101
|
Li X, Yao L, Xiong B, Wu Y, Chen S, Xu Z, Qiu SX. Inhibitory Mechanism of Pinosylvin Monomethyl Ether against Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15840-15847. [PMID: 36448783 DOI: 10.1021/acs.jafc.2c07240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Control of Aspergillus flavus is beneficial for the agricultural economy and food safety. Stilbenes exhibit antifungal properties through an unknown mechanism. Here, six stilbenes isolated from Cajanus cajan were screened for anti-A. flavus activity. Among them, pinosylvin monomethyl ether (PME) showed the strongest anti-A. flavus activity and has a broad antifungal spectrum with negligible hemolysis within the concentration range measured. PME inhibited the spore germination of A. flavus and the accumulation of aflatoxin B1. Mechanistic studies showed that PME could bind the cell membrane phospholipids, resulting in increased permeability and decreased fluidity. Further metabolic analysis showed that PME caused the lysis of cell membranes and subsequent collapse of spores, which resulted in a cell wall autolysis-like phenotype. Structure-activity relationship analysis revealed the importance of maintaining amphiphilicity harmony by substituent groups for the antifungal activity of stilbenes. Together, natural stilbenes are promising antifungal lead compounds worthy of further exploration and research for potential application in the food, pharmaceutical, and agricultural industries.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Liyuan Yao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yaodan Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Sheng-Xiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| |
Collapse
|
102
|
Connelly E, Lee C, Furner-Pardoe J, del Genio CI, Harrison F. A case study of the Ancientbiotics collaboration. PATTERNS (NEW YORK, N.Y.) 2022; 3:100632. [PMID: 36569547 PMCID: PMC9782248 DOI: 10.1016/j.patter.2022.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interdisciplinary collaboration is regarded as a desirable way of researching and, in some instances, even a requirement for academic teams and funding proposals. This paper explores the possibilities, but also the problems, of collaboration between different disciplines through a case study of the Ancientbiotics team. This team explores the potential of natural products contained in historical medical recipes. The search for clinically useful natural products in unusual places, such as historical medical practices, is a well-established endeavor in the scientific disciplines. The Ancientbiotics collaboration, largely based across UK institutions, takes this path a step forward in combining modern scientific knowledge of natural products with expertise from humanities to identify ingredient combinations. After 7 years of practice, the research has produced a variety of outcomes. This perspective will explore how the team worked within an interdisciplinary framework to advance investigation and application of historical medical recipes.
Collapse
Affiliation(s)
- Erin Connelly
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK,Corresponding author
| | - Christina Lee
- School of English, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jessica Furner-Pardoe
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK,Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Charo I. del Genio
- Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
103
|
Bernal FA, Hammann P, Kloss F. Natural products in antibiotic development: is the success story over? Curr Opin Biotechnol 2022; 78:102783. [PMID: 36088735 DOI: 10.1016/j.copbio.2022.102783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Natural product (NP)-based antibiotics have been exploited for more than eighty years and continue saving uncountable lives every year. However, antimicrobial R&D is inadequate to counteract antimicrobial resistance. The majority of marketed antibiotics are inspired by NP classes that were discovered more than 50 years ago. With the advent of advanced genomic approaches, cultivation methods, and modern analytical techniques, NP discovery holds promise that there are way more powerful antibiotic scaffolds to be discovered. However, the currently lean antibiotic R&D pipeline shows a clear trend away from NP-based programs and innovative compounds are also rare in early stages. Within this review, we give an overview of the current NP antibiotic development pipeline, elaborate constraints the field is facing, and suggest measures to streamline NP-based antibiotic discovery. It is unlikely that NPs have lost significance, but reinforcement of discovery will require more targeted efforts and support to revitalize this established source.
Collapse
Affiliation(s)
- Freddy A Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| |
Collapse
|
104
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
105
|
Li J, Fan Q, Zuo J, Xue B, Zhang X, Wei Y, Sun L, Grenier D, Yi L, Hou X, Wang Y. Paeoniflorin combined with norfloxacin ameliorates drug-resistant Streptococcus suis infection. J Antimicrob Chemother 2022; 77:3275-3282. [PMID: 36173390 DOI: 10.1093/jac/dkac313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The increased resistance of bacterial pathogens to fluoroquinolones (FQs), such as norfloxacin and ciprofloxacin, supports the need to develop new antibacterial drugs and combination therapies using conventional antibiotics. The LuxS/AI-2 quorum sensing (QS) system can regulate the complex group behaviour of Streptococcus suis and impact its susceptibility to FQs. OBJECTIVES We investigated the combination of paeoniflorin and norfloxacin as a novel and effective strategy against FQ-resistant S. suis. METHODS FIC, AI-2 activity assay, real-time RT-PCR and biofilm inhibition assays were performed to investigate the in vitro effect of paeoniflorin combined with norfloxacin. Mouse protection and mouse anti-infection assays were performed to investigate the in vivo effect of paeoniflorin combined with norfloxacin. RESULTS FIC results showed that paeoniflorin and norfloxacin exert a synergistic bactericidal effect. Evidence was brought that paeoniflorin reduces the S. suis AI-2 activity and significantly down-regulates the transcription of the FQ efflux pump gene. In addition, paeoniflorin can inhibit biofilm formation, thereby promoting the ability of norfloxacin to kill S. suis. Finally, we showed in a mouse model that paeoniflorin in association with norfloxacin is effective to treat S. suis infections. CONCLUSIONS This study highlighted the inhibitory potential of paeoniflorin on the LuxS/AI-2 QS system of S. suis, and provided evidence that it can inhibit the FQ efflux pump and prevent biofilm formation to cooperate with norfloxacin in the treatment of resistant S. suis-related infections.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Ying Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China.,College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| |
Collapse
|
106
|
Jiang XY, Ren ZY, Zhang NK, Yang KC, Wang GX, Jiang HF. Screening and evaluating honokiol from Magnolia officinalis against Nocardia seriolae infection in largemouth bass (Micropterus Salmoides). JOURNAL OF FISH DISEASES 2022; 45:1599-1607. [PMID: 35801398 DOI: 10.1111/jfd.13683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 μg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 μg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Xin-Yuan Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zong-Yi Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nian-Kun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ke-Chen Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
107
|
Sun H, Li ZZ, Jeyakkumar P, Zang ZL, Fang B, Zhou CH. A New Discovery of Unique 13-(Benzimidazolylmethyl)berberines as Promising Broad-Spectrum Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12320-12329. [PMID: 36135960 DOI: 10.1021/acs.jafc.2c03849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new hybridization of berberine and benzimidazoles was performed to produce 13-(benzimidazolylmethyl)berberines (BMB) as potentially broad-spectrum antibacterial agents with the hope of confronting multidrug-resistant bacterial infections in the livestock industry. Some of the newly prepared hybrids showed obvious antibacterial effects against tested strains. Particularly, 13-((1-octyl-benzimidazolyl)methyl)berberine 6f (OBMB-6f) was found to be the most promising compound that not only exerted a strong activity (MIC = 0.25-2 μg/mL) and low cytotoxicity but also possessed a fast bactericidal capacity and low propensity to develop resistance toward Staphylococcus aureus and Escherichia coli even after 26 serial passages. Moreover, OBMB-6f displayed the ability to prevent bacterial biofilm formation at low and high temperatures. The mechanistic exploration revealed that OBMB-6f could significantly disintegrate bacterial membranes, markedly facilitate intracellular ROS generation, and efficiently intercalate into DNA. These results provided a profound insight into BMB against multidrug-resistant bacterial infections in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen-Zhen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
108
|
Chinnaiyan S, Palanisamy B, Sambasivam I. Understanding the trends of tribal research in India through bibliometric analysis. J Family Med Prim Care 2022; 11:5887-5893. [PMID: 36618223 PMCID: PMC9810961 DOI: 10.4103/jfmpc.jfmpc_254_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022] Open
Abstract
Tribes are the most vulnerable, particularly in healthcare. Health research in a population helps to understand the trends of various diseases and other social determinants causing them. Our study aims to perform a bibliometric analysis of Tribal research in India from its status quo. Materials and Methods Research articles on tribal health were retrieved from Scopus and analyzed using MS Office, VOS viewer, and Word Cloud generator from January 2000 to December 2020. The number of research publications published each year, the clustering pattern of contributing authors, the most popular journals, the leading publication, document type, domain research areas, and commonly used keywords were all considered in the study. Results As a result of the search, 1249 research publications were found. According to our selection criteria, only 395 research papers were included in the analysis. Approximately 43 research publications were published in 2020, but only three articles were published in 2000. Almost 35.7% of articles were published in traditional medicine, and 15.7% and 14.7% of articles were published in nutrition and infectious diseases. Less than 1% of articles were published in Health Policy, and 1.5% were published in Health Systems. Conclusions The study results showed that the research on tribes has now been improving in the following years. Research into tribal mental health and health care systems should be encouraged. Collaboration and funding may assist academic institutions in raising awareness of health issues in these populations.
Collapse
Affiliation(s)
- Saravanan Chinnaiyan
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu Dist., Tamil Nadu, India,Address for correspondence: Dr. Saravanan Chinnaiyan, SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu Dist., Tamil Nadu, India. E-mail:
| | - Bharathi Palanisamy
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu Dist., Tamil Nadu, India
| | - Indra Sambasivam
- SRM School of Public Health, SRM Institute of Science and Technology, Chengalpattu Dist., Tamil Nadu, India
| |
Collapse
|
109
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
110
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
111
|
Penicillium digitatum as a Model Fungus for Detecting Antifungal Activity of Botanicals: An Evaluation on Vietnamese Medicinal Plant Extracts. J Fungi (Basel) 2022; 8:jof8090956. [PMID: 36135681 PMCID: PMC9502062 DOI: 10.3390/jof8090956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants play important roles in traditional medicine, and numerous compounds among them have been recognized for their antimicrobial activity. However, little is known about the potential of Vietnamese medicinal plants for antifungal activity. In this study, we examined the antagonistic activity of twelve medicinal plant species collected in Northern Vietnam against Penicillium digitatum, Aspergillus flavus, Aspergillus fumigatus, and Candida albicans. The results showed that the antifungal activities of the crude extracts from Mahonia bealei, Ficus semicordata, and Gnetum montanum were clearly detected with the citrus postharvest pathogen P. digitatum. These extracts could fully inhibit the growth of P. digitatum on the agar medium, and on the infected citrus fruits at concentrations of 300–1000 µg/mL. Meanwhile, the other tested fungi were less sensitive to the antagonistic activity of the plant extracts. In particular, we found that the ethanolic extract of M. bealei displayed a broad-spectrum antifungal activity against all four pathogenic fungi. Analysis of this crude extract by enrichment coupled with high-performance liquid chromatography revealed that berberine and palmatine are major metabolites. Additional inspections indicated berberine as the key compound responsible for the antifungal activity of the M. bealei ethanolic extract. Our study provides a better understanding of the potential of Vietnamese medicinal plant resources for combating fungal pathogens. This work also highlights that the citrus pathogen P. digitatum can be employed as a model fungus for screening the antifungal activity of botanicals.
Collapse
|
112
|
Gan RY, Li HB, Corke H, Yang H. Editorial: Discovery of novel plant-derived compounds with antibacterial actions against antibiotic-resistant bacteria, volume II. Front Microbiol 2022; 13:1027679. [PMID: 36160255 PMCID: PMC9494815 DOI: 10.3389/fmicb.2022.1027679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore, Singapore
- *Correspondence: Ren-You Gan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Hongshun Yang
| |
Collapse
|
113
|
Weng M, You S, Luo J, Lin Z, Chen T, Peng X, Qiu B. Antibacterial mechanism of polysaccharides from the leaves of Lindera aggregata (Sims) Kosterm. by metabolomics based on HPLC/MS. Int J Biol Macromol 2022; 221:303-313. [PMID: 36075303 DOI: 10.1016/j.ijbiomac.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Lindera aggregata (Sims) Kosterm. is a traditional Chinese herb, which has been proven to have excellent antibacterial activity. In this work, we firstly extracted the polysaccharides from the leaves of Lindera aggregata (Sims) Kosterm. (LLPs), and explored their antibacterial activity and related mechanisms. The experimental results show that LLPs are a good antibacterial agent, which can damage the cell structure of bacteria and lead to the leakage of intracellular lysates. Compared with Escherichia coli (E. coli), LLPs showed better inhibitory activity against Staphylococcus aureus (S. aureus). Furthermore, the administration of LLPs not only led to the upregulation of the levels of fructose-1,6-bisphosphate (F-1,6-P) and citric acid in the glycolysis and tricarboxylic acid cycle pathways in bacteria, but also resulted in the down-regulation of the levels of oxaloacetate (OAA) and 1,3-diphosphoglycerate (1,3-BPG). This study confirmed that LLPs have good antibacterial activity, and broaden the application of the leaves of Lindera aggregata (Sims) Kosterm. in the antibacterial field. It provides ideas for exploring the antibacterial mechanism of active ingredients of Chinese herbal medicine through metabolomics.
Collapse
Affiliation(s)
- Mingfeng Weng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Shumin You
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Jiewei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China
| | - Ting Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM,Affiliated Hospital of Zhejiang Chinese Medical University, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, Fujian 350108, China.
| |
Collapse
|
114
|
Fawad Ansari M, Tan YM, Sun H, Li S, Zhou CH. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 76:129012. [DOI: 10.1016/j.bmcl.2022.129012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/21/2022]
|
115
|
Jiajun W, Wenyu L, KHosravi-Darani K, Kim IH. Editorial: The development and utilization of novel antibiotic alternatives. Front Microbiol 2022; 13:1008850. [PMID: 36118240 PMCID: PMC9472215 DOI: 10.3389/fmicb.2022.1008850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wang Jiajun
- Department of Animal Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Wang Jiajun
| | - Li Wenyu
- Department of Animal Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Kianoush KHosravi-Darani
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Yongin, South Korea
| |
Collapse
|
116
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
117
|
Mohamed MS, Abdelkader K, Gomaa HAM, Batubara AS, Gamal M, Sayed AM. Mechanistic study of the antibacterial potential of the prenylated flavonoid auriculasin against Escherichia coli. Arch Pharm (Weinheim) 2022; 355:e2200360. [PMID: 36029269 DOI: 10.1002/ardp.202200360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/26/2022]
Abstract
Bacterial resistance is spreading in an alarming manner, outpacing the rate of development of new antibacterial agents and surging the need for effective alternatives. Prenylated flavonoids are a promising class of natural antibiotics with reported activity against a wide range of resistant pathogens. Here, a large library of natural flavonoids (1718 structures) was virtually screened for potential candidates inhibiting the B-subunit of gyrase (Gyr-B). Twenty-eight candidates, predominated by prenylated flavonoids, appeared as promising hits. Six of them were selected for further in vitro antibacterial and Gyr-B enzyme inhibitory activities. Auriculasin is presented as the most potent antibacterial candidate, with a MIC ranging from 2 to 4 µg/ml against two clinically isolated multidrug-resistant Escherichia coli strains. Mechanistic antibacterial analysis revealed auriculasin inhibitory activity towards the Gyr-B enzyme on the micromolar scale (IC50 = 0.38 ± 0.15 µM). Gyr-B interaction was further detailed by conducting an isothermal titration calorimetric experiment, which revealed a competitive inhibition with a high affinity for the Gyr-B active site, achieved mostly through enthalpic interactions (ΔGbinding = -10.69 kcal/mol). Molecular modeling and physics-based simulations demonstrated the molecule's manner of fitting inside the Gyr-B active site, indicating a very potential nucleus for the future generation of more potent derivatives. To conclude, prenylated flavonoids are interesting antibacterial candidates with anti-Gyr-B mechanism of action that can be obtained from a plant-derived flavonoid.
Collapse
Affiliation(s)
- Malik S Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Afnan S Batubara
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
118
|
Murphy KE, Thacher MK, Young EC, Mojik V, Wolfe AL. Total Synthesis and Antibacterial Evaluation of Empetroxepins A and B and related analogs. Bioorg Med Chem Lett 2022; 75:128955. [PMID: 36038118 DOI: 10.1016/j.bmcl.2022.128955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
Empetroxepins A and B, which are 10,11-dihydrodibenz[b,f]oxepins produced by the Black Crowberry (Empetrum nigrum), displayed weak anti-tubercular activity upon isolation, but have not been explored for antibiotic activity despite their molecular similarity to other phenolic antibacterial natural products. Herein we detail the first total synthesis of Empetroxepins A and B via a selective demethylation strategy and antibacterial structure activity relationship (SAR) study of the natural products and related analogs. Empetroxepin A was found to be weakly active against susceptible strains of Staphylococcus aureus (SA) and Bacillus subtilis (BS) with MICs = 256 μg/mL against both, whereas Empetroxepin B was found to be weakly active against only BS (MIC = 256 μg/mL). Neither natural product was active against Escherichia coli (EC). Antibiotic activity was improved through derivatization of the 10,11-dihydrodibenz[b,f]oxepin core with the best compound of the SAR series, 9-chloro-10,11-dihydrodibenzo[b,f]oxepine-2,3,4-triol, having MICs of 8 μg/mL, 16 μg/mL, and 256 μg/mL against SA, BS, and EC respectively.
Collapse
Affiliation(s)
- Kyle E Murphy
- Department of Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina, 28804, United States
| | - Marcia K Thacher
- Department of Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina, 28804, United States
| | - Erin C Young
- Department of Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina, 28804, United States
| | - Veronika Mojik
- Department of Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina, 28804, United States
| | - Amanda L Wolfe
- Department of Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina, 28804, United States.
| |
Collapse
|
119
|
Cáceres F, Vallès J, Garnatje T, Parada M, Gras A. Gastrointestinal, metabolic, and nutritional disorders: A plant-based ethnoveterinary meta-analysis in the Catalan linguistic area. Front Vet Sci 2022; 9:908491. [PMID: 36016807 PMCID: PMC9395657 DOI: 10.3389/fvets.2022.908491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Veterinary care is fundamental for animal wellbeing, and so is achieving a comprehensive understanding of traditional ethnoveterinary applications. However, little attention has been paid to it so far in industrialized countries, and in particular in Western Europe. In this context, the present work aims to make a contribution to this issue in the Catalan linguistic area, focusing on the study of plants used, at a popular level, to treat and deal with gastrointestinal, metabolic, and nutritional disorders, which are among the most important issues that affect animals. Data obtained in this study come from the popular knowledge about plants for veterinary purposes from 599 informants, who jointly provided 1,405 reports of use from 148 plant taxa. The most cited species have been Tanacetum parthenium (L.) Sch.Bip. (9.04%), Olea europaea L. subsp. europaea var. europaea (6.26%), and Euphorbia lathyris L. (6.26%). At higher taxonomic levels, the botanical families with more ethnoveterinary applications were Asteraceae (24.48%), Euphorbiaceae (8.33%), and Oleaceae (7.12%). Among the total use reports, 95.02% refer to disorders of the gastrointestinal system, 4.34% to nutritional disorders, and 0.64% to metabolic disorders. Antidiarrheal (18.01%), digestive (16.51%), and laxative (15.80%) have been the most reported veterinary uses. The most used plant parts have been the aerial part (40.50%), the fruit or the infructescence (18.65%), and the flower or inflorescence (16.01%). The main preparation and administration forms reported were tisane (58.69%), followed by direct use (without any specific pharmaceutical form; 21.77%). The global corpus of ethnoveterinary knowledge for the gastrointestinal system disorders in the territory of study is diverse, with some species having a very high cultural value, as indicated by an informant consensus factor very close to 1. Some reported uses were also confirmed after consultation of encyclopedic pharmacological works, although few of these works are specifically devoted to veterinary uses. The results of this study are relevant to preserve the ethnoveterinary knowledge, but also represent an important contribution to be taken into account in research for future development of new plant-based drugs for animals.
Collapse
Affiliation(s)
- Fuencisla Cáceres
- Laboratori de Botànica - Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona, Barcelona, Spain
| | - Joan Vallès
- Laboratori de Botànica - Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona, Barcelona, Spain
- Secció de Ciències Biològiques, Institut d'Estudis Catalans, Barcelona, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Spain
| | - Montse Parada
- Laboratori de Botànica - Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona, Barcelona, Spain
| | - Airy Gras
- Laboratori de Botànica - Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat IRBio, Universitat de Barcelona, Barcelona, Spain
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
120
|
Anju, Kumar A, Yadav P, Navik U, Jaitak V. Chemical composition , in vitro and in silico evaluation of essential oil from Eucalyptus tereticornis leaves for lung cancer. Nat Prod Res 2022; 37:1656-1661. [PMID: 35938316 DOI: 10.1080/14786419.2022.2107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Chemical composition of the essential oil (EO) of Eucalyptus tereticornis leaves was studied by gas chromatography-mass spectrometry. Forty-five constituents were identified in the oil hydrodistilled from the sample collected from Ghudda Village, Bathinda (Pb), India of which eucalyptol (34.39%) and ledol (9.92%) were the major constituents. In vitro antioxidant and anticancer potential of EO was analysed by DPPH 2,2-diphenylpicrylhydrazyl (DPPH) and MTT assay. The percentage free radical scavenging activity was found to be 63.77%. The antiproliferative activity was analysed using MTT assay in adenocarcinomic human alveolar basal epithelial A549 cancer cell line and showed IC50 value of 47.14 µg/ml. In silico study of EO, constituents were performed using Maestro 12.9 against EGFR (PDB ID-2RGP). Five constituents from EO showed high dockscore as compared to standard Mobicertinib which indicated the effectiveness of oil constituents against lung cancer.
Collapse
Affiliation(s)
- Anju
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Amit Kumar
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
121
|
Saqallah FG, Hamed WM, Talib WH, Dianita R, Wahab HA. Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (snapdragon) aerial parts. Heliyon 2022; 8:e10391. [PMID: 36072262 PMCID: PMC9441312 DOI: 10.1016/j.heliyon.2022.e10391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Antirrhinum majus (Snapdragon) is a perennial Mediterranean-native plant that is commonly used for mass display. Few reports acknowledged the traditional use of A. majus for its medicinal and therapeutic effects. Herein, we assess the impact of A. majus’s sample preparation and extraction methods on the plant-aerial parts’ phytochemical contents and antimicrobial activity. Furthermore, the microbial targets of the extracts’ secondary metabolites are inspected using molecular docking simulations. Methods The leaves and flowers of A. majus were prepared as fresh and air-dried samples, then extracted using cold maceration and hot reflux, respectively. Extracts with the best phytochemical profiles were selected to test their antimicrobial activities against Bacillus subtilis, Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli and Candida albicans. Besides, molecular docking of 66 reported isolated compounds was conducted against various microbial targets. Results The dried-refluxed samples revealed a massive deterioration in their phytochemical profiles, whereas the macerated flowers extract exhibited the highest total phenolic content and antimicrobial activity against all tested bacterial strains. However, both flowers and leaves extracts showed similar minimum inhibitory and lethal concentrations against C. albicans. Molecular docking studies revealed that chlorogenic acid, chalcononaringenin 4’-glucoside, 3,4,2’,4’,6’-pentahydroxy-chalcone 4’-glucoside, apigenin-7-glucuronide, and luteolin-7-glucuronide were the lead compounds in expressing the antimicrobial activity. Yet, A. majus’s compounds could neither inhibit the 30S ribosomal subunit nor muramyl ligase E. Conclusion Our results suggest that cold maceration of A. majus fresh aerial parts gave higher flavonoid and phenolic content contributing to its antimicrobial properties. These flavonoids and phenolic compounds are predicted to have a crucial role in inhibiting fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B subunit proteins. Air-drying of A. majus’s aerial parts deteriorates its phytochemical composition, affecting its antimicrobial activity. A. majus’s fresh-flowers macerate exhibited the highest total phenolic content and antibacterial activity. The antimycotic activity of A. majus was the same for flowers and leaves macerates. In-silico results showed that some phenolics, chalcones, and flavonoids are responsible for the antimicrobial activity. A.majus’s components act on fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B enzymes.
Collapse
Affiliation(s)
- Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Wafaa M. Hamed
- Pharmacy Department, Al-Noor University College, 41019, Mosul, Iraq
- Corresponding author.
| | - Wamidh H. Talib
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Roza Dianita
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Habibah A. Wahab
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Corresponding author.
| |
Collapse
|
122
|
Lin X, Zhang H, Li S, Huang L, Zhang R, Zhang L, Yu A, Duan B. Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohydr Polym 2022; 290:119444. [DOI: 10.1016/j.carbpol.2022.119444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
123
|
Sharma A, Nuthakki VK, Gairola S, Singh B, Bharate SB. A Coumarin-donepezil Hybrid as a Blood-brain Barrier Permeable Dual Cholinesterase Inhibitor: Isolation, Synthetic Modifications and Biological Evaluation of Natural Coumarins. ChemMedChem 2022; 17:e202200300. [PMID: 35892288 DOI: 10.1002/cmdc.202200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Plants have immensely contributed to the drug discovery for neurodegenerative diseases. Herein, we undertook the phytochemical investigation of Nardostachys jatamansi (D.Don) DC. rhizomes followed by semisynthetic modifications to discover cholinesterase (ChE) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. The 8-acetyl-7-hydroxycoumarin isolated from the bioactive extract moderately inhibits acetylcholinesterase (AChE) and BACE-1 with IC50 values of 22.1 and 17.7 μM, respectively. The semisynthetic trifluoromethyl substituted coumarin chalcone display a 5-fold improvement in BACE-1 inhibition (IC50 3.3 μM). Another semisynthetic derivative, a coumarin-donepezil hybrid, exhibits dual inhibition of both ChEs with IC50 values of 1.22 and 3.09 μM, respectively. Molecular modeling and enzyme kinetics revealed that the coumarin-donepezil hybrid is a non-competitive inhibitor of AChE. It crosses the blood-brain barrier and also inhibits Aβ self-aggregation. The results presented herein warrant a detailed investigation of the coumarin-donepezil hybrid in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Ankita Sharma
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Vijay K Nuthakki
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Sumeet Gairola
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Plant Sciences & Agrotechnology Division, Canal Road, 180001, Jammu, INDIA
| | - Bikarma Singh
- CSIR-National Botanical Research Institute, Botanical Garden Division, Canal Road, Lucknow, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
124
|
Tang Z, Li L, Xia Z. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. ACS OMEGA 2022; 7:25521-25531. [PMID: 35910181 PMCID: PMC9330257 DOI: 10.1021/acsomega.2c02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 05/08/2023]
Abstract
Gardeniae fructus (GF), the fruit from Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of nonalcoholic fatty liver disease (NAFLD) in the clinic. To explore the hepatoprotective mechanism of GF for the treatment of NAFLD, we proposed a novel strategy that integrated in vivo efficacy evaluation, network pharmacology analysis, molecular docking, and experimental validation. A NAFLD animal model induced by high fat diet (HFD) feed was established, then orally administrated with or without GF. The results showed that GF significantly decreased the levels of serum total cholesterol (TC), lipoprotein cholesterol, triglyceride (TG), alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, free fatty acids, glucose, and insulin and the levels of liver TG, TC, and malondialdehyde compared with the nontreated HFD group. Network pharmacology studies showed that quercetin, oleanolic acid, kaempferol, and geniposide were the main biocompounds in GF that targeted the PPARα and PPARγ genes through regulating the PPAR and AMPK signal pathways to protect against NAFLD. The interactions between bioactive compounds and their corresponding target proteins were analyzed by molecular docking and subsequently confirmed using the qRT-PCR assay. Collectively, GF was a therapeutic drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zhongyan Tang
- Department
of Emergency and Critical Care Medicine, Jin Shan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Li
- Department
of Operative Dentistry and Endodontics, School and Hosipital of Stomatology,
Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
| | - Zhengxiang Xia
- Department
of Pharmacy, School and Hosipital of Stomatology, Shanghai Engineering
Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
- . Tel: +8621-66315500
| |
Collapse
|
125
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
126
|
Yu L, Diao S, Zhang G, Yu J, Zhang T, Luo H, Duan A, Wang J, He C, Zhang J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1257-1273. [PMID: 35244328 PMCID: PMC9241383 DOI: 10.1111/pbi.13802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Research Institute of Non‐Timber ForestryChinese Academy of Forestry/Key Laboratory of Non‐timber Forest Germplasm Enhancement & Utilization of National and Grassland AdministrationZhengzhouChina
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jigao Yu
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hongmei Luo
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jinpeng Wang
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
127
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
128
|
Jouaneh TMM, Motta N, Wu C, Coffey C, Via CW, Kirk RD, Bertin MJ. Analysis of botanicals and botanical supplements by LC-MS/MS-based molecular networking: Approaches for annotating plant metabolites and authentication. Fitoterapia 2022; 159:105200. [PMID: 35460834 PMCID: PMC9148416 DOI: 10.1016/j.fitote.2022.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Prior to the advent of modern medicine, humans have used botanicals extensively for their therapeutic potential. With the majority of newly approved drugs having their origins in natural products, plants remain at the forefront of drug discovery. Continued research and discovery necessitate the use of high-throughput analytical methods to screen and identify bioactive components and potential therapeutic molecules from plants. Utilizing a pre-generated plant extract library, we subjected botanicals to LC-MS/MS-based molecular networking to determine their chemical composition and relatively quantify already known metabolites. The LC-MS/MS-based molecular networking approach was also used to authenticate the composition of dietary supplements against their corresponding plant specimens. The networking procedures provided concise visual representations of the chemical space and highly informative assessments of the botanicals. The procedures also proved to define the composition of the botanical supplements quickly and efficiently. This offered an innovative approach to metabolite profiling and authentication practices and additionally allowed for the identification of new, putatively unknown metabolites for future isolation and biological evaluation.
Collapse
Affiliation(s)
- Terra Marie M Jouaneh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Neil Motta
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Christine Wu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Cole Coffey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Christopher W Via
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
129
|
Liu ZQ. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! Food Chem 2022; 380:132143. [DOI: 10.1016/j.foodchem.2022.132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
|
130
|
Satokata AAC, de Souza JH, Silva LLO, Santiago MB, Ramos SB, Assis LRD, Theodoro RDS, Oliveira LRE, Regasini LO, Martins CHG. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022; 76:102588. [PMID: 35618163 DOI: 10.1016/j.anaerobe.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 μg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 μg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.
Collapse
Affiliation(s)
- Alessandra Akemi Cury Satokata
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Jonathan Henrique de Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luana Luiza Oliveira Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Reinaldo Dos Santos Theodoro
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
131
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
132
|
Deng Z, Sun H, Bheemanaboina RRY, Luo Y, Zhou CH. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett 2022; 64:128695. [PMID: 35314326 DOI: 10.1016/j.bmcl.2022.128695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 μg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.
Collapse
Affiliation(s)
- Zhao Deng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
133
|
Dar AA, Raina A, Kumar A. Development, method validation and simultaneous quantification of eleven bioactive natural products from high altitude medicinal plant by high performance liquid chromatography. Biomed Chromatogr 2022; 36:e5408. [PMID: 35562105 DOI: 10.1002/bmc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Herein, a novel, rapid, reliable, simple method validation and simultaneous quantification of eleven bioactive compounds mostly xanthones have been described. ICH guidelines were used for the analytical method validation. Good linearity, repeatability, intra-day and inter-day precision, accuracy and reliability is well illuminated in the method validation procedure. The calibration curves showed a good linear relationship (r>0.999) within test range. Precision was evaluated by intra- and inter-day tests with RSDs <2.79%, accuracy validation recovery 74.16-91.84%. On quantification study, validated method described the high content of bioactive xanthone derivative including 1-hydroxy-3, 5-dimethoxyxanthone (7), 2-(allyloxy)-8-hydroxy-1, 6-dimethoxyxanthone (6) 1, 7, 8-trihydroxy-3-methoxyxanthone (9) and Coxanthone E (5) in the C. ovata which is advantageous due to numerous pharmacological and biological effects associated with these compounds mostly anti-cancers, antioxidant, anti-inflammatory, anti-mutagenic and anti-obesity activity. The bulk abundance of these compounds can also be used for the further modification to produce better lead molecules for drug discovery with low toxicity and high potency. The proposed method makes it possible to determine simultaneously all bioactive compounds in one run and can be extended for marker based standardization of herbal formulations in medicinal and pharmaceutical industries.
Collapse
Affiliation(s)
- Alamgir A Dar
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India.,Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar, Srinagar, J&K, India
| | - Arun Raina
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, J&K, India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory, Sri Mata Vaishno Devi University, Katra Jammu, J&K, India
| |
Collapse
|
134
|
Bhuyan S, Gogoi A, Basumatary J, Roy BG. Visible‐Light‐Promoted Metal‐Free Photocatalytic Direct Aromatic C‐H Oxygenation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Biswajit Gopal Roy
- Sikkim University Chemistry 6th Mile, TadongGangtokSikkim 737102 Gangtok INDIA
| |
Collapse
|
135
|
Fan K, Ding CF, Deng SY, Gao W, Tan BY, Wu H, Guo Y, Song JF, Zhang LC, Zhang RP, Yu HF. Monoterpene indole N-oxide alkaloids from Tabernaemontana corymbosa and their antimicrobial activity. Fitoterapia 2022; 158:105178. [PMID: 35302006 DOI: 10.1016/j.fitote.2022.105178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Tabernaemontana corymbosa is a traditional folk medicine. In our research, six monoterpene indole N-oxide alkaloids and their parent alkaloids were obtained from the stem bark of T. corymbosa, including seven new alkaloids (1-7) and five known alkaloids (8-12). Their structures and absolute configurations were elucidated by extensive spectroscopy, quantum chemical calculations, and DP4+ probability analyses. The antimicrobial activity of the obtained compounds was evaluated, among which alkaloids 4, 8, 12 showed significant antimicrobial activity against Staphylococcus aureus with an MIC value of 6.25 μg/mL, while alkaloids 11, 12 showed moderate antimicrobial activity against Bacillus subtilis with an MIC value of 25 μg/mL.
Collapse
Affiliation(s)
- Kun Fan
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Cai-Feng Ding
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Shi-Yu Deng
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Wen Gao
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Bang-Yin Tan
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Hao Wu
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Ying Guo
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Lan-Chun Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China.
| | - Rong-Ping Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China; School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Traditional Chinese Medicine, Kunming 650500, PR China.
| | - Hao-Fei Yu
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
136
|
Pájaro-González Y, Oliveros-Díaz AF, Cabrera-Barraza J, Fernández-Daza E, Reyes N, Montes-Guevara OA, Caro-Fuentes D, Franco-Ospina L, Quiñones- Fletcher W, Quave CL, Díaz-Castillo F. Mammea B/BA Isolated From the Seeds of Mammea americana L. (Calophyllaceae) is a Potent Inhibitor of Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2022; 13:826404. [PMID: 35359842 PMCID: PMC8961693 DOI: 10.3389/fphar.2022.826404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus remains a pathogen of high concern in public health programs worldwide due to antibiotic resistance and emergence of highly virulent strains. Many phytochemicals have demonstrated activity against S. aureus and other Gram-positive bacteria, but the minimum inhibitory concentration (MIC) values comparable to commonly used antibiotics are needed. In the present study, bio-guided fractionation of the ethanol extract of seeds of Mammea americana L. (Calophyllaceae) throughout the antibacterial activity, against S. aureus strains that are sensitive and resistant to methicillin, led to the isolation of four coumarins identified as mammea B/BA, mammea B/BC, mammea A/AA cyclo D and mammea A/AA cyclo F, and a mixture of mammea B/BA cyclo F plus mammea B/BD cyclo F. The extract inhibited the growth of S. aureus with MIC values of 2–4 μg/ml and Mammea B/BA (MaBBA) presented MIC values in a range between 0.5 and 1.0 μg/ml in six methicillin-sensitive strains and eight methicillin-resistant strains evaluated. We consider MaBBA the most potent of all mammea coumarins reported to date, according to the literature review carried out at the time of writing of this article. Toxicity assessment in vivo against the nematode Caenorhabditis elegans and in vitro against human fibroblasts of the extract and the compound MaBBA indicated that both had low toxicity.
Collapse
Affiliation(s)
- Yina Pájaro-González
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
- Research Group in Healthcare Pharmacy and Pharmacology, Faculty of Chemistry and Pharmacy, University of Atlántico, Barranquilla, Colombia
- *Correspondence: Yina Pájaro-González, ; Fredyc Díaz-Castillo,
| | - Andrés F. Oliveros-Díaz
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Julián Cabrera-Barraza
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Eduardo Fernández-Daza
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Niradiz Reyes
- Research Group Genetic and Molecular Biology, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Oscar A. Montes-Guevara
- Research Group Genetic and Molecular Biology, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Daneiva Caro-Fuentes
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Luis Franco-Ospina
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | | | - Cassandra L. Quave
- Center for the Study of Human Health and Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Fredyc Díaz-Castillo
- Laboratory of Phytochemical and Pharmacological Researches, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
- *Correspondence: Yina Pájaro-González, ; Fredyc Díaz-Castillo,
| |
Collapse
|
137
|
In Vitro Antibacterial Experiments of Qixingjian Decoction and Its Synergistic Interaction with Oxacillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488141. [PMID: 35222666 PMCID: PMC8865976 DOI: 10.1155/2022/1488141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Background With the widespread use and abuse of antimicrobial drugs, the problem of bacterial resistance is becoming increasingly prominent. The clinical detection rate of drug-resistant bacteria is increasing year by year, so there is an urgent need to develop new antimicrobial drugs. Qixingjian Decoction (QXJT) is a formula commonly used in Chinese medicine for the treatment of sepsis caused by acute purulent infections of the face, hands, and feet. There are many compounds with antimicrobial effects that are available, but little is known about their mode of action. In this study, we mainly evaluated the antimicrobial activity of QXJT and explored its synergistic interaction with oxacillin (OX) and the mechanism of its antimicrobial activity. Methods The antimicrobial activity of QXJT against methicillin-resistant Staphylococcus aureus (MRSA) was determined by the microdilution method, the broth macrodilution method, and the time-kill curve method. The main compounds in QXJT were analyzed by ultra-performance liquid chromatography. The synergistic interaction of QXJT and oxacillin (OX) was determined by checkerboard assay, and the antimicrobial mechanism of QXJT, OX, and QXJT + OX was evaluated by transmission electron microscopy (TEM) technique. The expression of MRSA superantigen virulence factors (sea, seb, and tst), and drug resistance gene (mecA) was detected to provide a new strategy for new antibiotic drugs. Results QXJT exhibited antimicrobial activity against both clinical isolates of MRSA, MICs ranging from 18.75 to 37.5 mg/mL. Active substances such as Scutellarein, Scutellarin, Apigenin, and Wogonin 7-O-glucuronide were detected in the phytochemical analysis that may be associated with the antimicrobial activity of QXJT. The synergistic effect of QXJT and OX was determined by checkerboard assay (FICI = 0.5), and TEM images showed that QXJT could cause the disruption of MRSA cell wall, and QXJT + OX could produce greater disruption of MRSA cell wall, elucidating the synergistic effect of the two together on cell wall disruption by microscopic mechanisms. Our study shows that the combination of QXJT and OX can inhibit the expression of MRSA virulence factor, reduce the virulence of MRSA, and have no significant effect on the expression of MRSA resistance gene mecA. Conclusion The results of this study provide scientific experimental data for the traditional application of QXJT and initially explore the mechanism of action of QXJT combined with OX.
Collapse
|
138
|
Saha P, Rahman FI, Hussain F, Rahman SMA, Rahman MM. Antimicrobial Diterpenes: Recent Development From Natural Sources. Front Pharmacol 2022; 12:820312. [PMID: 35295739 PMCID: PMC8918777 DOI: 10.3389/fphar.2021.820312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been posing an alarming threat to the treatment of infectious diseases over the years. Ineffectiveness of the currently available synthetic and semisynthetic antibiotics has led the researchers to discover new molecules with potent antimicrobial activities. To overcome the emerging antimicrobial resistance, new antimicrobial compounds from natural sources might be appropriate. Secondary metabolites from natural sources could be prospective candidates in the development of new antimicrobial agents with high efficacy and less side effects. Among the natural secondary metabolites, diterpenoids are of crucial importance because of their broad spectrum of antimicrobial activity, which has put it in the center of research interest in recent years. The present work is aimed at reviewing recent literature regarding different classes of natural diterpenes and diterpenoids with significant antibacterial, antifungal, antiviral, and antiprotozoal activities along with their reported structure-activity relationships. This review has been carried out with a focus on relevant literature published in the last 5 years following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 229 diterpenoids from various sources like plants, marine species, and fungi are summarized in this systematic review, including their chemical structures, classification, and significant antimicrobial activities together with their reported mechanism of action and structure-activity relationships. The outcomes herein would provide researchers with new insights to find new credible leads and to work on their synthetic and semisynthetic derivatives to develop new antimicrobial agents.
Collapse
Affiliation(s)
- Poushali Saha
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Imtiaz Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - S. M. Abdur Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - M. Mukhlesur Rahman
- Medicines Research Group, School of Health, Sports and Bioscience, University of East London, London, United Kingdom
| |
Collapse
|
139
|
Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci 2022; 13:1526-1546. [PMID: 35282622 PMCID: PMC8827052 DOI: 10.1039/d1sc04471k] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
Collapse
Affiliation(s)
- F I Saldívar-González
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - V D Aldas-Bulos
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| | - J L Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - F Plisson
- CONACYT - Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| |
Collapse
|
140
|
Yao L, Liao M, Wang JK, Wang J, Liu D, Tu PF, Zeng KW. Gold Nanoparticle-Based Photo-Cross-Linking Strategy for Cellular Target Identification of Supercomplex Molecular Systems. Anal Chem 2022; 94:3180-3187. [PMID: 35133791 DOI: 10.1021/acs.analchem.1c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
141
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
142
|
Alhadrami HA, Abdulaal WH, Hassan HM, Alhakamy NA, Sayed AM. In Silico-Based Discovery of Natural Anthraquinones with Potential against Multidrug-Resistant E. coli. Pharmaceuticals (Basel) 2022; 15:ph15010086. [PMID: 35056143 PMCID: PMC8778091 DOI: 10.3390/ph15010086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/21/2023] Open
Abstract
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli’s Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < −10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli’s Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| |
Collapse
|
143
|
Sun H, Huang SY, Jeyakkumar P, Cai GX, Fang B, Zhou CH. Natural Berberine-derived Azolyl Ethanols as New Structural Antibacterial Agents against Drug-Resistant Escherichia coli. J Med Chem 2021; 65:436-459. [PMID: 34964345 DOI: 10.1021/acs.jmedchem.1c01592] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural berberine-derived azolyl ethanols as new structural antibacterial agents were designed and synthesized for fighting with dreadful bacterial resistance. Partial target molecules exhibited potent activity against the tested strains, particularly, nitroimidazole derivative 4d and benzothiazole-2-thoil compound 18b, with low cytotoxicity both exerted strong antibacterial activities against multidrug-resistant Escherichia coli at low concentrations as 0.007 and 0.006 mM, respectively. Meanwhile, the active compounds 4d and 18b possessed the ability to rapidly kill bacteria and observably eradicate the E. coli biofilm by reducing exopolysaccharide content to prevent bacterial adhesion, which was conducive to alleviating the development of E. coli resistance. Preliminary mechanistic explorations suggested that the excellent antibacterial potential of molecules 4d and 18b might be attributed to their ability to disintegrate membrane, accelerate ROS accumulation, reduce bacterial metabolism, and intercalate into DNA groove. These results provided powerful information for the further exploitation of natural berberine derivatives against bacterial pathogens.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi-Yu Huang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
144
|
Liu Z, Huo JH, Dong WT, Sun GD, Li FJ, Zhang YN, Qin ZW, Pengna J, Wang WM. A Study Based on Metabolomics, Network Pharmacology, and Experimental Verification to Explore the Mechanism of Qinbaiqingfei Concentrated Pills in the treatment of Mycoplasma Pneumonia. Front Pharmacol 2021; 12:761883. [PMID: 34803705 PMCID: PMC8599429 DOI: 10.3389/fphar.2021.761883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Qinbaiqingfei concentrated pills (QB) are a commonly used medicine for the treatment of mycoplasma pneumonia in China, and the mechanism of action of QB needs to be studied further. Therefore, we use a combination of metabolomics and network pharmacology to clarify the mechanism of QB. Nontarget metabolomics studies were performed on rat serum, urine, and lung tissues, and 56 therapeutic biomarkers were found. Subsequently, the components of QB absorbed into the blood and lung tissues were clarified, and based on this finding, the core target of network pharmacology was predicted. The enrichment analysis of biomarkers–genes finally confirmed their close relationship with the NF-κB signaling pathway. By western blotting expression of the proteins in the lung tissue–related signaling pathways, it is finally confirmed that QB inhibits the NF-κB signaling pathway through SIRT1, IL-10 and MMP9, CTNNB1, EGFR, and other targets. It plays a role in regulating immunity, regulating metabolism, and treating diseases.
Collapse
Affiliation(s)
- Zheng Liu
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Jin-Hai Huo
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Wen-Ting Dong
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Guo-Dong Sun
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Feng-Jin Li
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Ya-Nan Zhang
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Zhi-Wei Qin
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Jiang Pengna
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Ming Wang
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| |
Collapse
|
145
|
Singh Aidhen I, Thoti N. Natural Products & Bioactivity Inspired Synthetic Pursuits Interfacing with Carbohydrates: Ongoing Journey with C-Glycosides. CHEM REC 2021; 21:3131-3177. [PMID: 34714570 DOI: 10.1002/tcr.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Natural products, remains the most important source for the discovery of new drugs for the treatment of human diseases. This has inspired the synthetic community to design and develop mimics of natural products either to answer important questions in biology or to explore their therapeutic potentials. Glycosides present themselves abundantly in nature, right from the cell surface receptors to natural products of any origin. The O-Glycosides are hydrolytically less stable compared to C-glycosides and this feature has presented a great opportunity for drug discovery. The discovery of Dapagliflozin, an SGLT inhibitor and C-glucoside, for the treatment of diabetes is one such example. Aryl acyl-anion chemistry has been explored for the synthesis of 2-deoxy-C-aryl furanoside/pyranoside/septanosides. Besides success, the studies have provided valuable insight into the natural propensities of the architectural framework for the cascade to furan derivatives. The aryl acyl-anion chemistry has also enabled the synthesis of biologically active diaryl heptanoids. Inspired from sucesss of Dapagliflozin, new analogues have been synthesized with pyridine and isocoumarin heterocycle as the proximal ring. C-glucosides of isoliquiritigenin have been synthesized for the first time and evaluated as an efficient aldose reductase inhibitor. The synthesis and evaluation of acyl-C-β-D-glucosides and benzyl-C-β-D-glucoside as glucose-uptake promoters has revealed promise in small molecules. The concept of building blocks has been used to obtain natural oxylipins, D-xylo and L-xylo-configured alkane tetrols and novel lipophilic ketones with erythro/threo configured trihydroxy polar head-group as possible anti-mycobacterial agents.
Collapse
Affiliation(s)
- Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Naveenkumar Thoti
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
146
|
Wang X, Hu N, Kong W, Song B, Li S. Facile and divergent optimization of chromazonarol enabled the identification of simplified drimane meroterpenoids as novel pharmaceutical leads. Eur J Med Chem 2021; 227:113912. [PMID: 34653771 DOI: 10.1016/j.ejmech.2021.113912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
The diversity of drimane hydroquinones was significantly expanded by the facile construction of (+)-chromazonarol relevant natural products, isomers, and analogues for the discovery of new pharmaceutical leads. The structure-activity relationship of (+)-chromazonarol relevant (non)-natural products was delineated via the synergistic interaction of the programmable synthesis and bioactivity-guided screening. The first divergent derivatization of (+)-chromazonarol demonstrated that the phenolic hydroxyl group is one inviolable requirement for antifungal effect. Pinpoint modification of (+)-yahazunol manifested the position of hydroxyl group was crucial for both antifungal and antitumor activities. (+)-Albaconol, (+)-neoalbaconol, and two (+)-yahazunol isomers (24 and 25) proved to be the novel pharmaceutical leads. The probable macromolecular targets were estimated to deliver new information about the biological potentials resident in (+)-yahazunol relevant products. This work also featured the first synthesis of (+)-albaconol and (+)-neoalbaconol, the first biological exploration of (+)-dictyvaric acid and improved preparation of (+)-8-epi-puupehedione and a promising pelorol analogue.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China
| | - Nvdan Hu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wenlong Kong
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China.
| |
Collapse
|
147
|
Christensen SB. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021; 26:6057. [PMID: 34641601 PMCID: PMC8512414 DOI: 10.3390/molecules26196057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
The appearance of antibiotic drugs revolutionized the possibilities for treatment of diseases with high mortality such as pneumonia, sepsis, plaque, diphtheria, tetanus, typhoid fever, and tuberculosis. Today fewer than 1% of mortalities in high income countries are caused by diseases caused by bacteria. However, it should be recalled that the antibiotics were introduced in parallel with sanitation including sewerage, piped drinking water, high standard of living and improved understanding of the connection between food and health. Development of salvarsan, sulfonamides, and β-lactams into efficient drugs is described. The effects on life expectancy and life quality of these new drugs are indicated.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
148
|
Häkkinen ST, Soković M, Nohynek L, Ćirić A, Ivanov M, Stojković D, Tsitko I, Matos M, Baixinho JP, Ivasiv V, Fernández N, Nunes dos Santos C, Oksman-Caldentey KM. Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals (Basel) 2021; 14:ph14090941. [PMID: 34577641 PMCID: PMC8469098 DOI: 10.3390/ph14090941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Chicory (Cichorium intybus L.) is an important industrial crop cultivated mainly to extract the dietary fiber inulin. However, chicory also contains bioactive compounds such as sesquiterpene lactones and certain polyphenols, which are currently discarded as waste. Plants are an important source of active pharmaceutical ingredients, including novel antimicrobials that are urgently needed due to the global spread of drug-resistant bacteria and fungi. Here, we tested different extracts of chicory for a range of bioactivities, including antimicrobial, antifungal and cytotoxicity assays. Antibacterial and antifungal activities were generally more potent in ethyl acetate extracts compared to water extracts, whereas supercritical fluid extracts showed the broadest range of bioactivities in our assays. Remarkably, the chicory supercritical fluid extract and a purified fraction thereof inhibited both methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Pseudomonas aeruginosa IBRS P001. Chicory extracts also showed higher antibiofilm activity against the yeast Candida albicans than standard sesquiterpene lactone compounds. The cytotoxicity of the extracts was generally low. Our results may thus lead to the development of novel antibacterial and antifungal preparations that are both effective and safe for human use.
Collapse
Affiliation(s)
- Suvi T. Häkkinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
- Correspondence:
| | - Marina Soković
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| | - Ana Ćirić
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Marija Ivanov
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Dejan Stojković
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Irina Tsitko
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| | - Melanie Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - João P. Baixinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Viktoriya Ivasiv
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Claudia Nunes dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Kirsi-Marja Oksman-Caldentey
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| |
Collapse
|
149
|
Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2021; 10:1044. [PMID: 34572626 PMCID: PMC8472480 DOI: 10.3390/antibiotics10091044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - N. A. Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
150
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|