinstock-Guttman B. Clinical effects associated with five-year retinal nerve fiber layer thinning in multiple sclerosis. J Neurol Sci 2021; 427:117552. [PMID: 34175775 DOI: 10.1016/j.jns.2021.117552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurodegenerative changes in multiple sclerosis (MS) are associated with long-term disability progression (DP). Optical coherence tomography (OCT) measures may be used to monitor DP. OBJECTIVE To determine significant effects driving the changes in OCT-based peripapillary retinal nerve fiber layer (pRNFL) in heterogeneous group of MS patients. METHODS Total of 144 MS patients (109 relapsing-remitting MS and 35 progressive MS (PMS) with mean age at baseline of 47.6 and 56.5 years old, respectively) underwent clinical and OCT examination over 5-year follow-up. All OCT exams were reviewed using the OSCAR-IB criteria. The 5-year DP was determined based on Expanded Disability Status Scale (EDSS) changes and MS clinical trial criteria. Data regarding previous history of MS optic neuritis (MSON) and use of disease modifying treatment (DMT) was derived by in-person interview and review of electronic medical records. Mixed model-type of repeated measure analysis determined effects driving pRNFL change for analysis which utilized all eyes separately. RESULTS Over an average of 5.3-years follow-up, the MS population demonstrated significant pRNFL thinning (F = 16.108, p < 0.001). The pRNFL thinning was greater due to progressive MS subtype (F = 5.102, p = 0.025), greater age at baseline (F = 4.554, p = 0.034), occurrence of DP (F = 6.583, p = 0.011), and previous history of MSON (F = 7.053, p = 0.008). Use of any or highly potent DMT (natalizumab versus first-line injectable treatments versus no DMT) significantly reduced the pRNFL thinning (F = 8.367, p = 0.004) over the follow-up. Lastly, occurrence of DP in PMS patients older than 50 years old was associated with greater pRNFL thinning (F = 6.667, p = 0.013). CONCLUSION Longitudinal pRNFL changes are modified by age, disease subtype, disabiltiy progression, history of MSON, DMT use and their interactions.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Caila B Vaughn
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Osman Ozel
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
106
|
Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, Senabouth A, Hewitt AW, UK Biobank Eye and Vision Consortium, International Glaucoma Genetics Consortium, Atan D, Aung T, Charng J, Choquet H, Craig J, Khaw PT, Klaver CCW, Kubo M, Ong JS, Pasquale LR, Reisman CA, Daniszewski M, Powell JE, Pébay A, Simcoe MJ, Thiadens AAHJ, van Duijn CM, Yazar S, Jorgenson E, MacGregor S, Hammond CJ, Mackey DA, Wiggs JL, Foster PJ, Patel PJ, Birney E, Khawaja AP. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genet 2021; 17:e1009497. [PMID: 33979322 PMCID: PMC8143408 DOI: 10.1371/journal.pgen.1009497] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/24/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Optical Coherence Tomography (OCT) enables non-invasive imaging of the retina and is used to diagnose and manage ophthalmic diseases including glaucoma. We present the first large-scale genome-wide association study of inner retinal morphology using phenotypes derived from OCT images of 31,434 UK Biobank participants. We identify 46 loci associated with thickness of the retinal nerve fibre layer or ganglion cell inner plexiform layer. Only one of these loci has been associated with glaucoma, and despite its clear role as a biomarker for the disease, Mendelian randomisation does not support inner retinal thickness being on the same genetic causal pathway as glaucoma. We extracted overall retinal thickness at the fovea, representative of foveal hypoplasia, with which three of the 46 SNPs were associated. We additionally associate these three loci with visual acuity. In contrast to the Mendelian causes of severe foveal hypoplasia, our results suggest a spectrum of foveal hypoplasia, in part genetically determined, with consequences on visual function.
Collapse
Affiliation(s)
- Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pirro Hysi
- School of Life Course Sciences, Section of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Tomas W. Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pieter W. M. Bonnemaijer
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Anne Senabouth
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | | | - Denize Atan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason Charng
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Hélène Choquet
- Kaiser Permanente Northern California Division of Research, Oakland, California, United States of America
| | - Jamie Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Peng T. Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louis R. Pasquale
- Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Charles A. Reisman
- Topcon Healthcare Solutions R&D, Oakland, New Jersey, United States of America
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Joseph E. Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Mark J. Simcoe
- Department of Ophthalmology, Kings College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Cornelia M. van Duijn
- Nuffield Department Of Population Health, University of Oxford, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Single Cell Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Eric Jorgenson
- Kaiser Permanente Northern California Division of Research, Oakland, California, United States of America
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chris J. Hammond
- School of Life Course Sciences, Section of Ophthalmology, King’s College London, London, United Kingdom
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Praveen J. Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
107
|
Villoslada P, Galetta SL, Toosy A. Seeing the Finish Line: Can Baseline OCT Values Predict Long-term Disability and Therapeutic Management in Multiple Sclerosis? Neurology 2021; 96:731-732. [PMID: 33653903 DOI: 10.1212/wnl.0000000000011793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Pablo Villoslada
- From Stanford University (P.V.), CA; Langone Medical Center (S.L.G.), New York University, NY; and Queen Square MS Centre (A.T.), Department of Neuroinflammation, UCL Institute of Neurology, University College London, UK.
| | - Steven L Galetta
- From Stanford University (P.V.), CA; Langone Medical Center (S.L.G.), New York University, NY; and Queen Square MS Centre (A.T.), Department of Neuroinflammation, UCL Institute of Neurology, University College London, UK
| | - Ahmed Toosy
- From Stanford University (P.V.), CA; Langone Medical Center (S.L.G.), New York University, NY; and Queen Square MS Centre (A.T.), Department of Neuroinflammation, UCL Institute of Neurology, University College London, UK
| |
Collapse
|
108
|
Meca-Lallana V, Berenguer-Ruiz L, Carreres-Polo J, Eichau-Madueño S, Ferrer-Lozano J, Forero L, Higueras Y, Téllez Lara N, Vidal-Jordana A, Pérez-Miralles FC. Deciphering Multiple Sclerosis Progression. Front Neurol 2021; 12:608491. [PMID: 33897583 PMCID: PMC8058428 DOI: 10.3389/fneur.2021.608491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is primarily an inflammatory and degenerative disease of the central nervous system, triggered by unknown environmental factors in patients with predisposing genetic risk profiles. The prevention of neurological disability is one of the essential goals to be achieved in a patient with MS. However, the pathogenic mechanisms driving the progressive phase of the disease remain unknown. It was described that the pathophysiological mechanisms associated with disease progression are present from disease onset. In daily practice, there is a lack of clinical, radiological, or biological markers that favor an early detection of the disease's progression. Different definitions of disability progression were used in clinical trials. According to the most descriptive, progression was defined as a minimum increase in the Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 from a baseline level of 0, 1.0–5.0, and 5.5, respectively. Nevertheless, the EDSS is not the most sensitive scale to assess progression, and there is no consensus regarding any specific diagnostic criteria for disability progression. This review document discusses the current pathophysiological concepts associated with MS progression, the different measurement strategies, the biomarkers associated with disability progression, and the available pharmacologic therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Meca-Lallana
- Multiple Sclerosis Unit, Neurology Department, Fundación de Investigación Biomédica, Hospital Universitario de la Princesa, Madrid, Spain
| | | | - Joan Carreres-Polo
- Neuroradiology Section, Radiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Sara Eichau-Madueño
- Multiple Sclerosis CSUR Unit, Neurology Department, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Jaime Ferrer-Lozano
- Department of Pathology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Lucía Forero
- Neurology Department, Hospital Puerta del Mar, Cádiz, Spain
| | - Yolanda Higueras
- Neurology Department, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Hospital Universitario Gregorio Marañón, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense, Madrid, Spain
| | - Nieves Téllez Lara
- Neurology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Angela Vidal-Jordana
- Neurology/Neuroimmunology Department, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francisco Carlos Pérez-Miralles
- Neuroimmunology Unit, Neurology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Department of Medicine, University of València, Valencia, Spain
| |
Collapse
|
109
|
Grieb P, Świątkiewicz M, Kamińska A, Jünemann A, Rejdak R, Rejdak K. Citicoline: A Candidate for Adjunct Treatment of Multiple Sclerosis. Pharmaceuticals (Basel) 2021; 14:ph14040326. [PMID: 33918331 PMCID: PMC8066453 DOI: 10.3390/ph14040326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
In remitting–relapsing multiple sclerosis (RR-MS), relapses are driven by autoreactive immune cells that enter the brain and spinal cord and damage myelin sheaths of axons in white and grey matter, whereas during remissions myelin is repaired by activated oligodendroglial cells. Disease-modifying therapies (DMTs) may either retard/attenuate myelin damage or promote/enhance/speed up myelin repair. Almost all currently approved DMTs inhibit myelin damage and are considerably toxic. Enhancement of myelin repair is considered an unmet medical need of MS patients. Citicoline, known for many years as a nootropic and neuroprotective drug and recently pronounced food supplement, has been found to be significantly efficacious in two complementary rodent models of MS, experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced myelin toxicity. Moreover, citicoline treatment improves visual evoked potentials (VEPs) in glaucoma patients, which is relevant because VEP monitoring is frequently used as an indicator of remyelination in MS. Although over-the-counter availability of citicoline may impede its formal translation to the clinic of MS, evaluation of its efficacy for supporting remyelination in this disease is strongly indicated.
Collapse
Affiliation(s)
- Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Maciej Świątkiewicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence:
| | - Agnieszka Kamińska
- Faculty of Medical Sciences, Collegium Medicum, Cardinal Stefan Wyszynski University, 01-938 Warsaw, Poland;
| | - Anselm Jünemann
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (A.J.); (R.R.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (A.J.); (R.R.)
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
110
|
Balci S, Ozcelik Kose A, Yenerel NM. The effect of optic neuritis attacks on choroidal vascularity index in patients with multiple sclerosis. Graefes Arch Clin Exp Ophthalmol 2021; 259:2413-2424. [DOI: 10.1007/s00417-021-05143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022] Open
|
111
|
Schurz N, Sariaslani L, Altmann P, Leutmezer F, Mitsch C, Pemp B, Rommer P, Zrzavy T, Berger T, Bsteh G. Evaluation of Retinal Layer Thickness Parameters as Biomarkers in a Real-World Multiple Sclerosis Cohort. Eye Brain 2021; 13:59-69. [PMID: 33737853 PMCID: PMC7966301 DOI: 10.2147/eb.s295610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Retinal layer thickness parameters measured by optical coherence tomography (OCT) are emerging biomarkers of neuroaxonal degeneration and inflammation in multiple sclerosis (MS). We aimed to evaluate the value of retinal layer thickness for prediction of disability worsening and relapse in a real-world MS cohort. Patients and Methods For this longitudinal observational study, we included MS patients with spectral-domain OCT scans available and ≥1 year of clinical follow-up. The value of peripapillary retinal nerve fiber layer (pRNFL), macular ganglion-cell-and-inner-plexiform-layer (GCIPL) and inner nuclear layer (INL) thickness for prediction of disability worsening and relapse during the observation period was tested by multivariate models. Results We analyzed 60 MS patients during a mean observation period of 2.9 years (SD 1.8). Lower baseline thickness of GCIPL (cut-off <77µm; HR 4.1, p=0.001) and pRNFL (cut-off ≤88µm; HR 3.1, p=0.019) were associated with an increased risk of disability worsening. Longitudinally, mean thinning rates were −0.8µm/year (SD 1.6) for GCIPL, −0.6µm/year (SD 3.5) for pRNFL. GCIPL thinning ≥1.0µm/year and pRNFL >1.5µm/year is associated with higher likelihood of disability worsening (HR 5.7, p=0.009 and HR 6.8, p=0.003, respectively). INL thickened in patients with relapse by a mean 0.9µm while thinning by 0.3µm in patients without relapse (p=0.04). In multivariate analyses, INL thickening was associated with an increased probability of relapse (OR 17.8, p=0.023). Conclusion Cross-sectional and longitudinal measurement of GCIPL and pRNFL thinning is reliable as a biomarker of disability worsening in a real-world setting. Change of INL thickness is a promising marker of relapse, i.e. inflammatory activity.
Collapse
Affiliation(s)
- Natascha Schurz
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lydia Sariaslani
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christoph Mitsch
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is a clinically heterogeneous disease, which complicates expectant management as well as treatment decisions. This review provides an overview of both well established and emerging predictors of disability worsening, including clinical factors, imaging factors, biomarkers and treatment strategies. RECENT FINDINGS In addition to well known clinical predictors (age, male sex, clinical presentation, relapse behaviour), smoking, obesity, vascular and psychiatric comorbidities are associated with subsequent disability worsening in persons with MS. A number of imaging features are predictive of disability worsening and are present to varying degrees in relapsing and progressive forms of MS. These include brain volumes, spinal cord atrophy, lesion volumes and optical coherence tomography features. Cerebrospinal and more recently blood biomarkers including neurofilament light show promise as more easily attainable biomarkers of future disability accumulation. Importantly, recent observational studies suggest that initiation of early-intensive therapy, as opposed to escalation based on breakthrough disease, is associated with decreased accumulation of disability overall, although randomized controlled trials investigating this question are underway. SUMMARY Understanding risk factors associated with disability progression can help to both counsel patients and enhance the clinician's availability to provide evidence-based treatment recommendations.
Collapse
|
113
|
Murphy OC, Mukharesh L, Salazar-Camelo A, Pardo CA, Newsome SD. Early factors associated with later conversion to multiple sclerosis in patients presenting with isolated myelitis. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-325274. [PMID: 33687973 DOI: 10.1136/jnnp-2020-325274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To identify early clinical and paraclinical factors that may help predict later conversion to multiple sclerosis (MS) in patients presenting with isolated myelitis (ie, 'transverse myelitis' without clinical or radiological evidence of inflammation/demyelination elsewhere in the central nervous system). METHODS In this retrospective cohort study, we included patients with isolated myelitis who were followed clinically and radiologically at our specialised myelopathy clinic. We excluded patients with MS at the onset, aquaporin-4-IgG seropositivity, myelin oligodendrocyte glycoprotein-IgG seropositivity or other identified aetiology. Logistic regression was used to identify factors predictive of conversion to MS (defined by the 2017 McDonald criteria). RESULTS We included 100 patients, followed for a median of 4.3 years. Conversion to MS occurred in 25 of 77 patients (32%) with short-segment myelitis (longest lesion spanning <3 vertebral segments on MRI) as compared with 0 of 23 patients (0%) with longitudinally extensive myelitis (p=0.002). Among patients with short-segment myelitis, factors identified as highly predictive of conversion to MS using multivariate logistic regression included cerebrospinal fluid (CSF)-restricted oligoclonal bands (OCB) (OR (OR) 9.2, 95% CI 2.1 to 41.0, p=0.004), younger age (OR 1.1 for each year younger, 95% CI 1.0 to 1.1, p=0.04) and longer follow-up (OR 1.3 for each year longer, 95% CI 1.0 to 1.6, p=0.04). Conversion to MS occurred at a median of 2.8 years after myelitis onset. CONCLUSIONS Short-segment MRI cord lesion(s), CSF-restricted OCB, younger age and longer follow-up are all factors predictive of conversion to MS in patients presenting with isolated myelitis.
Collapse
Affiliation(s)
- Olwen C Murphy
- Johns Hopkins Myelitis and Myelopathy Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
- Johns Hopkins Multiple Sclerosis Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Loulwah Mukharesh
- Johns Hopkins Multiple Sclerosis Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Andrea Salazar-Camelo
- Johns Hopkins Myelitis and Myelopathy Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Carlos A Pardo
- Johns Hopkins Myelitis and Myelopathy Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
- Johns Hopkins Multiple Sclerosis Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Scott D Newsome
- Johns Hopkins Myelitis and Myelopathy Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
- Johns Hopkins Multiple Sclerosis Center, Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
114
|
Lambe J, Fitzgerald KC, Murphy OC, Filippatou AG, Sotirchos ES, Kalaitzidis G, Vasileiou E, Pellegrini N, Ogbuokiri E, Toliver B, Luciano NJ, Davis S, Fioravante N, Kwakyi O, Risher H, Crainiceanu CM, Prince JL, Newsome SD, Mowry EM, Saidha S, Calabresi PA. Association of Spectral-Domain OCT With Long-term Disability Worsening in Multiple Sclerosis. Neurology 2021; 96:e2058-e2069. [PMID: 33653904 DOI: 10.1212/wnl.0000000000011788] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate whether a retinal spectral-domain optical coherence tomography (SD-OCT) assessment at baseline is associated with long-term disability worsening in people with multiple sclerosis (PwMS), we performed SD-OCT and Expanded Disability Status Scale (EDSS) assessments among 132 PwMS at baseline and at a median of 10 years later. METHODS In this prospective, longitudinal study, participants underwent SD-OCT, EDSS, and visual acuity (VA) assessments at baseline and at follow-up. Statistical analyses were performed using generalized linear regression models, adjusted for age, sex, race, multiple sclerosis (MS) subtype, and baseline disability. We defined clinically meaningful EDSS worsening as an increase of ≥2.0 if baseline EDSS score was <6.0 or an increase of ≥1.0 if baseline EDSS score was ≥6.0. RESULTS A total of 132 PwMS (mean age 43 years; 106 patients with relapsing-remitting MS) were included in analyses. Median duration of follow-up was 10.4 years. In multivariable models excluding eyes with prior optic neuritis, relative to patients with an average baseline ganglion cell + inner plexiform layer (GCIPL) thickness ≥70 µm (the mean GCIPL thickness of all eyes at baseline), an average baseline GCIPL thickness <70 µm was associated with a 4-fold increased odds of meaningful EDSS worsening (adjusted odds ratio [OR] 3.97, 95% confidence interval [CI] 1.24-12.70; p = 0.02) and an almost 3-fold increased odds of low-contrast VA worsening (adjusted OR 2.93, 95% CI 1.40-6.13; p = 0.04). CONCLUSIONS Lower baseline GCIPL thickness on SD-OCT is independently associated with long-term disability worsening in MS. Accordingly, SD-OCT at a single time point may help guide therapeutic decision-making among individual PwMS. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that lower baseline GCIPL thickness on SD-OCT is independently associated with long-term disability worsening in MS.
Collapse
Affiliation(s)
- Jeffrey Lambe
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Olwen C Murphy
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Angeliki G Filippatou
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Elias S Sotirchos
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Grigorios Kalaitzidis
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Elena Vasileiou
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicole Pellegrini
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Esther Ogbuokiri
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Brandon Toliver
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicholas J Luciano
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Simidele Davis
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Nicholas Fioravante
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ohemaa Kwakyi
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hunter Risher
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ciprian M Crainiceanu
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Scott D Newsome
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ellen M Mowry
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Shiv Saidha
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Department of Neurology (J.L., K.C.F., O.C.M., A.G.F., E.S.S., G.K., E.V., N.P., E.O., B.T., N.J.L., S.D., N.F., O.K., H.R., S.D.N., E.M.M., S.S., P.A.C.), Johns Hopkins University School of Medicine; and Departments of Biostatistics (C.M.C.) and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
115
|
Filippi M, Preziosa P, Barkhof F, Chard D, De Stefano N, Fox RJ, Gasperini C, Kappos L, Montalban X, Moraal B, Reich DS, Rovira À, Toosy AT, Traboulsee A, Weinshenker BG, Zeydan B, Banwell B, Rocca MA. Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 2021; 78:351-364. [PMID: 33315071 PMCID: PMC11382596 DOI: 10.1001/jamaneurol.2020.4689] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Although magnetic resonance imaging (MRI) is useful for monitoring disease dissemination in space and over time and excluding multiple sclerosis (MS) mimics, there has been less application of MRI to progressive MS, including diagnosing primary progressive (PP) MS and identifying patients with relapsing-remitting (RR) MS who are at risk of developing secondary progressive (SP) MS. This review addresses clinical application of MRI for both diagnosis and prognosis of progressive MS. Observations Although nonspecific, some spinal cord imaging features (diffuse abnormalities and lesions involving gray matter [GM] and ≥2 white matter columns) are typical of PPMS. In patients with PPMS and those with relapse-onset MS, location of lesions in critical central nervous system regions (spinal cord, infratentorial regions, and GM) and MRI-detected high inflammatory activity in the first years after diagnosis are risk factors for long-term disability and future progressive disease course. These measures are evaluable in clinical practice. In patients with established MS, GM involvement and neurodegeneration are associated with accelerated clinical worsening. Subpial demyelination and slowly expanding lesions are novel indicators of progressive MS. Conclusions and Relevance Diagnosis of PPMS is more challenging than diagnosis of RRMS. No qualitative clinical, immunological, histopathological, or neuroimaging features differentiate PPMS and SPMS; both are characterized by imaging findings reflecting neurodegeneration and are also impacted by aging and comorbidities. Unmet diagnostic needs include identification of MRI markers capable of distinguishing PPMS from RRMS and predicting the evolution of RRMS to SPMS. Integration of multiple parameters will likely be essential to achieve these aims.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Gasperini
- Department of Neurology, San Camillo-Forlanini Hospital, Roma, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Xavier Montalban
- Department of Neurology, Cemcat, Hospital Vall d’Hebron, Autonomous University of Barcelona, Barcelona, Spain
- Division of Neurology, St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
| | - Daniel S. Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology (IDI), Vall d’Hebron University Hospital and Research Institute (VHIR), Autonomous University Barcelona, Spain
| | - Ahmed T. Toosy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
| | - Anthony Traboulsee
- MS/MRI Research Group, Djavad Mowafaghian Centre for Brain Health, and Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Burcu Zeydan
- Department of Neurology and Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Brenda Banwell
- Division of Child Neurology, The Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
116
|
Dynamics of Central Remyelination and Treatment Evolution in a Model of Multiple Sclerosis with Optic Coherence Tomography. Int J Mol Sci 2021; 22:ijms22052440. [PMID: 33671012 PMCID: PMC7957639 DOI: 10.3390/ijms22052440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The need for remyelinating drugs is essential for healing disabling diseases such as multiple sclerosis (MS). One of the reasons for the lack of this class of therapies is the impossibility to monitor remyelination in vivo, which is of utmost importance to perform effective clinical trials. Here, we show how optical coherence tomography (OCT), a cheap and non-invasive technique commonly used in ophthalmology, may be used to assess remyelination in vivo in MS patients. Our pioneer approach validates OCT as a technique to study remyelination of the optic nerve and reflects what is occurring in non-accessible central nervous system (CNS) structures, like the spinal cord. In this study we used the orally bioavailable small molecule VP3.15, confirming its therapeutical potential as a neuroprotective, anti-inflammatory, and probably remyelinating drug for MS. Altogether, our results confirm the usefulness of OCT to monitor the efficacy of remyelinating therapies in vivo and underscore the relevance of VP3.15 as a potential disease modifying drug for MS therapy.
Collapse
|
117
|
De Meo E, Bonacchi R, Moiola L, Colombo B, Sangalli F, Zanetta C, Amato MP, Martinelli V, Rocca MA, Filippi M. Early Predictors of 9-Year Disability in Pediatric Multiple Sclerosis. Ann Neurol 2021; 89:1011-1022. [PMID: 33598931 DOI: 10.1002/ana.26052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to assess early predictors of 9-year disability in pediatric patients with multiple sclerosis. METHODS Clinical and magnetic resonance imaging (MRI) assessments of 123 pediatric patients with multiple sclerosis were obtained at disease onset and after 1 and 2 years. A 9-year clinical follow-up was also performed. Cox proportional hazard and multivariable regression models were used to assess independent predictors of time to first relapse and 9-year outcomes. RESULTS Time to first relapse was predicted by optic nerve lesions (hazard ratio [HR] = 2.10, p = 0.02) and high-efficacy treatment exposure (HR = 0.31, p = 0.005). Predictors of annualized relapse rate were: at baseline, presence of cerebellar (β = -0.15, p < 0.001), cervical cord lesions (β = 0.16, p = 0.003), and high-efficacy treatment exposure (β = -0.14, p = 0.01); considering also 1-year variables, number of relapses (β = 0.14, p = 0.002), and the previous baseline predictors; considering 2-year variables, time to first relapse (2-year: β = -0.12, p = 0.01) entered, whereas high-efficacy treatment exposure exited the model. Predictors of 9-year disability worsening were: at baseline, presence of optic nerve lesions (odds ratio [OR] = 6.45, p = 0.01); considering 1-year and 2-year variables, Expanded Disability Status Scale (EDSS) changes (1-year: OR = 26.05, p < 0.001; 2-year: OR = 16.38, p = 0.02), and ≥ 2 new T2-lesions in 2 years (2-year: OR = 4.91, p = 0.02). Predictors of higher 9-year EDSS score were: at baseline, EDSS score (β = 0.58, p < 0.001), presence of brainstem lesions (β = 0.31, p = 0.04), and number of cervical cord lesions (β = 0.22, p = 0.05); considering 1-year and 2-year variables, EDSS changes (1-year: β = 0.79, p < 0.001; 2-year: β = 0.55, p < 0.001), and ≥ 2 new T2-lesions (1-year: β = 0.28, p = 0.03; 2-year: β = 0.35, p = 0.01). INTERPRETATION A complete baseline MRI assessment and an accurate clinical and MRI monitoring during the first 2 years of disease contribute to predict 9-year prognosis in pediatric patients with multiple sclerosis. ANN NEUROL 2021;89:1011-1022.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Zanetta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
118
|
Rosenkranz SC, Kaulen B, Zimmermann HG, Bittner AK, Dorr M, Stellmann JP. Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients. Front Neurosci 2021; 15:591302. [PMID: 33708068 PMCID: PMC7940823 DOI: 10.3389/fnins.2021.591302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Impairment of visual function is one of the major symptoms of people with multiple sclerosis (pwMS). A multitude of disease effects including inflammation and neurodegeneration lead to structural impairment in the visual system. However, the gold standard of disability quantification, the expanded disability status scale (EDSS), relies on visual assessment charts. A more comprehensive assessment of visual function is the full contrast sensitivity function (CSF), but most tools are time consuming and not feasible in clinical routine. The quantitative CSF (qCSF) test is a computerized test to assess the full CSF. We have already shown a better correlation with visual quality of life (QoL) than for classical high and low contrast charts in multiple sclerosis (MS). Objective To study the precision, test duration, and repeatability of the qCSF in pwMS. In order to evaluate the discrimination ability, we compared the data of pwMS to healthy controls. Methods We recruited two independent cohorts of MS patients. Within the precision cohort (n = 54), we analyzed the benefit of running 50 instead of 25 qCSF trials. The repeatability cohort (n = 44) was assessed by high contrast vision charts and qCSF assessments twice and we computed repeatability metrics. For the discrimination ability we used the data from all pwMS without any previous optic neuritis and compared the area under the log CSF (AULCSF) to an age-matched healthy control data set. Results We identified 25 trials of the qCSF algorithm as a sufficient amount for a precise estimate of the CSF. The median test duration for one eye was 185 s (range 129–373 s). The AULCSF had better test–retest repeatability (Mean Average Precision, MAP) than visual acuity measured by standard high contrast visual acuity charts or CSF acuity measured with the qCSF (0.18 vs. 0.11 and 0.17, respectively). Even better repeatability (MAP = 0.19) was demonstrated by a CSF-derived feature that was inspired by low-contrast acuity charts, i.e., the highest spatial frequency at 25% contrast. When compared to healthy controls, the MS patients showed reduced CSF (average AULCSF 1.21 vs. 1.42, p < 0.01). Conclusion High precision, usability, repeatability, and discrimination support the qCSF as a tool to assess contrast vision in pwMS.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Kaulen
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ava K Bittner
- College of Optometry, Nova Southeastern University, Fort Lauderdale, FL, United States.,Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Université, CRMBM, CNRS UMR 7339, Marseille, France
| |
Collapse
|
119
|
Cilingir V, Batur M. First measured retinal nerve fiber layer thickness in RRMS can be used as a biomarker for the course of the disease: threshold value discussions. J Neurol 2021; 268:2858-2865. [PMID: 33606071 DOI: 10.1007/s00415-021-10469-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Peripapillary retinal nerve fiber layer thickness correlates with radiological and clinical parameters in patients with MS. OBJECTIVE The aim of this study is to investigate the use of the first measured pRNFL thickness as a predictor of disease course in patients with RRMS. METHODS One hundred and thirty seven RRMS patients were enrolled in the study within the first 5 years of illness. Patients were followed for 34.1 months and the EDSS was used to assess disability status to determine whether the first measured pRNFL thickness, using proportional hazards models, predicts the risk of disability worsening. RESULTS The mean disease duration was 26.1 months. Disability worsening was detected in 36 patients. In tertile-based groups formed according to pRNFL thickness, the group with the lowest pRNFL thickness had a 2.8-fold increase in the risk of disability worsening compared to the group with the highest. The risk was higher in the first 2 years of the study (HR = 3.48; p = 0.008). CONCLUSION The first measured pRNFL thickness in RRMS patients can predict the risk of disability worsening, and the risk of disability worsening in the early period was higher in the group with the lowest pRNFL value.
Collapse
Affiliation(s)
- Vedat Cilingir
- Van Yuzuncu Yil University Faculty of Medicine Neurology Department, Kampus, Tusba, 65300, Van, Turkey.
| | - Muhammed Batur
- Department of Ophthalmology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
120
|
Özbilen KT, Gündüz T, Çukurova Kartal SN, Gedik AC, Eraksoy M, Kürtüncü M. Bruch's membrane opening-minimum rim width: An alternative OCT biomarker study for multiple sclerosis. Eur J Ophthalmol 2021; 31:2141-2149. [PMID: 33601900 DOI: 10.1177/1120672121996638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Bruch's membrane opening-minimum rim width (BMO-MRW) and RNFL measured using anatomic positioning system (APS-RNFL) are novel OCT methods and remained unexplored in MS patients.To investigate the novel parameters of spectral-domain OCT as an alternative biomarker in patients with multiple sclerosis (MS). METHODS Retrospective cohort study; participants consisted of relapsing-remitting MS (RRMS) patients and healthy controls (HC). Eyes were classified according to the presence of MS and previous optic neuritis (ON). Measurements of standard peripapillary RNFL (S-RNFL), BMO-MRW, and APS-RNFL were performed. RESULT A total of 244 eyes of 122 participants (MS-patients: 63, HC: 59) were included in the study. Fifty-one eyes had a history of previous ON. In almost all measured parameters, neuroretinal rim thicknesses were observed the thinnest in eyes with ON history between all subgroups. S-RNFL and APS-RNFL techniques showed the difference in neuroretinal rim thickness in all three subjects (ON+, ON-, and HC). However, BMO-MRW, on the other hand, could not distinguish between ON(-) patients and HC. The relationship between OCT parameters and EDSS were observed only in eyes with an ON history in all three techniques. A meaningful model with 78% accuracy was obtained by using only the OCT parameters as risk factors. In the ROC analysis, no parameters were found to have acceptable high sensitivity and specificity. BMO-MRW was statistically weaker in every aspect than other RNFL techniques. CONCLUSION The novel APS-RNFL technique appears to be a bit more reliable alternative to S-RNFL technique to support therapeutic decision-making in MS. BMO-MRW has not been found as a successful alternative to S-RNFL.
Collapse
Affiliation(s)
- Kemal Turgay Özbilen
- Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gündüz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Ali Ceyhun Gedik
- Lüleburgaz State Hospital, Ophthalmology Clinic, Kırklareli, Turkey
| | - Mefküre Eraksoy
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kürtüncü
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
121
|
Barreiro-González A, Sanz MT, Carratalà-Boscà S, Pérez-Miralles F, Alcalá C, Carreres-Polo J, España-Gregori E, Casanova B. Magnetic resonance imaging and optical coherence tomography correlations in multiple sclerosis beyond anatomical landmarks. J Neurol Sci 2020; 419:117180. [PMID: 33091751 DOI: 10.1016/j.jns.2020.117180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate multiple sclerosis (MS) optical coherence tomography (OCT) cross-sectional correlations with central nervous system (CNS) magnetic resonance imaging (MRI). MATERIAL AND METHODS Peripapillary retinal nerve fiber layer (pRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner (INL) and outer nuclear layer (ONL) of 54 relapsing remitting (RRMS) and 38 progressive (PMS, 9 primary and 29 secondary) patients were measured. With less than 3 months brain parenchymal fraction (BPF), spinal cord (SC), total gray matter (GM) and white matter volumes were calculated. Demographical and clinical data was compared according to the history of optic neuritis (HON). Relationships between OCT and MRI data were assessed using multivariable linear regression models, adjusting for age, gender and disease duration, taking into account HON and disease subtype. RESULTS Cerebellum (p = 0.008), pRNFL (p = 0.001), GCL (p = 0.001) and IPL (p = 0.001) were thinner, while INL was thicker (p = 0.02) if HON. SC correlated better with nasal pRNFL sectors in eyes with HON (all eyes: average pRNFL p = 0.035 η2 = 0.213; N-pRNFL p = 0.04 η2 = 0.36, NI-pRNFL p = 0.0001 η2 = 0.484. RRMS eyes: N-pRNFL p = 0.034 η2 = 0.348; NI-pRNFL p = 0.013 η2 = 0.441), while it correlates with PMB (p = 0.032 η2 = 0.144), GCL (p = 0.03 η2 = 0.147) and IPL (p = 0.028 η2 = 0.151) in eyes without HON regardless of the disease subtype. INL presented no microcystic macular oedema and was inversely associated with BPF (p = 0.029 η2 = 0.363) and cerebellum (p = 0.015 η2 = 0.428) in PMS eyes without HON. CONCLUSIONS OCT data correlates with different CNS compartments, even with no anatomical or functional linkage, serving as useful neurodegeneration and inflammation surrogate marker.
Collapse
Affiliation(s)
| | - Maria T Sanz
- Departamento de Didáctica de la Matemática, Universidad de Valencia, Valencia, Spain
| | - Sara Carratalà-Boscà
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Carmen Alcalá
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Joan Carreres-Polo
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Enrique España-Gregori
- Ophthalmology Department, La Fe University and Polytechnic Hospital, Valencia, Spain; Surgery Department, Faculty of Medicine, University of Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain; Medicine Department, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
122
|
Cordon B, Vilades E, Orduna E, Satue M, Perez-Velilla J, Sebastian B, Polo V, Larrosa JM, Pablo LE, Garcia-Martin E. Angiography with optical coherence tomography as a biomarker in multiple sclerosis. PLoS One 2020; 15:e0243236. [PMID: 33290417 PMCID: PMC7723290 DOI: 10.1371/journal.pone.0243236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate superficial retinal microvascular plexuses detected by optical coherence tomography angiography (OCT-A) in multiple sclerosis (MS) subjects and compare them with healthy controls. METHODS A total of 92 eyes from 92 patients with relapsing-remitting MS and 149 control eyes were included in this prospective observational study. OCT-A imaging was performed using Triton Swept-Source OCT (Topcon Corporation, Japan). The vessel density (VD) percentage in the superficial retinal plexus and optic disc area (6 x 6 mm grid) was measured and compared between groups. RESULTS MS patients showed a significant decrease VD in the superior (p = 0.005), nasal (p = 0.029) and inferior (p = 0.040) parafoveal retina compared with healthy subjects. Patients with disease durations of more than 5 years presented lower VD in the superior (p = 0.002), nasal (p = 0.017) and inferior (p = 0.022) parafoveal areas compared with healthy subjects. Patients with past optic neuritis episodes did not show retinal microvasculature alterations, but patients with an EDSS score of less than 3 showed a significant decrease in nasal (p = 0.024) and superior (p = 0.006) perifoveal VD when compared with healthy subjects. CONCLUSIONS MS produces a decrease in retinal vascularization density in the superficial plexus of the parafoveal retina. Alterations in retinal vascularization observed in MS patients are independent of the presence of optic nerve inflammation. OCT-A has the ability to detect subclinical vascular changes and is a potential biomarker for diagnosing the presence and progression of MS.
Collapse
Affiliation(s)
- Beatriz Cordon
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Elisa Vilades
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Elvira Orduna
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - María Satue
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Javier Perez-Velilla
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Berta Sebastian
- National Ocular Pathology Network (OFTARED) at the Carlos III Institute of Health, Madrid, Spain
| | - Vicente Polo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Jose Manuel Larrosa
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Luis Emilio Pablo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| |
Collapse
|
123
|
Andorrà M, Alba-Arbalat S, Camos-Carreras A, Gabilondo I, Fraga-Pumar E, Torres-Torres R, Pulido-Valdeolivas I, Tercero-Uribe AI, Guerrero-Zamora AM, Ortiz-Perez S, Zubizarreta I, Sola-Valls N, Llufriu S, Sepulveda M, Martinez-Hernandez E, Armangue T, Blanco Y, Villoslada P, Sanchez-Dalmau B, Saiz A, Martinez-Lapiscina EH. Using Acute Optic Neuritis Trials to Assess Neuroprotective and Remyelinating Therapies in Multiple Sclerosis. JAMA Neurol 2020; 77:234-244. [PMID: 31566686 DOI: 10.1001/jamaneurol.2019.3283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Importance Neuroprotective and remyelinating therapies are required for multiple sclerosis (MS), and acute optic neuritis (AON) is a potential condition to evaluate such treatments. Objective To comprehensively assess key biological and methodological aspects of AON trials for testing neuroprotection and remyelination in MS. Design, Setting, and Participants The AON-VisualPath prospective cohort study was conducted from February 2011 to November 2018 at the Hospital Clinic of University of Barcelona, Barcelona, Spain. Consecutive patients with AON were prospectively enrolled in the cohort and followed up for 18 months. Data analyses occurred from November 2018 to February 2019. Exposures Participants were followed up for 18 months using optical coherence tomography, visual acuity tests, and in a subset of 25 participants, multifocal visual evoked potentials. Main Outcomes and Measures Dynamic models of retinal changes and nerve conduction and their associations with visual end points; and eligibility criteria, stratification, and sample-size estimation for future trials. Results A total of 60 patients (50 women [83%]; median age, 34 years) with AON were included. The patients studied displayed early and intense inner retinal thinning, with a thinning rate of approximately 2.38 μm per week in the ganglion cell plus inner plexiform layer (GCIPL) during the first 4 weeks. Eyes with AON displayed a 6-month change in latency of about 20 milliseconds, while the expected change in the eyes of healthy participants by random variability was 0.13 (95% CI, -0.80 to 1.06) milliseconds. The strongest associations with visual end points were for the 6-month intereye difference in 2.5% low-contrast letter acuity, which was correlated with the peripapillary retinal nerve fiber layer thinning (adjusted R2, 0.57), GCIPL thinning (adjusted R2, 0.50), and changes in mfVEP latency (adjusted R2, 0.26). A 5-letter increment in high-contrast visual acuity at presentation (but not sex or age) was associated with 6-month retinal thinning (1.41 [95% CI, 0.60-2.23] μm less peripapillary retinal nerve fiber layer thinning thinning; P = .001; adjusted R2, 0.20; 0.86 [95% CI, 0.35-1.37] μm less GCIPL thinning; P = .001; adjusted R2, 0.19) but not any change in multifocal visual evoked potential latency. To demonstrate 50% efficacy in GCIPL thinning or change in multifocal visual evoked potential latency, a 6-month, 2-arm, parallel-group trial would need 37 or 50 participants per group to test a neuroprotective or remyelinating drug, respectively (power, 80%; α, .05). Conclusions and Relevance Acute optic neuritis is a suitable condition to test neuroprotective and remyelinating therapies after acute inflammation, providing sensitive markers to assess the effects on both processes and prospective visual recovery within a manageable timeframe and with a relatively small sample size.
Collapse
Affiliation(s)
- Magí Andorrà
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Salut Alba-Arbalat
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Anna Camos-Carreras
- Service of Ophthalmology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Elena Fraga-Pumar
- Service of Ophthalmology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Ana I Tercero-Uribe
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Ana M Guerrero-Zamora
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Santiago Ortiz-Perez
- Service of Ophthalmology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Maria Sepulveda
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Eugenia Martinez-Hernandez
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Thais Armangue
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Bernardo Sanchez-Dalmau
- Service of Ophthalmology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
124
|
Borgström M, Tisell A, Link H, Wilhelm E, Lundberg P, Huang‐Link Y. Retinal thinning and brain atrophy in early MS and CIS. Acta Neurol Scand 2020; 142:418-427. [PMID: 32416627 DOI: 10.1111/ane.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Optical coherence tomography (OCT) could be complementary to magnetic resonance imaging (MRI) of the brain in monitoring course of multiple sclerosis (MS) and clinically isolated syndrome (CIS). Thinning of neurons in ganglion cell-inner plexiform layer (GCIPL) measured by OCT is assumed to be associated with brain atrophy. OBJECTIVES To evaluate association of GCIPL with brain parameters detected by quantitative MRI (qMRI) and MR-spectroscopy (MRS) in early MS and CIS. METHODS Seventeen newly diagnosed MS and 18 CIS patients were prospectively included. The patients were assessed at baseline as well as at 1 year follow-up by OCT, qMRI and MRS. Brain parenchymal and myelin volumes (BPV, MYV respectively) and the corresponding fractions (BPF, MYF) were measured with qMRI. Metabolites including myo-inositol (myo-Ins) were measured in the normal-appearing white matter (NAWM) using MRS. T-tests and ANOVA were used to analyze group differences, and linear regression models to evaluate association of GCIPL with BPV, MYV and myo-Ins after correlation analysis. RESULTS Disease activity reflected by lesions on MRI and presence of CSF oligoclonal IgG bands were more prominent in MS compared to CIS. GCIPL, BPV, MYV, BPF and MYF were reduced, while concentration of myo-Ins was increased in MS compared to CIS. Follow-up showed consistency of thinner GCIPL in MS compared to CIS. GCIPL thinning correlated with reduced BPV and MYV (P < .05 for both), but with increased myo-Ins (P < .01). CONCLUSIONS Significant GCIPL thinning occurs in early MS and is associated with enhanced brain inflammation and atrophy.
Collapse
Affiliation(s)
- Max Borgström
- Division of Neurology Department of Biomedical and Clinical Sciences Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| | - Anders Tisell
- Department of Radiation Physics Department of Health, Medicine and Caring Sciences Linköping University Linköping Sweden
- Centre for Medical Image Science and Visualization (CMIV) Linköping University Linköping Sweden
| | - Hans Link
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
| | - Elisabeth Wilhelm
- Division of Society and Health, Department of Health, Medicine and Caring Sciences Linköping University Linköping Sweden
| | - Peter Lundberg
- Department of Radiation Physics Department of Health, Medicine and Caring Sciences Linköping University Linköping Sweden
- Centre for Medical Image Science and Visualization (CMIV) Linköping University Linköping Sweden
| | - Yumin Huang‐Link
- Division of Neurology Department of Biomedical and Clinical Sciences Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| |
Collapse
|
125
|
Ganglion Cell Layer Thinning in Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 56:medicina56100553. [PMID: 33096909 PMCID: PMC7590216 DOI: 10.3390/medicina56100553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The main advantages of optical retinal imaging may allow researchers to achieve deeper analysis of retinal ganglion cells (GC) in vivo using optical coherence tomography (OCT). Using this device to elucidate the impact of Alzheimer’s disease (AD) on retinal health with the aim to identify a new AD biomarker, a large amount of studies has analyzed GC in different stages of the disease. Our review highlights recent knowledge into measuring retinal morphology in AD making distinctive between whether those studies included patients with clinical dementia stage or also mild cognitive impairment (MCI), which selection criteria were applied to diagnosed patients included, and which device of OCT was employed. Despite several differences, previous works found a significant thinning of GC layer in patients with AD and MCI. In the long term, an important future direction is to achieve a specific ocular biomarker with enough sensitivity to reveal preclinical AD disorder and to monitor progression.
Collapse
|
126
|
Testa V, De Santis N, Scotto R, Della Giustina P, Ferro Desideri L, Cellerino M, Cordano C, Inglese M, Uccelli A, Vagge A, Traverso CE, Iester M. Corneal epithelial dendritic cells in patients with multiple sclerosis: An in vivo confocal microscopy study. J Clin Neurosci 2020; 81:139-143. [PMID: 33222903 DOI: 10.1016/j.jocn.2020.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/22/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate density and morphology of corneal epithelial dendritic cells (DCs) in patients with multiple sclerosis (MS) using in vivo confocal microscopy (IVCM). METHODS This was a single-center cross-sectional comparative study. All MS patients were clinically scored using the Expanded Disability Status Scale (EDSS) score. Patients underwent ophthalmological examination and then cornea was analyzed by IVCM Heidelberg Retina Tomograph (HRT 3) in combination with Rostock Cornea Module and CCD camera. Five sectors (central, nasal, temporal, inferior, superior and central area) were analyzed in both patient eyes, then for each sector one image was selected and analyzed by using the manual cell counting system offered with the software and ImageJ program. DCs density (cell/mm2) and DCs size (µm2) were considered for the analyses. Difference between the two groups and correlation between DCs, MS type, EDSS score, optic neuritis and ongoing therapy were analyzed. RESULTS We enrolled 46 consecutive patients: 23 with MS (age 47.87 ± 7.22 years (mean ± standard deviation) and 21 healthy subjects (age 46.0 ± 12.6 years) from July 2017 to July 2018. MS patients showed a lower DCs density when compared with healthy subjects (p < 0.05). Moreover, we found a direct correlation (r:0.48, p < 0.05) between DCs density and ongoing disease-modifying therapy. CONCLUSION IVCM was able to show a difference in corneal DCs density between MS patients and healthy subjects, providing an insight to the underlying changes of the clinical manifestations of MS. Further studies are needed to provide evidence of possible clinical implications.
Collapse
Affiliation(s)
- Valeria Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Nicole De Santis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Riccardo Scotto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Piero Della Giustina
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Lorenzo Ferro Desideri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Inglese
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Antonio Uccelli
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Aldo Vagge
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Carlo Enrico Traverso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
127
|
|
128
|
Gavín A, Garcia-Martin E, Garcia-Campayo J, Viladés E, Orduna E, Satué M. The use of optical coherence tomography in the evaluation of patients with bipolar disorder. ACTA ACUST UNITED AC 2020; 96:141-151. [PMID: 32912807 DOI: 10.1016/j.oftal.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022]
Abstract
Bipolar disorder (BD) is a mental disorder characterised by episodes of extremal mood changes. In recent years, some researchers found neurodegeneration in patients with BD using Magnetic Resonance Imaging. Evaluation of the optic nerve and the retinal layers using optical coherence tomography (OCT) has proved to be a useful, non-invasive tool for diagnosis and monitoring of neurodegenerative diseases. Accordingly, a decrease in the retinal nerve fibre layer and the ganglion cell complex measured by OCT was found in patients with BD in different studies, suggesting that BD is a neurodegenerative process in addition to a psychiatric disorder. Therefore, the neuro-ophthalmological evaluation of these patients could be used as a marker for diagnosis of this disease. This work analyses literature on retinal degeneration in bipolar disorder patients, and evaluates the ability of OCT devices in the detection of neuronal degeneration affecting the different retinal layers in these patients, and its possible role in the diagnosis and monitoring of the disease.
Collapse
Affiliation(s)
- A Gavín
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España.
| | - E Garcia-Martin
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - J Garcia-Campayo
- Servicio de Psiquiatría, Hospital Universitario Miguel Servet, Zaragoza, España; Departamento de Psicología y Sociología, facultad de ciencias sociales y humanas, Universidad de Zaragoza, Zaragoza, España
| | - E Viladés
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - E Orduna
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| | - M Satué
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Grupo de Investigación e Innovación Miguel Servet Oftalmología (GIMSO), Zaragoza, España
| |
Collapse
|
129
|
Kleiter I, Ayzenberg I, Havla J, Lukas C, Penner IK, Stadelmann C, Linker RA. The transitional phase of multiple sclerosis: Characterization and conceptual framework. Mult Scler Relat Disord 2020; 44:102242. [DOI: 10.1016/j.msard.2020.102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
|
130
|
Caverzasi E, Cordano C, Zhu AH, Zhao C, Bischof A, Kirkish G, Bennett DJ, Devereux M, Baker N, Inman J, Yiu HH, Papinutto N, Gelfand JM, Cree BAC, Hauser SL, Henry RG, Green AJ. Imaging correlates of visual function in multiple sclerosis. PLoS One 2020; 15:e0235615. [PMID: 32745132 PMCID: PMC7398529 DOI: 10.1371/journal.pone.0235615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022] Open
Abstract
No single neuroimaging technique or sequence is capable of reflecting the functional deficits manifest in MS. Given the interest in imaging biomarkers for short- to medium-term studies, we aimed to assess which imaging metrics might best represent functional impairment for monitoring in clinical trials. Given the complexity of functional impairment in MS, however, it is useful to isolate a particular functionally relevant pathway to understand the relationship between imaging and neurological function. We therefore analyzed existing data, combining multiparametric MRI and OCT to describe MS associated visual impairment. We assessed baseline data from fifty MS patients enrolled in ReBUILD, a prospective trial assessing the effect of a remyelinating drug (clemastine). Subjects underwent 3T MRI imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI), myelin content quantification, and retinal imaging, using OCT. Visual function was assessed, using low-contrast letter acuity. MRI and OCT data were studied to model visual function in MS, using a partial, least-squares, regression analysis. Measures of neurodegeneration along the entire visual pathway, described most of the observed variance in visual disability, measured by low contrast letter acuity. In those patients with an identified history of ON, however, putative myelin measures also showed correlation with visual performance. In the absence of clinically identifiable inflammatory episodes, residual disability correlates with neurodegeneration, whereas after an identifiable exacerbation, putative measures of myelin content are additionally informative.
Collapse
Affiliation(s)
- Eduardo Caverzasi
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Christian Cordano
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Alyssa H Zhu
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, United States of America
| | - Chao Zhao
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Antje Bischof
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America.,Neurology and Immunology Clinic, University Hospital Basel, Switzerland
| | - Gina Kirkish
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Daniel J Bennett
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael Devereux
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Nicholas Baker
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Justin Inman
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Hao H Yiu
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Nico Papinutto
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jeffrey M Gelfand
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Bruce A C Cree
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Stephen L Hauser
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Roland G Henry
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ari J Green
- Division of Neuroimmunology and Glial Biology UCSF, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America.,Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
131
|
Petzold A, Coric D, Balk LJ, Hamann S, Uitdehaag BMJ, Denniston AK, Keane PA, Crabb DP. Longitudinal Development of Peripapillary Hyper-Reflective Ovoid Masslike Structures Suggests a Novel Pathological Pathway in Multiple Sclerosis. Ann Neurol 2020; 88:309-319. [PMID: 32426856 PMCID: PMC7496959 DOI: 10.1002/ana.25782] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Peripapillary hyper-reflective ovoid masslike structures (PHOMS) are a new spectral domain optical coherence tomography (OCT) finding. METHODS This prospective, longitudinal study included patients (n = 212) with multiple sclerosis (MS; n = 418 eyes), 59 healthy controls (HCs; n = 117 eyes), and 267 non-MS disease controls (534 eyes). OCT and diffusion tensor imaging were used. RESULTS There were no PHOMS in HC eyes (0/117, 0%). The prevalence of PHOMS was significantly higher in patients with MS (34/212, p = 0.001) and MS eyes (45/418, p = 0.0002) when compared to HCs (0/59, 0/117). The inter-rater agreement for PHOMS was 97.9% (kappa = 0.951). PHOMS were present in 16% of patients with relapsing-remitting, 16% of patients with progressive, and 12% of patients with secondary progressive disease course (2% of eyes). There was no relationship of PHOMS with age, disease duration, disease course, disability, or disease-modifying treatments. The fractional anisotropy of the optic radiations was lower in patients without PHOMS (0.814) when compared to patients with PHOMS (0.845, p = 0.03). The majority of PHOMS remained stable, but increase in size and de novo development of PHOMS were also observed. In non-MS disease controls, PHOMS were observed in intracranial hypertension (62%), optic disc drusen (47%), anomalous optic discs (44%), isolated optic neuritis (19%), and optic atrophy (12%). INTERPRETATION These data suggest that PHOMS are a novel finding in MS pathology. Future research is needed to determine whether development of PHOMS in MS is due to intermittently raised intracranial pressure or an otherwise impaired "glymphatic" outflow from eye to brain. ANN NEUROL 2020;88:309-319.
Collapse
Affiliation(s)
- Axel Petzold
- Dutch Expertise Center for Neuro‐Ophthalmology and Multiple Sclerosis Center, Departments of Neurology and OphthalmologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Moorfields Eye Hospital and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- University College London Queen Square Institute of NeurologyLondonUnited Kingdom
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of OphthalmologyLondonUnited Kingdom
| | - Danko Coric
- Dutch Expertise Center for Neuro‐Ophthalmology and Multiple Sclerosis Center, Departments of Neurology and OphthalmologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Multiple Sclerosis Center and Department of NeurologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Lisanne J. Balk
- Dutch Expertise Center for Neuro‐Ophthalmology and Multiple Sclerosis Center, Departments of Neurology and OphthalmologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Multiple Sclerosis Center and Department of NeurologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Steffen Hamann
- Department of Ophthalmology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Bernard M. J. Uitdehaag
- Multiple Sclerosis Center and Department of NeurologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Alastair K. Denniston
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of OphthalmologyLondonUnited Kingdom
- Department of OphthalmologyUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Academic Unit of OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUnited Kingdom
| | - Pearse A. Keane
- Department of Ophthalmology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - David P. Crabb
- Optometry and Visual SciencesCity, University of LondonLondonUnited Kingdom
| |
Collapse
|
132
|
Vidal‐Jordana A, Pareto D, Cabello S, Alberich M, Rio J, Tintore M, Auger C, Montalban X, Rovira A, Sastre‐Garriga J. Optical coherence tomography measures correlate with brain and spinal cord atrophy and multiple sclerosis disease‐related disability. Eur J Neurol 2020; 27:2225-2232. [DOI: 10.1111/ene.14421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022]
Affiliation(s)
- A. Vidal‐Jordana
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - D. Pareto
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - S. Cabello
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - M. Alberich
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - J. Rio
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - M. Tintore
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - C. Auger
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - X. Montalban
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
- Division of Neurology University of TorontoSt Michael´s Hospital Toronto ON Canada
| | - A. Rovira
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - J. Sastre‐Garriga
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| |
Collapse
|
133
|
Aly L, Havla J, Lepennetier G, Andlauer TFM, Sie C, Strauß EM, Hoshi MM, Kümpfel T, Hiltensperger M, Mitsdoerffer M, Mühlau M, Zimmer C, Hemmer B, Korn T, Knier B. Inner retinal layer thinning in radiologically isolated syndrome predicts conversion to multiple sclerosis. Eur J Neurol 2020; 27:2217-2224. [PMID: 32589804 DOI: 10.1111/ene.14416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Individuals with radiologically isolated syndrome (RIS) are at increased risk of converting to multiple sclerosis (MS). Early identification of later converters is crucial for optimal treatment decisions. The purpose of this study was to assess the predictive potential of optical coherence tomography (OCT) measures in individuals with RIS regarding conversion to MS. METHODS This prospective observational cohort study included 36 individuals with RIS and 36 healthy controls recruited from two German MS centers. All individuals received baseline OCT and clinical examination and were longitudinally followed over up to 6 years. The primary outcome measure was the conversion to MS. RESULTS During clinical follow-up of 46 (26-58) months (median, 25%-75% interquartile range), eight individuals with RIS converted to MS. Individuals converting to MS showed a thinning of the peripapillary retinal nerve fiber layer (pRNFL) and the common ganglion cell and inner plexiform layer (GCIP) at baseline and during follow-up. Individuals with a pRNFL of 99 µm or lower or a GCIP of 1.99 mm3 or lower were at a 7.5- and 8.0-fold risk for MS conversion, respectively, compared to individuals with higher measures. After correction for other known risk factors, Cox proportional hazards regression revealed a hazard ratio of 1.08 for conversion to MS for each 1 µm decline in pRNFL. CONCLUSIONS Reduction of the pRNFL might be a novel and independent risk factor for conversion to MS in individuals with RIS. OCT might be useful for risk stratification and therapeutic decision-making in individuals with RIS.
Collapse
Affiliation(s)
- L Aly
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - J Havla
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany.,Data Integration for Future Medicine (DIFUTURE) Consortium, Technical University of Munich and Ludwig-Maximilians University, Munich, Germany
| | - G Lepennetier
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - T F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Sie
- Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - E-M Strauß
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - M-M Hoshi
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Marianne-Strauß-Klinik, Berg, Germany
| | - T Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - M Hiltensperger
- Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - M Mitsdoerffer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - M Mühlau
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - B Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Data Integration for Future Medicine (DIFUTURE) Consortium, Technical University of Munich and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - T Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - B Knier
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| |
Collapse
|
134
|
Filippi M, Preziosa P, Langdon D, Lassmann H, Paul F, Rovira À, Schoonheim MM, Solari A, Stankoff B, Rocca MA. Identifying Progression in Multiple Sclerosis: New Perspectives. Ann Neurol 2020; 88:438-452. [PMID: 32506714 DOI: 10.1002/ana.25808] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023]
Abstract
The identification of progression in multiple sclerosis is typically retrospective. Given the profound burden of progressive multiple sclerosis, and the recent development of effective treatments for these patients, there is a need to establish measures capable of identifying progressive multiple sclerosis early in the disease course. Starting from recent pathological findings, this review assesses the state of the art of potential measures able to predict progressive multiple sclerosis. Future promising biomarkers that might shed light on mechanisms of progression are also discussed. Finally, expansion of the concept of progressive multiple sclerosis, by including an assessment of cognition, patient-reported outcomes, and comorbidities, is considered. ANN NEUROL 2020;88:438-452.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dawn Langdon
- Royal Holloway, University of London, London, United Kingdom
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital and Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Multiple Sclerosis Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute - ICM, Inserm, CNRS, APHP, Paris, France
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
135
|
Bsteh G, Berek K, Hegen H, Altmann P, Wurth S, Auer M, Zinganell A, Di Pauli F, Rommer P, Leutmezer F, Deisenhammer F, Berger T. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult Scler 2020; 27:684-694. [PMID: 32613912 DOI: 10.1177/1352458520935724] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Macular ganglion cell-inner plexiform layer (mGCIPL) is an emerging biomarker of neuroaxonal degeneration in multiple sclerosis (MS). OBJECTIVE We aimed to determine cut-off values of mGCIPL thinning for discriminating between progressing and stable patients in relapsing multiple sclerosis (RMS). METHODS This is a 3-year prospective longitudinal study on 183 RMS patients with annual optical coherence tomography. Best possible cut-off values of baseline mGCIPL and annual loss of macular ganglion cell-inner plexiform layer (aLmGCIPL) for discriminating clinically progressing (physical progression or cognitive decline) from stable patients were defined by receiver operating characteristics analysis and tested using multivariate regression models. RESULTS Baseline mGCIPL thickness <77 µm was associated with an increased risk (hazard ratio: 2.7, 95% confidence interval (CI): 1.5-4.7, p < 0.001) of disability progression. An aLmGCIPL cut-off ⩾1 µm accurately identified clinically progressing patients (87% sensitivity at 90% specificity) and was a strong predictor of clinical progression (odds ratio: 18.3, 95% CI: 8.8-50.3). CONCLUSION We present evidence that cross-sectionally measured mGCIPL thickness and annualized thinning rates of mGCIPL are able to identify clinically progressing RMS with high accuracy.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria/Department of Neurology, Medical University of Graz, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Kuchling J, Paul F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:450. [PMID: 32625158 PMCID: PMC7311777 DOI: 10.3389/fneur.2020.00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.
Collapse
Affiliation(s)
- Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
137
|
Davion JB, Lopes R, Drumez É, Labreuche J, Hadhoum N, Lannoy J, Vermersch P, Pruvo JP, Leclerc X, Zéphir H, Outteryck O. Asymptomatic optic nerve lesions: An underestimated cause of silent retinal atrophy in MS. Neurology 2020; 94:e2468-e2478. [PMID: 32434868 DOI: 10.1212/wnl.0000000000009504] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To evaluate the frequency of asymptomatic optic nerve lesions and their role in the asymptomatic retinal neuroaxonal loss observed in multiple sclerosis (MS). METHODS We included patients with remitting-relapsing MS in the VWIMS study (Analysis of Neurodegenerative Process Within Visual Ways In Multiple Sclerosis) (ClinicalTrials.gov Identifier: 03656055). Included patients underwent optical coherence tomography (OCT), optic nerve and brain MRI, and low-contrast visual acuity measurement. In eyes of patients with MS without optic neuritis (MS-NON), an optic nerve lesion on MRI (3D double inversion recovery [DIR] sequence) was considered as an asymptomatic lesion. We considered the following OCT/MRI measures: peripapillary retinal nerve fiber layer thickness, macular ganglion cell + inner plexiform layer (mGCIPL) volumes, optic nerve lesion length, T2 lesion burden, and fractional anisotropy within optic radiations. RESULTS An optic nerve lesion was detected in half of MS-NON eyes. Compared to optic nerves without any lesion and independently of the optic radiation lesions, the asymptomatic lesions were associated with thinner inner retinal layers (p < 0.0001) and a lower contrast visual acuity (p ≤ 0.003). Within eyes with asymptomatic optic nerve lesions, optic nerve lesion length was the only MRI measure significantly associated with retinal neuroaxonal loss (p < 0.03). Intereye mGCIPL thickness difference (IETD) was lower in patients with bilateral optic nerve DIR hypersignal compared to patients with unilateral hypersignal (p = 0.0317). For the diagnosis of history of optic neuritis, sensitivity of 3D DIR and of mGCIPL IETD were 84.9% and 63.5%, respectively. CONCLUSIONS Asymptomatic optic nerve lesions are an underestimated and preponderant cause of retinal neuroaxonal loss in MS. 3D DIR sequence may be more sensitive than IETD measured by OCT for the detection of optic nerve lesions.
Collapse
Affiliation(s)
- Jean-Baptiste Davion
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Renaud Lopes
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Élodie Drumez
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Julien Labreuche
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Nawal Hadhoum
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Julien Lannoy
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Patrick Vermersch
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Jean-Pierre Pruvo
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Xavier Leclerc
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Hélène Zéphir
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France
| | - Olivier Outteryck
- From the Department of Neuroradiology, INSERM, U1171-Degenerative and Vascular Cognitive Disorders (J.-B.D., R.L., J.-P.P., X.L., O.O.), Department of Biostatistics, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins (É.D., J.L.), and Department of Neurology, INSERM, U995-Lille Inflammation Research International Center (N.H., J.L., P.V., H.Z.), CHU Lille, Université de Lille, France.
| |
Collapse
|
138
|
Abdelhak A, Huss A, Stahmann A, Senel M, Krumbholz M, Kowarik MC, Havla J, Kümpfel T, Kleiter I, Wüstinger I, Zettl UK, Schwartz M, Roesler R, Friede T, Ludolph AC, Ziemann U, Tumani H. Explorative study of emerging blood biomarkers in progressive multiple sclerosis (EmBioProMS): Design of a prospective observational multicentre pilot study. Contemp Clin Trials Commun 2020; 18:100574. [PMID: 32478196 PMCID: PMC7251538 DOI: 10.1016/j.conctc.2020.100574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Defining clinical and subclinical progression in multiple sclerosis (MS) is challenging. Patient history, expanded disability status scale (EDSS), and magnetic resonance imaging (MRI) all have shortcomings and may underestimate disease dynamics. Emerging serum biomarkers such as glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) proved useful in many cross-sectional studies. However, longitudinal data on patients with progressive MS is scarce. Objectives To assess whether the serum biomarkers GFAP and NfL might differentiate between patients with progressive vs. non-progressive disease stages and predict the disease course according to the Lublin criteria. Methods EmBioProMS is a pilot, observational, prospective, multicentric study funded by the German Multiple Sclerosis Society (DMSG). 200 patients with MS according to the 2017 McDonald criteria and history of relapse-independent progression at any time (progressive MS, PMS), younger than 65 years, and with EDSS ≤ 6.5 will be recruited in 6 centres in Germany. At baseline, month 6, and 18, medical history, EDSS, Nine-Hole-Peg-Test (9-HPT), Timed-25-Foot-Walk-Test (T-25FW), Symbol-Digit-Modalities-Test (SDMT), serum GFAP, and NfL, MRI (at least baseline and month 18) and optional optical coherence tomography (OCT) will be performed. Disease progression before and during the study is defined by confirmed EDSS progression, increase by ≥ 20% in 9-HPT or T-25FW time. Conclusions This longitudinal multicentre study will reveal to what extent the prediction of disease progression in patients with PMS will be improved by the analysis of serum biomarkers in conjunction with routine clinical data and neuroimaging measures.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Andre Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Alexander Stahmann
- MS Forschungs- und Projektentwicklungs-gGmbH, MS-Registry by the German MS-Society, Hanover, Germany
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Markus Krumbholz
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
- St. Josef-Hospital, Department of Neurology, Ruhr-University, Bochum, Germany
| | - Isabella Wüstinger
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Margit Schwartz
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Romy Roesler
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Ulf Ziemann
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
- Corresponding author. Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, 89081, Ulm, Germany.
| |
Collapse
|
139
|
Tavazzi E, Jakimovski D, Kuhle J, Hagemeier J, Ozel O, Ramanathan M, Barro C, Bergsland N, Tomic D, Kropshofer H, Leppert D, Michalak Z, Lincoff N, Dwyer MG, Benedict RHB, Weinstock-Guttman B, Zivadinov R. Serum neurofilament light chain and optical coherence tomography measures in MS: A longitudinal study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e737. [PMID: 32424064 PMCID: PMC7251512 DOI: 10.1212/nxi.0000000000000737] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To study the association between serum neurofilament light chain (sNfL) and multiple optical coherence tomography (OCT) measures in patients with MS and healthy controls (HCs). METHODS In this prospective study, 110 patients with MS were recruited, together with 52 age- and sex-matched HCs. Clinical evaluation and spectral domain OCT and sNfL were obtained at baseline and after 5.5 years of follow-up. Nested linear mixed models were used to assess differences between MS vs HC and associations between sNfL and OCT measures. Partial correlation coefficients are reported, and p values were adjusted for the false discovery rate. RESULTS At baseline, peripapillary retinal nerve fiber layer thickness (pRNFLT) and macular ganglion cell and inner plexiform layer thickness (mGCIP) were significantly lower in MS than HC both in MS-associated optic neuritis (MSON) (p = 0.007, p = 0.001) and nonaffected MSON (n-MSON) eyes (p = 0.003, p = 0.018), along with total macular volume (TMV) in n-MSON eyes (p = 0.011). At follow-up, MS showed significantly lower pRNFLT, mGCIP, and TMV both in MSON and n-MSON eyes (p < 0.001) compared with HC. In MS n-MSON eyes, sNfL was significantly associated with baseline pRNFLT and mGCIP (q = 0.019). No significant associations were found in MSON eyes. CONCLUSIONS This study confirms the ability of sNfL to detect neurodegeneration in MS and advocates for the inclusion of sNfL and OCT measures in clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that sNfL levels were associated with MS neurodegeneration measured by OCT.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Dejan Jakimovski
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Jens Kuhle
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Jesper Hagemeier
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Osman Ozel
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Murali Ramanathan
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Christian Barro
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Niels Bergsland
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Davorka Tomic
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Harald Kropshofer
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - David Leppert
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Zuzanna Michalak
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Norah Lincoff
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Michael G Dwyer
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Ralph H B Benedict
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Bianca Weinstock-Guttman
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Robert Zivadinov
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York.
| |
Collapse
|
140
|
Esmael A, Elsherif M, Abdelsalam M, Sabry D, Mamdouh M, Belal T. Retinal thickness as a potential biomarker of neurodegeneration and a predictor of early cognitive impairment in patients with multiple sclerosis. Neurol Res 2020; 42:564-574. [PMID: 32370626 DOI: 10.1080/01616412.2020.1761174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The purpose of this research is to predict the cognitive impairment and to determine its correlation with retinal thickness, mainly (RFNL and GCIPL) in cases of multiple sclerosis. METHODS 60 multiple sclerosis patients and 30 age and sex-matched healthy controls were included in this study. Cognitive functions were evaluated in all study participants by the Montreal Cognitive Assessment (MoCA). OCT imaging was done to determine the thickness. The correlation between the cognitive domains of MoCA and the thickness of the retinal nerve fiber layers was analyzed by Spearman correlation. ROC curve was constructed to determine the cut-off points for retinal thickness, and a binary logistic regression was performed to determine the independent predictive capacity of established cut-off points. RESULTS Impaired cognition was found in 26 MS patients (43.3%). Cognitively impaired patients were significantly older (P < 0.05), had significantly longer disease duration (P < 0.05), had higher average EDSS scores (4.3 ± 1.22 vs 3.1 ± 1.45, P < 0.001), and occurred more in progressive types of MS (P < 0.001). A significant positive correlation was found between cognitive function and RNFL thickness and GCIPL (P < 0.001). The retinal thickness (RNFL and GCIPL) cut-off points established for the prediction of cognitive impairment in MS patients were 79 μm and 76 μm, respectively. CONCLUSION The clear correlation between cognitive impairment and atrophy of inner retinal layers (RNFL and GCIPL) proposes that OCT is valuable in evaluating the neurodegeneration and prediction of early cognitive impairment in MS. ABBREVIATIONS EDSS: Expanded Disability Status Scale; HCs: Healthy controls; GCIPL: Ganglion cell-inner plexiform layer; ILM: Internal limiting membrane; INL: Inner nuclear layer; MoCA: Montreal Cognitive Assessment; MS: Multiple sclerosis; PPMS: Primary progressive multiple sclerosis; RNFL: Retinal nerve fiber layer; RRMS: Relapsing-remitting multiple sclerosis; SD: Standard deviations; SPMS: Secondary progressive multiple sclerosis; SPSS: Statistical Package for the Social Sciences.
Collapse
Affiliation(s)
- Ahmed Esmael
- Neurology Department, Mansoura University Hospital
| | | | | | - Dalia Sabry
- Ophthalmic Center, Mansoura University , Mansoura, Egypt
| | | | - Tamer Belal
- Neurology Department, Mansoura University Hospital
| |
Collapse
|
141
|
Raeesmohammadi L, Esmaeili S, Abbasi MH, Mehrpour M, Mirzaasgari Z, Baradaran HR, Deilami P, Motamed MR. Transbulbar B-mode sonography in multiple sclerosis without optic neuritis; clinical relevance. Brain Res 2020; 1734:146723. [PMID: 32057807 DOI: 10.1016/j.brainres.2020.146723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Trans bulbar B-mode sonography (TBS) is a recently proposed method but there is little known about its diagnostic accuracy in patients with multiple sclerosis without acute optic neuritis. Therefore we assessed the correlation between OND, ONSD and OND/ONSD ratio with clinical/para clinical parameters. METHODS In a comparative study, we intended to examine possible differences in optic nerve diameter (OND) and optic nerve sheath diameter (ONSD) between 60 patients with multiple sclerosis (MS) and 60 individuals as matched healthy controls. RESULTS The OND, ONSD and OND/ONSD ratio in both eyes showed significantly lower amounts in patients compared to healthy controls (p < 0.05). There were no correlations, between either OND or ONSD and factors including gender, age, P100 amplitude, disease duration, history of optic neuritis and number of T2 lesions in MRI (P ≥ 0.05). Expanded disability status scale (EDSS) and p100 Latency were correlated with both OND and ONSD values (P < 0.05). CONCLUSIONS TBS showed significantly lower amounts of OND, ONSD and OND/ONSD ratio in MS patients without current attack compared to their healthy controls indicating a subclinical axonal loss over time. It is suggested that TBS could be an applicable tool for early detection of optic nerve damages along with clinical and para-clinical findings.
Collapse
Affiliation(s)
- Leila Raeesmohammadi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sara Esmaeili
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Hossein Abbasi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Mirzaasgari
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Baradaran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences(IUMS), Tehran, Iran
| | - Parvaneh Deilami
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Motamed
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
142
|
Evidence of retinal anterograde neurodegeneration in the very early stages of multiple sclerosis: a longitudinal OCT study. Neurol Sci 2020; 41:3175-3183. [DOI: 10.1007/s10072-020-04431-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
143
|
The International Multiple Sclerosis Visual System Consortium: Advancing Visual System Research in Multiple Sclerosis. J Neuroophthalmol 2020; 38:494-501. [PMID: 30418332 DOI: 10.1097/wno.0000000000000732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The International Multiple Sclerosis Visual System Consortium (IMSVISUAL) was formed in November 2014 with the primary goal of improving research, care, and education regarding the role of the visual system in multiple sclerosis (MS) and related disorders. METHODS In this review, we describe the formation, goals, activities, and structure of IMSVISUAL, as well as the relationship of IMSVISUAL with the Americas Committee for Treatment and Research in MS (ACTRIMS). Finally, we provide an overview of the work IMSVISUAL has completed to date, as well as an outline of research projects ongoing under the auspices of IMSVISUAL. RESULTS IMSVISUAL has 140 members worldwide and continues to grow. Through IMSVISUAL-related research, optical coherence tomography (OCT)-derived peripapillary retinal nerve fiber layer (pRNFL) thinning has been established as a predictor of future disability in MS. IMSVISUAL has also developed guidelines for reporting OCT studies in MS. Moreover, a systematic review performed by IMSVISUAL found that not only are pRNFL and ganglion cell + inner plexiform layer (GCIPL) thicknesses reduced in patients with MS (particularly in eyes with prior optic neuritis [ON]), but that inner nuclear layer measures may be higher among MS ON eyes, relative to healthy control eyes. Currently, there are several ongoing IMSVISUAL projects that will establish a role for visual outcomes in diagnosing MS and quantifying the effects of emerging therapies in clinical trials. CONCLUSIONS The development of IMSVISUAL represents a major collaborative commitment to defining the role of visual outcomes in high-quality, large-scale studies that generate definitive and instructive findings in the field of MS. As a consortium, IMSVISUAL has completed several international collaborative projects, is actively engaged in numerous ongoing research studies, and is committed to expanding the role of vision research in MS and related disorders.
Collapse
|
144
|
You Y, Barnett MH, Yiannikas C, Parratt J, Matthews J, Graham SL, Klistorner A. Chronic demyelination exacerbates neuroaxonal loss in patients with MS with unilateral optic neuritis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e700. [PMID: 32170043 PMCID: PMC7136042 DOI: 10.1212/nxi.0000000000000700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022]
Abstract
Objective To examine the effect of chronic demyelination in the optic nerve of patients with MS on progressive loss of retinal ganglion cell (RGC) axons. Methods Progressive retinal nerve fiber layer (RNFL) loss, as measured by optical coherence tomography, was longitudinally examined in 51 patients with MS with a history of unilateral optic neuritis (ON) and 25 normal controls. Patients were examined annually with a median of 4-year follow-up. Pairwise intereye comparison was performed between ON and fellow non-ON (NON) eyes of patients with MS using the linear mixed-effects model and survival analysis. The latency asymmetry of multifocal visual evoked potential (mfVEP) was used to determine the level of demyelination in the optic nerve. Results Although both ON and NON eyes demonstrate significantly faster loss of RGC axons compared with normal subjects, ON eyes with severe chronic demyelination show accelerated thinning in the RNFL in the temporal sector of the optic disc (temporal RNFL [tRNFL]) compared with fellow eyes (evidenced by both the linear mixed-effects model and survival analysis). Furthermore, progressive tRNFL thinning is associated with the degree of optic nerve demyelination and reflects the topography of pathology in the optic nerve. More rapid axonal loss in ON eyes is also functionally evidenced by mfVEP amplitude reduction, which correlates with the level of optic nerve demyelination. Conclusions Although the effect of demyelination on axonal survival has been demonstrated in experimental studies, our results provide first clinically meaningful evidence that chronic demyelination is associated with progressive axonal loss in human MS.
Collapse
Affiliation(s)
- Yuyi You
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia.
| | - Michael H Barnett
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Con Yiannikas
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - John Parratt
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Jim Matthews
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Stuart L Graham
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Alexander Klistorner
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| |
Collapse
|
145
|
Wicki CA, Manogaran P, Simic T, Hanson JVM, Schippling S. Bilateral retinal pathology following a first-ever clinical episode of autoimmune optic neuritis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e671. [PMID: 31969471 PMCID: PMC7051214 DOI: 10.1212/nxi.0000000000000671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This longitudinal study aimed to assess changes in retinal structure and visual function following a first-ever episode of acute optic neuritis (ON). METHODS Clinical and optical coherence tomography (OCT) data obtained over a period of 12 months were retrospectively analyzed in 41 patients with a first-ever clinical episode of acute ON. OCT scans, high-contrast visual acuity (HCVA), and low-contrast visual acuity (LCVA) were acquired at baseline and at 1, 3, 6, and 12 months thereafter. Macular ganglion cell and inner plexiform layer (GCIP), peripapillary retinal nerve fiber layer (pRNFL), and macular inner nuclear layer (INL) thicknesses were assessed by OCT. Linear mixed-effects models were used to analyze OCT variables of ipsilateral ON and contralateral non-ON (NON) eyes over time. RESULTS The mean change of GCIP thickness in ON eyes was significant at all follow-up time points, with nearly 75% of the total reduction having occurred by month 1. In ON eyes, thinner GCIP thickness at month 1 correlated with lower LCVA at month 3. Mean pRNFL thickness in ON eyes differed significantly from NON eyes at all postbaseline time points. INL thickness was significantly increased in ON eyes (month 1) but also in contralateral NON eyes (month 12). CONCLUSIONS Retinal structural damage develops rapidly following acute ON and is associated with subsequent functional visual deficits. Our results also suggest bilateral retinal pathology following unilateral ON, possibly caused by subclinical involvement of the contralateral NON eyes. Moreover, our data may assist in clinical trial planning in studies targeting tissue damage in acute ON.
Collapse
Affiliation(s)
- Carla A Wicki
- From the Department of Health Sciences and Technology (C.A.W.), Swiss Federal Institute of Technology; Neuroimmunology and Multiple Sclerosis Research (C.A.W., P.M., T.S., J.V.M.H., S.S.), Department of Neurology, University Hospital Zurich and University of Zurich; Department of Information Technology and Electrical Engineering (P.M.), Swiss Federal Institute of Technology; and Department of Ophthalmology (J.V.M.H.), University Hospital Zurich and University of Zurich.
| | - Praveena Manogaran
- From the Department of Health Sciences and Technology (C.A.W.), Swiss Federal Institute of Technology; Neuroimmunology and Multiple Sclerosis Research (C.A.W., P.M., T.S., J.V.M.H., S.S.), Department of Neurology, University Hospital Zurich and University of Zurich; Department of Information Technology and Electrical Engineering (P.M.), Swiss Federal Institute of Technology; and Department of Ophthalmology (J.V.M.H.), University Hospital Zurich and University of Zurich
| | - Tanja Simic
- From the Department of Health Sciences and Technology (C.A.W.), Swiss Federal Institute of Technology; Neuroimmunology and Multiple Sclerosis Research (C.A.W., P.M., T.S., J.V.M.H., S.S.), Department of Neurology, University Hospital Zurich and University of Zurich; Department of Information Technology and Electrical Engineering (P.M.), Swiss Federal Institute of Technology; and Department of Ophthalmology (J.V.M.H.), University Hospital Zurich and University of Zurich
| | - James V M Hanson
- From the Department of Health Sciences and Technology (C.A.W.), Swiss Federal Institute of Technology; Neuroimmunology and Multiple Sclerosis Research (C.A.W., P.M., T.S., J.V.M.H., S.S.), Department of Neurology, University Hospital Zurich and University of Zurich; Department of Information Technology and Electrical Engineering (P.M.), Swiss Federal Institute of Technology; and Department of Ophthalmology (J.V.M.H.), University Hospital Zurich and University of Zurich
| | - Sven Schippling
- From the Department of Health Sciences and Technology (C.A.W.), Swiss Federal Institute of Technology; Neuroimmunology and Multiple Sclerosis Research (C.A.W., P.M., T.S., J.V.M.H., S.S.), Department of Neurology, University Hospital Zurich and University of Zurich; Department of Information Technology and Electrical Engineering (P.M.), Swiss Federal Institute of Technology; and Department of Ophthalmology (J.V.M.H.), University Hospital Zurich and University of Zurich
| |
Collapse
|
146
|
Sánchez D, Castilla-Marti M, Marquié M, Valero S, Moreno-Grau S, Rodríguez-Gómez O, Piferrer A, Martínez G, Martínez J, Rojas ID, Hernández I, Abdelnour C, Rosende-Roca M, Vargas L, Mauleón A, Gil S, Alegret M, Ortega G, Espinosa A, Pérez-Cordón A, Sanabria Á, Roberto N, Ciudin A, Simó R, Hernández C, Tárraga L, Boada M, Ruiz A. Evaluation of macular thickness and volume tested by optical coherence tomography as biomarkers for Alzheimer's disease in a memory clinic. Sci Rep 2020; 10:1580. [PMID: 32005868 PMCID: PMC6994670 DOI: 10.1038/s41598-020-58399-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
Building on previous studies that report thinning of the macula in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients, the use of optical coherence tomography (OCT) has been proposed as a potential biomarker for AD. However, other studies contradict these results. A total of 930 participants (414 cognitively healthy people, 192 with probable amnestic MCI, and 324 probable AD patients) from a memory clinic were consecutively included in this study and underwent a spectral domain OCT scan (Maestro, Topcon) to assess total macular volume and thickness. Macular width measurements were also taken in several subregions (central, inner, and outer rings) and in layers such as the retinal nerve fiber (RNFL) and ganglion cell (CGL). The study employed a design of high ecological validity, with adjustment by age, education, sex, and OCT image quality. AD, MCI, and control groups did not significantly vary with regard to volume and retinal thickness in different layers. When these groups were compared, multivariate-adjusted analysis disclosed no significant differences in total (p = 0.564), CGL (p = 0.267), RNFL (p = 0.574), and macular thickness and volume (p = 0.380). The only macular regions showing significant differences were the superior (p = 0.040) and nasal (p = 0.040) sectors of the inner macular ring. However, adjustment for multiple comparisons nullified this significance. These results are not supporting existing claims for the usefulness of macular thickness as a biomarker of cognitive impairment in a memory unit. OCT biomarkers for AD should be subject to further longitudinal testing.
Collapse
Affiliation(s)
- Domingo Sánchez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Miguel Castilla-Marti
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Department of Ophthalmology, Hospital de l'Esperança, Parc de Salut Mar, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Octavio Rodríguez-Gómez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gabriel Martínez
- Faculty of Medicine and Dentistry, Universidad de Antofagasta, Antofagasta, Chile.,Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar De Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Mauleón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
147
|
Hu H, Jiang H, Gameiro GR, Hernandez J, Delgado S, Wang J. Focal Thickness Reduction of the Ganglion Cell-Inner Plexiform Layer Best Discriminates Prior Optic Neuritis in Patients With Multiple Sclerosis. Invest Ophthalmol Vis Sci 2020; 60:4257-4269. [PMID: 31618762 PMCID: PMC6996667 DOI: 10.1167/iovs.19-27574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The goal was to visualize topographic thickness maps of the intraretinal layers and evaluate their discrimination abilities and relationships with clinical manifestations in patients with multiple sclerosis (MS) and a history of optic neuritis (ON). Methods Thirty patients with relapsing-remitting MS (34 eyes with a history of ON [MSON] and 26 non-ON fellow eyes [MSFE]) were recruited together with 63 age- and sex-matched controls (HC). Ultrahigh resolution optical coherence tomography was used to image the macula and the volumetric data set was segmented to yield six intraretinal layers. Topographic thickness maps were aligned and averaged for the visualization. The thickness maps were partitioned using the Early Treatment Diabetic Retinopathy Study (ETDRS) and related to Sloan low-contrast letter acuity (LCLA), Expanded Disability Status Scale (EDSS), and disease duration. Results Focal thickness reduction occurred in the macular retinal nerve fiber layer (mRNFL) and ganglion cell-inner plexiform layer (GCIPL), with the most profound reduction occurring in MSON eyes (P < 0.05). A horseshoe-like thickness reduction pattern (U Zone) in the GCIPL appeared in MSON. The thickness of the U Zone had better discrimination power than the ETDRS partitions (area under the curve = 0.97) and differentiated 96% of MSON from HC. The thickness of the U Zone was positively correlated to 2.5% LCLA (r = 0.38, P < 0.05) and 1.25% LCLA (r = 0.57, P < 0.05). Conclusions The horseshoe-like thickness reduction of the GCIPL appeared to be an ON-specific focal thickness alteration with the highest discrimination power of prior ON.
Collapse
Affiliation(s)
- Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Giovana Rosa Gameiro
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
148
|
Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol 2020; 15:287-300. [PMID: 30940920 DOI: 10.1038/s41582-019-0170-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Personalized treatment is ideal for multiple sclerosis (MS) owing to the heterogeneity of clinical features, but current knowledge gaps, including validation of biomarkers and treatment algorithms, limit practical implementation. The contemporary approach to personalized MS therapy depends on evidence-based prognostication, an initial treatment choice and evaluation of early treatment responses to identify the need to switch therapy. Prognostication is directed by baseline clinical, environmental and demographic factors, MRI measures and biomarkers that correlate with long-term disability measures. The initial treatment choice should be a shared decision between the patient and physician. In addition to prognosis, this choice must account for patient-related factors, including comorbidities, pregnancy planning, preferences of the patients and their comfort with risk, and drug-related factors, including safety, cost and implications for treatment sequencing. Treatment response has traditionally been assessed on the basis of relapse rate, MRI lesions and disability progression. Larger longitudinal data sets have enabled development of composite outcome measures and more stringent standards for disease control. Biomarkers, including neurofilament light chain, have potential as early surrogate markers of prognosis and treatment response but require further validation. Overall, attainment of personalized treatment for MS is complex but will be refined as new data become available.
Collapse
Affiliation(s)
- Dalia Rotstein
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xavier Montalban
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada. .,Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
149
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Zamvil SS. N2 year in review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e644. [PMID: 31831570 PMCID: PMC6935839 DOI: 10.1212/nxi.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Josep Dalmau
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco.
| | - Marinos C Dalakas
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Dennis L Kolson
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Friedemann Paul
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
150
|
Abstract
The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.
Collapse
|