101
|
Dussert F, Wegner KD, Moriscot C, Gallet B, Jouneau PH, Reiss P, Carriere M. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy. FRONTIERS IN TOXICOLOGY 2021; 3:636976. [PMID: 35295141 PMCID: PMC8915823 DOI: 10.3389/ftox.2021.636976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive. This has prompted the development of safer alternatives to Cd-based QDs; among them, InP QDs are the most promising ones. We recently developed RoHS-compliant QDs with an alloyed core composed of InZnP coated with a Zn(Se,S) gradient shell, which was further coated with an additional ZnS shell to protect the QDs from oxidative surface degradation. In this study, the toxicity of single-shelled InZnP/Zn(Se,S) core/gradient shell and of double-shelled InZnP/Zn(Se,S)/ZnS core/shell/shell QDs was evaluated both in their pristine form and after aging in a climatic chamber, mimicking a realistic environmental weathering. We show that both pristine and aged QDs, whatever their composition, accumulate in the cytoplasm of human primary keratinocytes where they form agglomerates at the vicinity of the nucleus. Pristine QDs do not show overt toxicity to cells, while aged QDs show cytotoxicity and genotoxicity and significantly modulate the mRNA expression of proteins involved in zinc homeostasis, cell redox response, and inflammation. While the three aged QDs show similar toxicity, the toxicity of pristine gradient-shell QD is higher than that of pristine double-shell QD, confirming that adding a second shell is a promising safer-by-design strategy. Taken together, these results suggest that end-of-life degradation products from InP-based QDs are detrimental to skin cells in case of accidental exposure and that the mechanisms driving this effect are oxidative stress, inflammation, and disturbance of cell metal homeostasis, particularly Zn homeostasis. Further efforts to promote safer-by-design formulations of QDs, for instance by reducing the In and Zn content and/or implementing a more robust outer shell, are therefore warranted.
Collapse
Affiliation(s)
- Fanny Dussert
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
| | - Karl David Wegner
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), UMS 3518, CNRS, CEA, Université Grenoble Alpes, Grenoble, France
| | - Benoit Gallet
- Université Grenoble-Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Peter Reiss
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Marie Carriere
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
- *Correspondence: Marie Carriere
| |
Collapse
|
102
|
Rund R, Bauer S, Stauber A, Seidl M, Ojo W, Ferrari F, Chaudret B, Nayral C, Delpech F, Scheer M. Examination of Indium Triphospholyls as Precursors for Nanoparticle Synthesis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Reinhard Rund
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Susanne Bauer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Andreas Stauber
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Wilfried‐Solo Ojo
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Fabio Ferrari
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Céline Nayral
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Fabien Delpech
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Manfred Scheer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
103
|
Gil HM, Price TW, Chelani K, Bouillard JSG, Calaminus SD, Stasiuk GJ. NIR-quantum dots in biomedical imaging and their future. iScience 2021; 24:102189. [PMID: 33718839 PMCID: PMC7921844 DOI: 10.1016/j.isci.2021.102189] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique optical and electronic properties due to quantum confinement effects, whose excellent optical properties make them ideal for fluorescence imaging of biological systems. By selectively controlling the synthetic methodologies it is possible to obtain QDs that emit in the first (650-950 nm) and second (1000-1400 nm) near infra-red (NIR) windows, allowing for superior imaging properties. Despite the excellent optical properties and biocompatibility shown by some NIR QDs, there are still some challenges to overcome to enable there use in clinical applications. In this review, we discuss the latest advances in the application of NIR QDs in preclinical settings, together with the synthetic approaches and material developments that make NIR QDs promising for future biomedical applications.
Collapse
Affiliation(s)
- Hélio M. Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX Hull, UK
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| | - Kanik Chelani
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| | | | - Simon D.J. Calaminus
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| |
Collapse
|
104
|
A Review of the Synthesis, Properties, and Applications of Bulk and Two-Dimensional Tin (II) Sulfide (SnS). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tin(II) sulfide (SnS) is an attractive semiconductor for solar energy conversion in thin film devices due to its bandgap of around 1.3 eV in its orthorhombic polymorph, and a band gap energy of 1.5–1.7 eV for the cubic polymorph—both of which are commensurate with efficient light harvesting, combined with a high absorption coefficient (10−4 cm−1) across the NIR–visible region of the electromagnetic spectrum, leading to theoretical power conversion efficiencies >30%. The high natural abundance and a relative lack of toxicity of its constituent elements means that such devices could potentially be inexpensive, sustainable, and accessible to most nations. SnS exists in its orthorhombic form as a layer structure similar to black phosphorus; therefore, the bandgap energy can be tuned by thinning the material to nanoscale dimensions. These and other properties enable SnS applications in optoelectronic devices (photovoltaics, photodetectors), lithium- and sodium-ion batteries, and sensors among others with a significant potential for a variety of future applications. The synthetic routes, structural, optical and electronic properties as well as their applications (in particular photonic applications and energy storage) of bulk and 2D tin(II) sulfide are reviewed herein.
Collapse
|
105
|
Angelé L, Dreyfuss S, Dubertret B, Mézailles N. Synthesis of Monodisperse InP Quantum Dots: Use of an Acid-Free Indium Carboxylate Precursor. Inorg Chem 2021; 60:2271-2278. [PMID: 33502849 DOI: 10.1021/acs.inorgchem.0c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of indium carboxylate precursors in the synthesis of monodisperse InP quantum dots was investigated. The reaction between acid-free indium palmitate and tris(trimethylsilyl)phosphine (P(TMS)3) was monitored by using high-temperature 31P NMR, indicating the presence of a single molecular phosphorus species throughout the duration of the reaction. The addition of varying amounts of carboxylic acid and its effects on both the reaction kinetics and the optical properties of InP QDs were studied. In the presence of acid, rapid protonation of P(TMS)3 led to the formation of a mixture of four HxP(TMS)3-x species, resulting in the poorer controlled formation of InP nanocrystals. Upon deposition of a gradated ZnSeS shell on the synthesized InP core, luminescent quantum dots were obtained (QY 67%; PL: FWHM 40 nm).
Collapse
Affiliation(s)
- Léo Angelé
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Toulouse 3-Paul Sabatier and CNRS UMR 5069, 31062 Cedex 9 Toulouse, France.,Nexdot, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | | | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Toulouse 3-Paul Sabatier and CNRS UMR 5069, 31062 Cedex 9 Toulouse, France
| |
Collapse
|
106
|
Coelho-Júnior H, Silva BG, Labre C, Loreto RP, Sommer RL. Room-temperature synthesis of earth-abundant semiconductor ZnSiN 2 on amorphous carbon. Sci Rep 2021; 11:3248. [PMID: 33547393 PMCID: PMC7864977 DOI: 10.1038/s41598-021-82845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
This manuscript reports room-temperature one-step synthesis of earth-abundant semiconductor ZnSiN2 on amorphous carbon substrates using radio frequency reactive magnetron co-sputtering. Transmission Electron Microscopy and Rutherford Backscattering Spectrometry analysis demonstrated that the synthesis has occurred as ZnSiN2 nanocrystals in the orthorhombic phase, uniformly distributed on amorphous carbon. The technique of large-area deposition on an amorphous substrate can be interesting for flexible electronics technologies. Our results open possibilities for environmentally friendly semiconductor devices, leading to the development of greener technologies.
Collapse
Affiliation(s)
| | - Bruno G Silva
- Brazilian Center for Physics Research, 22.290-180, Rio de Janeiro, RJ, Brazil
| | - Cilene Labre
- Brazilian Center for Physics Research, 22.290-180, Rio de Janeiro, RJ, Brazil
| | - Renan P Loreto
- Brazilian Center for Physics Research, 22.290-180, Rio de Janeiro, RJ, Brazil
| | - Rubem L Sommer
- Brazilian Center for Physics Research, 22.290-180, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
107
|
Keller C, Desrues A, Karuppiah S, Martin E, Alper JP, Boismain F, Villevieille C, Herlin-Boime N, Haon C, Chenevier P. Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:307. [PMID: 33504062 PMCID: PMC7912472 DOI: 10.3390/nano11020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/03/2023]
Abstract
Silicon is a promising material for high-energy anode materials for the next generation of lithium-ion batteries. The gain in specific capacity depends highly on the quality of the Si dispersion and on the size and shape of the nano-silicon. The aim of this study is to investigate the impact of the size/shape of Si on the electrochemical performance of conventional Li-ion batteries. The scalable synthesis processes of both nanoparticles and nanowires in the 10-100 nm size range are discussed. In cycling lithium batteries, the initial specific capacity is significantly higher for nanoparticles than for nanowires. We demonstrate a linear correlation of the first Coulombic efficiency with the specific area of the Si materials. In long-term cycling tests, the electrochemical performance of the nanoparticles fades faster due to an increased internal resistance, whereas the smallest nanowires show an impressive cycling stability. Finally, the reversibility of the electrochemical processes is found to be highly dependent on the size/shape of the Si particles and its impact on lithiation depth, formation of crystalline Li15Si4 in cycling, and Li transport pathways.
Collapse
Affiliation(s)
- Caroline Keller
- CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; (C.K.); (S.K.); (E.M.); (C.V.)
- CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; (J.P.A.); (C.H.)
| | - Antoine Desrues
- CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; (A.D.); (F.B.); (N.H.-B.)
| | - Saravanan Karuppiah
- CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; (C.K.); (S.K.); (E.M.); (C.V.)
- CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; (J.P.A.); (C.H.)
| | - Eléa Martin
- CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; (C.K.); (S.K.); (E.M.); (C.V.)
| | - John P. Alper
- CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; (J.P.A.); (C.H.)
- CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; (A.D.); (F.B.); (N.H.-B.)
| | - Florent Boismain
- CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; (A.D.); (F.B.); (N.H.-B.)
| | - Claire Villevieille
- CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; (C.K.); (S.K.); (E.M.); (C.V.)
| | - Nathalie Herlin-Boime
- CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; (A.D.); (F.B.); (N.H.-B.)
| | - Cédric Haon
- CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; (J.P.A.); (C.H.)
| | - Pascale Chenevier
- CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; (C.K.); (S.K.); (E.M.); (C.V.)
| |
Collapse
|
108
|
Hinterding SM, Mangnus MJJ, Prins PT, Jöbsis HJ, Busatto S, Vanmaekelbergh D, de Mello Donega C, Rabouw FT. Unusual Spectral Diffusion of Single CuInS 2 Quantum Dots Sheds Light on the Mechanism of Radiative Decay. NANO LETTERS 2021; 21:658-665. [PMID: 33395305 PMCID: PMC7809691 DOI: 10.1021/acs.nanolett.0c04239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The luminescence of CuInS2 quantum dots (QDs) is slower and spectrally broader than that of many other types of QDs. The origin of this anomalous behavior is still under debate. Single-QD experiments could help settle this debate, but studies by different groups have yielded conflicting results. Here, we study the photophysics of single core-only CuInS2 and core/shell CuInS2/CdS QDs. Both types of single QDs exhibit broad PL spectra with fluctuating peak position and single-exponential photoluminescence decay with a slow but fluctuating lifetime. Spectral diffusion of CuInS2-based QDs is qualitatively and quantitatively different from CdSe-based QDs. The differences reflect the dipole moment of the CuInS2 excited state and hole localization on a preferred site in the QD. Our results unravel the highly dynamic photophysics of CuInS2 QDs and highlight the power of the analysis of single-QD property fluctuations.
Collapse
Affiliation(s)
- Stijn
O. M. Hinterding
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mark J. J. Mangnus
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - P. Tim Prins
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Huygen J. Jöbsis
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Serena Busatto
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Daniël Vanmaekelbergh
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Freddy T. Rabouw
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
109
|
Lignos I, Mo Y, Carayannopoulos L, Ginterseder M, Bawendi MG, Jensen KF. A high-temperature continuous stirred-tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00454e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multistep and continuous production of core–shell InP/ZnS semiconductor nanocrystals in a high-temperature and miniature continuous stirred-tank reactor cascade.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Yiming Mo
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | | | | | - Moungi G. Bawendi
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| |
Collapse
|
110
|
Kowalik P, Mucha SG, Matczyszyn K, Bujak P, Mazur LM, Ostrowski A, Kmita A, Gajewska M, Pron A. Heterogeneity induced dual luminescence properties of AgInS 2 and AgInS 2–ZnS alloyed nanocrystals. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00566a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the PL spectra of heterogeneous nanocrystals (In2S3–AgInS2 and In2S3–AgInS2–ZnS) two distinctly different peaks could be found at 430 and 710–515 nm.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
- Faculty of Chemistry
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C)
- UMR5221
- University of Montpellier
- CNRS
- 34095 Montpellier
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Piotr Bujak
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Leszek M. Mazur
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Andrzej Ostrowski
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Angelika Kmita
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Marta Gajewska
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Adam Pron
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| |
Collapse
|
111
|
Pretto T, Baum F, Fernandes Souza Andrade G, Leite Santos MJ. Design of experiments a powerful tool to improve the selectivity of copper antimony sulfide nanoparticles synthesis. CrystEngComm 2021. [DOI: 10.1039/d0ce01563f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Design of experiments to find the main factors governing phase compositions and nanoparticle size.
Collapse
Affiliation(s)
- Tatiane Pretto
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Fábio Baum
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Gustavo Fernandes Souza Andrade
- Laboratório de Nanoestruturas Plasmônicas
- Núcleo de Espectroscopia e Estrutura Molecular
- Centro de Estudos em Materiais
- Departamento de Química
- Universidade Federal de Juiz de Fora
| | - Marcos José Leite Santos
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
- Instituto de Química
| |
Collapse
|
112
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
113
|
Berends AC, van de Haar MA, Krames MR. YAG:Ce 3+ Phosphor: From Micron-Sized Workhorse for General Lighting to a Bright Future on the Nanoscale. Chem Rev 2020; 120:13461-13479. [PMID: 33164489 DOI: 10.1021/acs.chemrev.0c00618] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The renowned yellow phosphor yttrium aluminum garnet (YAG) doped with trivalent cerium has found its way into applications in many forms: as powder of micron sized crystals, as a ceramic, and even as a single crystal. However, additional technological advancement requires providing this material in new form factors, especially in terms of particle size. Where many materials have been developed on the nanoscale with excellent optical properties (e.g., semiconductor quantum dots, perovskite nanocrystals, and rare earth doped phosphors), it is surprising that the development of nanocrystalline YAG:Ce is not as mature as for these other materials. Control over size and shape is still in its infancy, and optical properties are not yet at the same level as other materials on the nanoscale, even though YAG:Ce microcrystalline materials exceed the performance of most other materials. This review highlights developments in synthesis methods and mechanisms and gives an overview of the state of the art morphologies, particle sizes, and optical properties of YAG:Ce on the nanoscale.
Collapse
Affiliation(s)
- Anne C Berends
- Seaborough Research BV, Matrix VII Innovation Center, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Marie Anne van de Haar
- Seaborough Research BV, Matrix VII Innovation Center, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Michael R Krames
- Seaborough Research BV, Matrix VII Innovation Center, Science Park 106, 1098 XG Amsterdam, The Netherlands.,Arkesso LLC, 2625 Middlefield Road, No. 687, Palo Alto, California 94306, United States
| |
Collapse
|
114
|
Thakarda J, Agrawal B, Anil D, Jana A, Maity P. Detection of Trace-Level Nitroaromatic Explosives by 1-Pyreneiodide-Ligated Luminescent Gold Nanostructures and Their Forensic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15442-15449. [PMID: 33289565 DOI: 10.1021/acs.langmuir.0c03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By attaching the1-pyreneiodide ancillary ligand to the surface of polyvinylpyrrolidone-stabilized gold (Au:PVP) cluster or the cetyltrimethyl ammonium bromide-stabilized gold (Au:CTAB) nanorod, a new class of luminescent mixed ligand-stabilized gold nanostructures is synthesized. This postsynthetic surface modification method followed by us is a comparatively easier and hassle-free technique to acquire surface-active luminescent "functional nanomaterials". Careful analyses of transmission electron microscopy images revealed that the sizes of these Au-clusters or Au-nanorods remain unchanged without any noticeable aggregation in the medium. Owing to the formation of an excimer within the neighboring pyrenes mounted on the surface of core nanostructures (i.e., Au:PVP nanocluster and Au:CTAB nanorod), the resulting pyrene-grafted nanocomposites exhibit strong emission characteristics. The strong excimer emission is significantly quenched in the presence of electron-deficient chemical inputs, and this phenomenon can be used for analytical purposes. Using these luminescent Au-nanomaterials, we demonstrate a selective detection and sensing of trace-level nitroaromatic explosives (e.g., trinitrotoluene, trinitrophenol (TNP), dinitrotoluene, 4-nitrotoluene, etc.). It was observed that the Py-Au:PVP nanocluster is equally effective for explosive detection in both solution and solid phases with the limit of detection up to 10 nanomolar. A high Stern-Volmer constant of up to 3.88 × 106 M-1 was seen in the case of TNP in anhydrous methanol at 298 K. The deactivation pathway operating within the Py-Au:PVP nanocluster and the analytes is thought to be a result of a predominating static quenching process, where a nonfluorescent D-A supramolecular adduct is formed in the medium. Py-Au:PVP has also been successfully used to develop latent fingerprints from nonporous surfaces under an exposure of 365 nm UV light. The results suggest that these new composite materials could behave as potential "functional nanomaterials", which might be a promising alternative for on-the-spot detection of explosive traces as well as for easy visualization of latent fingerprints.
Collapse
Affiliation(s)
- Jaydev Thakarda
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Bhavesh Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Devisree Anil
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Atanu Jana
- Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Prasenjit Maity
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| |
Collapse
|
115
|
Guschlbauer J, Vollgraff T, Xie X, Weigend F, Sundermeyer J. A Series of Homoleptic Linear Trimethylsilylchalcogenido Cuprates, Argentates and Aurates Cat[Me 3SiE-M-ESiMe 3] (M = Cu, Ag, Au; E = S, Se). Inorg Chem 2020; 59:17565-17572. [PMID: 33197182 DOI: 10.1021/acs.inorgchem.0c02808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The syntheses and XRD molecular structures of a complete series of silylsulfido metalates Cat[M(SSiMe3)2] (M = Cu, Ag, Au) and corresponding silylselenido metalates Cat[M(SeSiMe3)2] (M = Cu, Ag, Au) comprising lattice stabilizing organic cations (Cat = Ph4P+ or PPN+) are reported. Much to our surprise these homoleptic cuprates, argentates, and aurates are stable enough to be isolated even in the absence of any strongly binding phosphines or N-heterocyclic carbenes as coligands. Their metal atoms are coordinated by two silylchalcogenido ligands in a linear fashion. The silyl moieties of all anions show an unexpected gauche conformation of the silyl substituents with respect to the central axis Si-[E-M-E]-Si in the solid state. The energetic preference for the gauche conformation is confirmed by quantum chemical calculations and amounts to about 2-6 kJ/mol, thus revealing a rather shallow potential mainly depending on electronic effects of the metal. Furthermore, 2D HMQC methods were applied to detect the otherwise nonobservable NMR shifts of the 29Si and 77Se nuclei of the silylselenido compounds. Preliminary investigations reveal that these thermally and protolytically labile chalcogenido metalates are valuable precursors for the precipitation of binary coinage metal chalcogenide nanoparticles from organic solution and for coinage metal cluster syntheses.
Collapse
Affiliation(s)
- Jannick Guschlbauer
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Tobias Vollgraff
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
116
|
Rodosthenous P, Gómez-Campos FM, Califano M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. J Phys Chem Lett 2020; 11:10124-10130. [PMID: 33191752 DOI: 10.1021/acs.jpclett.0c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes' shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.
Collapse
Affiliation(s)
- Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- CITIC-UGR, C/Periodista Rafael Gómez Montero, n 2, Granada E-18071, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
117
|
Bhardwaj K, Pradhan S, Basel S, Clarke M, Brito B, Thapa S, Roy P, Borthakur S, Saikia L, Shankar A, Stasiuk GJ, Pariyar A, Tamang S. Tunable NIR-II emitting silver chalcogenide quantum dots using thio/selenourea precursors: preparation of an MRI/NIR-II multimodal imaging agent. Dalton Trans 2020; 49:15425-15432. [PMID: 33140785 DOI: 10.1039/d0dt02974b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aqueous-stable, Cd- and Pb-free colloidal quantum dots with fluorescence properties in the second near-infrared region (NIR-II, 1000-1400) are highly desirable for non-invasive deep-tissue optical imaging and biosensing. The low band-gap semiconductor, silver chalcogenide, offers a non-toxic and stable alternative to existing Pd, As, Hg and Cd-based NIR-II colloidal quantum dots (QDs). We report facile access to NIR-II emission windows with Ag2X (X = S, Se) QDs using easy-to-prepare thio/selenourea precursors and their analogues. The aqueous phase transfer of these QDs with a high conservation of fluorescence quantum yield (retention up to ∼90%) and colloidal stability is demonstrated. A bimodal NIR-II/MRI contrast agent with a tunable fluorescence and high T1 relaxivity of 408 mM-1 s-1 per QD (size ∼ 2.2 nm) and 990 mM-1 s-1 per QD (size ∼ 4.2 nm) has been prepared by grafting 50 and 120 monoaqua Gd(iii) complexes respectively to two differently sized Ag2S QDs. The size of the nanocrystals is crucial for tuning the Gd payload and the relaxivity.
Collapse
Affiliation(s)
- Karishma Bhardwaj
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Sajan Pradhan
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Siddhant Basel
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Mitchell Clarke
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Beatriz Brito
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK and Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Surakcha Thapa
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Pankaj Roy
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Sukanya Borthakur
- Department of Material Science, North East Institute of Science and Technology (NEIST), Assam 785006, India
| | - Lakshi Saikia
- Department of Material Science, North East Institute of Science and Technology (NEIST), Assam 785006, India
| | - Amit Shankar
- Department of Physics, Kurseong College, West Bengal 734203, India
| | - Graeme J Stasiuk
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK and Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India.
| |
Collapse
|
118
|
Zhang C, Chen J, Wang S, Kong L, Lewis SW, Yang X, Rogach AL, Jia G. Metal Halide Perovskite Nanorods: Shape Matters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002736. [PMID: 32985008 DOI: 10.1002/adma.202002736] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Indexed: 05/22/2023]
Abstract
Quasi-1D metal halide perovskite nanorods (NRs) are emerging as a type of materials with remarkable optical and electronic properties. Research into this field is rapidly expanding and growing in the past several years, with significant advances in both mechanistic studies of their growth and widespread possible applications. Here, the recent advances in 1D metal halide perovskite nanocrystals (NCs) are reviewed, with a particular emphasis on NRs. At first, the crystal structures of perovskites are elaborated, which is followed by a review of the major synthetic approaches toward perovskite NRs, such as wet-chemical synthesis, substrate-assisted growth, and anion exchange reactions, and discussion of the growth mechanisms associated with each synthetic method. Then, thermal and aqueous stability and the linear polarized luminescence of perovskite NRs are considered, followed by highlighting their applications in solar cells, light-emitting diodes, photodetectors/phototransistors, and lasers. Finally, challenges and future opportunities in this rapidly developing research area are summarized.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Jiayi Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Simon W Lewis
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
119
|
Kim T, Lim S, Yun S, Jeong S, Park T, Choi J. Design Strategy of Quantum Dot Thin-Film Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002460. [PMID: 33079485 DOI: 10.1002/smll.202002460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Quantum dots (QDs) are emerging photovoltaic materials that display exclusive characteristics that can be adjusted through modification of their size and surface chemistry. However, designing a QD-based optoelectronic device requires specialized approaches compared with designing conventional bulk-based solar cells. In this paper, design considerations for QD thin-film solar cells are introduced from two different viewpoints: optics and electrics. The confined energy level of QDs contributes to the adjustment of their band alignment, enabling their absorption characteristics to be adapted to a specific device purpose. However, the materials selected for this energy adjustment can increase the light loss induced by interface reflection. Thus, management of the light path is important for optical QD solar cell design, whereas surface modification is a crucial issue for the electrical design of QD solar cells. QD thin-film solar cell architectures are fabricated as a heterojunction today, and ligand exchange provides suitable doping states and enhanced carrier transfer for the junction. Lastly, the stability issues and methods on QD thin-film solar cells are surveyed. Through these strategies, a QD solar cell study can provide valuable insights for future-oriented solar cell technology.
Collapse
Affiliation(s)
- Taewan Kim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seyeong Lim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sunhee Yun
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sohee Jeong
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taiho Park
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jongmin Choi
- Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| |
Collapse
|
120
|
Lee T, Enomoto K, Ohshiro K, Inoue D, Kikitsu T, Hyeon-Deuk K, Pu YJ, Kim D. Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly. Nat Commun 2020; 11:5471. [PMID: 33122641 PMCID: PMC7596095 DOI: 10.1038/s41467-020-19337-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
In quantum dot superlattices, wherein quantum dots are periodically arranged, electronic states between adjacent quantum dots are coupled by quantum resonance, which arises from the short-range electronic coupling of wave functions, and thus the formation of minibands is expected. Quantum dot superlattices have the potential to be key materials for new optoelectronic devices, such as highly efficient solar cells and photodetectors. Herein, we report the fabrication of CdTe quantum dot superlattices via the layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe quantum dots. We can thus control the dimension of the quantum resonance by independently changing the distances between quantum dots in the stacking (out-of-plane) and in-plane directions. Furthermore, we experimentally verify the miniband formation by measuring the excitation energy dependence of the photoluminescence spectra and detection energy dependence of the photoluminescence excitation spectra. Designing quantum dot superlattices remains a challenge. Here, the authors present CdTe quantum dot superlattices via the layer-by-layer assembly and verify the miniband formation by measuring the excitation energy the dependence of the photoluminescence spectra and the detection energy dependence of the excitation spectra.
Collapse
Affiliation(s)
- TaeGi Lee
- Department of Applied Physics, Osaka City University, Osaka, 558-8585, Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Kazuma Ohshiro
- Department of Applied Physics, Osaka City University, Osaka, 558-8585, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Tomoka Kikitsu
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Kim Hyeon-Deuk
- Department of Chemistry, Kyoto University, Kyoto, 606-8502, Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
| | - DaeGwi Kim
- Department of Applied Physics, Osaka City University, Osaka, 558-8585, Japan.
| |
Collapse
|
121
|
Harvey SM, Houck DW, Kirschner MS, Flanders NC, Brumberg A, Leonard AA, Watkins NE, Chen LX, Dichtel WR, Zhang X, Korgel BA, Wasielewski MR, Schaller RD. Transient Lattice Response upon Photoexcitation in CuInSe 2 Nanocrystals with Organic or Inorganic Surface Passivation. ACS NANO 2020; 14:13548-13556. [PMID: 32915540 DOI: 10.1021/acsnano.0c05553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CuInSe2 nanocrystals offer promise for optoelectronics including thin-film photovoltaics and printed electronics. Additive manufacturing methods such as photonic curing controllably sinter particles into quasi-continuous films and offer improved device performance. To gain understanding of nanocrystal response under such processing conditions, we investigate impacts of photoexcitation on colloidal nanocrystal lattices via time-resolved X-ray diffraction. We probe three sizes of particles and two capping ligands (oleylamine and inorganic S2-) to evaluate resultant crystal lattice temperature, phase stability, and thermal dissipation. Elevated fluences produce heating and loss of crystallinity, the onset of which exhibits particle size dependence. We find size-dependent recrystallization and cooling lifetimes ranging from 90 to 200 ps with additional slower cooling on the nanosecond time scale. Sulfide-capped nanocrystals show faster recrystallization and cooling compared to oleylamine-capped nanocrystals. Using these lifetimes, we find interfacial thermal conductivities from 3 to 28 MW/(m2 K), demonstrating that ligand identity strongly influences thermal dissipation.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel W Houck
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew S Kirschner
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Flanders
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariel A Leonard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Science and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Science and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
122
|
Paredes IJ, Beck C, Lee S, Chen S, Khwaja M, Scimeca MR, Li S, Hwang S, Lian Z, McPeak KM, Shi SF, Sahu A. Synthesis of luminescent core/shell α-Zn 3P 2/ZnS quantum dots. NANOSCALE 2020; 12:20952-20964. [PMID: 33090173 DOI: 10.1039/d0nr06665f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal chalcogenide nanoparticles offer vast control over their optoelectronic properties via size, shape, composition, and morphology which has led to their use across fields including optoelectronics, energy storage, and catalysis. While cadmium and lead-based nanocrystals are prevalent in applications, concerns over their toxicity have motivated researchers to explore alternate classes of nanomaterials based on environmentally benign metals such as zinc and tin. The goal of this research is to identify material systems that offer comparable performance to existing metal chalcogenide systems from abundant, recyclable, and environmentally benign materials. With band gaps that span the visible through the infrared, II-V direct band gap semiconductors such as tetragonal zinc phosphide (α-Zn3P2) are promising candidates for optoelectronics. To date, syntheses of α-Zn3P2 nanoparticles have been hindered because of the toxicity of zinc and phosphorus precursors, surface oxidation, and defect states leading to carrier trapping and low photoluminescence quantum yield. This work reports a colloidal synthesis of quantum confined α-Zn3P2 nanoparticles from common phosphorus precursor tris(trimethylsilyl)phosphine and environmentally benign zinc carboxylates. Shelling of the nanoparticles with zinc sulfide is shown as a method of preventing oxidation and improving the optical properties of the nanoparticles. These results show a route to stabilizing α-Zn3P2 nanoparticles for optoelectronic device applications.
Collapse
Affiliation(s)
- Ingrid J Paredes
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Clara Beck
- Optical Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Scott Lee
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Shuzhen Chen
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Mersal Khwaja
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Michael R Scimeca
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Shuang Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhen Lian
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin M McPeak
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ayaskanta Sahu
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| |
Collapse
|
123
|
Zhang X, Chen M, Zhang Y, Hou Y, Wu Y, Yao M, Li L, Shi L, Liu T, Hu B, Zhao H, Li X, Shi J, Jia B, Wang F. Monoclonal-Antibody-Templated Gold Nanoclusters for HER2 Receptors Targeted Fluorescence Imaging. ACS APPLIED BIO MATERIALS 2020; 3:7061-7066. [DOI: 10.1021/acsabm.0c00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Big Data and Engineering Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56 Nanlishi Road, Beijing 100045, China
| | - Muhua Chen
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yunwei Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Yue Wu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Meinan Yao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liqiang Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Linqing Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Biao Hu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huiyun Zhao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Medical and Healthy Analytical Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Medical and Healthy Analytical Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiyun Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road,
Chaoyang District, Beijing 100101, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road,
Chaoyang District, Beijing 100101, China
| |
Collapse
|
124
|
Kumar B, Singh SV, Chattopadhyay A, Biring S, Pal BN. Scalable Synthesis of a Sub-10 nm Chalcopyrite (CuFeS 2) Nanocrystal by the Microwave-Assisted Synthesis Technique and Its Application in a Heavy-Metal-Free Broad-Band Photodetector. ACS OMEGA 2020; 5:25947-25953. [PMID: 33073121 PMCID: PMC7558061 DOI: 10.1021/acsomega.0c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 05/12/2023]
Abstract
A heavy-metal-free chalcopyrite (CuFeS2) nanocrystal has been synthesized via microwave-assisted growth. Large-scale nanocrystals with an average particle size of 5 nm are fabricated by this technique within a very short period of time without any need for organic ligands. Scanning electron microscopy study (SEM) of individual synthesis steps indicates that aggregates of nanocrystals are formed as flakes during microwave-assisted synthesis. The colloidal solution of the CuFeS2 nanocrystal was prepared by sonicating these flakes. Transmission electron microscopy (TEM) study reveals the growth of sub-10 nm CuFeS2 nanocrystals that are further characterized by X-ray diffraction. UV-visible absorption spectroscopic study shows that the band gap of this nanocrystal is ∼1.3 eV. To investigate the photosensitive nature of this nanocrystal, a bilayer p-n heterojunction photodetector has been fabricated using this nontoxic CuFeS2 nanocrystal as a photoactive material and n-type ZnO as a charge-transport layer. The detectivity of this photodetector reaches above 1012 Jones in visible and near-infrared (NIR) regions under 10 V external bias, which is significantly high for a nontoxic nanocrystal-based photodetector.
Collapse
Affiliation(s)
- Brajesh Kumar
- School
of Materials Science and Technology, Indian
Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Satya Veer Singh
- School
of Materials Science and Technology, Indian
Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhimanyu Chattopadhyay
- School
of Materials Science and Technology, Indian
Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sajal Biring
- Organic
Electronics Research Center and Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Bhola N. Pal
- School
of Materials Science and Technology, Indian
Institute of Technology (Banaras Hindu University), Varanasi 221005, India
- Organic
Electronics Research Center and Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
125
|
Kowalik P, Bujak P, Wróbel Z, Penkala M, Kotwica K, Maroń A, Pron A. From Red to Green Luminescence via Surface Functionalization. Effect of 2-(5-Mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4- c]pyrrole-4,6-dione Ligands on the Photoluminescence of Alloyed Ag-In-Zn-S Nanocrystals. Inorg Chem 2020; 59:14594-14604. [PMID: 32941018 PMCID: PMC7586334 DOI: 10.1021/acs.inorgchem.0c02468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A semiconducting molecule containing a thiol anchor group, namely 2-(5-mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4-c]pyrrole-4,6-dione (abbreviated as D-A-D-SH), was designed, synthesized, and used as a ligand in nonstoichiometric quaternary nanocrystals of composition Ag1.0In3.1Zn1.0S4.0(S6.1) to give an inorganic/organic hybrid. Detailed NMR studies indicate that D-A-D-SH ligands are present in two coordination spheres in the organic part of the hybrid: (i) inner in which the ligand molecules form direct bonds with the nanocrystal surface and (ii) outer in which the ligand molecules do not form direct bonds with the inorganic core. Exchange of the initial ligands (stearic acid and 1-aminooctadecane) for D-A-D-SH induces a distinct change of the photoluminescence. Efficient red luminescence of nanocrystals capped with initial ligands (λmax = 720 nm, quantum yield = 67%) is totally quenched and green luminescence characteristic of the ligand appears (λmax = 508 nm, quantum yield = 10%). This change of the photoluminescence mechanism can be clarified by a combination of electrochemical and spectroscopic investigations. It can be demonstrated by cyclic voltammetry that new states appear in the hybrid as a consequence of D-A-D-SH binding to the nanocrystals surface. These states are located below the nanocrystal LUMO and above its HOMO, respectively. They are concurrent to deeper donor and acceptor states governing the red luminescence. As a result, energy transfer from the nanocrystal HOMO and LUMO levels to the ligand states takes place, leading to effective quenching of the red luminescence and appearance of the green one.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
126
|
Delices A, Moodelly D, Hurot C, Hou Y, Ling WL, Saint-Pierre C, Gasparutto D, Nogues G, Reiss P, Kheng K. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS 2/ZnS Core/Shell Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44026-44038. [PMID: 32840358 DOI: 10.1021/acsami.0c11337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biocompatibility, biofunctionality, and chemical stability are essential criteria to be fulfilled by quantum dot (QD) emitters for bio-imaging and -sensing applications. In addition to these criteria, achieving efficient near-infrared (NIR) emission with nontoxic QDs remains very challenging. In this perspective, we developed water-soluble NIR-emitting AgInS2/ZnS core/shell (AIS/ZnS) QDs functionalized with DNA. The newly established aqueous route relying on a two-step hot-injection synthesis led to highly luminescent chalcopyrite-type AIS/ZnS core/shell QDs with an unprecedented photoluminescence quantum yield (PLQY) of 55% at 700 nm and a long photoluminescence (PL) decay time of 900 ns. Fast and slow hot injection of the precursors were compared for the AIS core QD synthesis, yielding a completely different behavior in terms of size, size distribution, stoichiometry, and crystal structure. The PL peak positions of both types of core QDs were 710 (fast) and 760 nm (slow injection) with PLQYs of 36 and 8%, respectively. The slow and successive incorporation of the Zn and S precursors during the subsequent shell growth step on the stronger emitting cores promoted the formation of a three-monolayer thick ZnS shell, evidenced by the increase of the average QD size from 3.0 to 4.8 nm. Bioconjugation of the AIS/ZnS QDs with hexylthiol-modified DNA was achieved during the ZnS shell growth, resulting in a grafting level of 5-6 DNA single strands per QD. The successful chemical conjugation of DNA was attested by UV-vis spectroscopy and agarose gel electrophoresis. Importantly, surface plasmon resonance imaging experiments using complementary DNA strands further corroborated the successful coupling and the stability of the AIS/ZnS-DNA QD conjugates as well as the preservation of the biological activity of the anchored DNA. The strong NIR emission and biocompatibility of these AIS/ZnS-DNA QDs provide a high potential for their use in biomedical applications.
Collapse
Affiliation(s)
- Annette Delices
- Université Grenoble Alpes, CEA, CNRS, IRIG, PHELIQS, Grenoble F-38000, France
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Davina Moodelly
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Charlotte Hurot
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Wai Li Ling
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| | | | - Didier Gasparutto
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Gilles Nogues
- University Grenoble Alpes, CNRS, Institut Néel, Grenoble F-38000, France
| | - Peter Reiss
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, Grenoble F-38000, France
| | - Kuntheak Kheng
- Université Grenoble Alpes, CEA, CNRS, IRIG, PHELIQS, Grenoble F-38000, France
| |
Collapse
|
127
|
Li L, Chen T, Yang Z, Chen Y, Liu D, Xiao H, Liu M, Liu K, Xu J, Liu S, Wang X, Lin G, Xu G. Nephrotoxicity Evaluation of Indium Phosphide Quantum Dots with Different Surface Modifications in BALB/c Mice. Int J Mol Sci 2020; 21:ijms21197137. [PMID: 32992627 PMCID: PMC7582660 DOI: 10.3390/ijms21197137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
InP QDs have shown a great potential as cadmium-free QDs alternatives in biomedical applications. It is essential to understand the biological fate and toxicity of InP QDs. In this study, we investigated the in vivo renal toxicity of InP/ZnS QDs terminated with different functional groups—hydroxyl (hQDs), amino (aQDs) and carboxyl (cQDs). After a single intravenous injection into BALB/c mice, blood biochemistry, QDs distribution, histopathology, inflammatory response, oxidative stress and apoptosis genes were evaluated at different predetermined times. The results showed fluorescent signals from QDs could be detected in kidneys during the observation period. No obvious changes were observed in histopathological detection or biochemistry parameters. Inflammatory response and oxidative stress were found in the renal tissues of mice exposed to the three kinds of QDs. A significant increase of KIM-1 expression was observed in hQDs and aQDs groups, suggesting hQDs and aQDs could cause renal involvement. Apoptosis-related genes (Bax, Caspase 3, 7 and 9) were up-regulated in hQDs and aQDs groups. The above results suggested InP/ZnS QDs with different surface chemical properties would cause different biological behaviors and molecular actions in vivo. The surface chemical properties of QDs should be fully considered in the design of InP/ZnS QDs for biomedical applications.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Yajing Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Huiyu Xiao
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Maixian Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Kan Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Jiangyao Xu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Shikang Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Guimiao Lin
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Correspondence: (G.L.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
- Correspondence: (G.L.); (G.X.)
| |
Collapse
|
128
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
129
|
Magnetism of Kesterite Cu 2ZnSnS 4 Semiconductor Nanopowders Prepared by Mechanochemically Assisted Synthesis Method. MATERIALS 2020; 13:ma13163487. [PMID: 32784643 PMCID: PMC7476044 DOI: 10.3390/ma13163487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and 119Sn MAS NMR spectra. In the second step, each of the milled raw materials is annealed at 500 and 550 °C under argon to result in tetragonal kesterite nanopowders with the anticipated UV-Vis-determined energy band gap and qualitatively correct NMR characteristics. The magnetic properties of all materials are measured with SQUID magnetometer and confirm the pre-kesterite samples to show typical paramagnetism with a weak ferromagnetic component whereas all the kesterite samples to exhibit only paramagnetism of relatively decreased magnitude. Upon conditioning in ambient air for 3 months, a pronounced increase of paramagnetism is observed in all materials. Correlations between the magnetic and spectroscopic properties of the nanopowders including impact of oxidation are discussed. The magnetic measurements coupled with NMR spectroscopy appear to be indispensable for comprehensive kesterite evaluation.
Collapse
|
130
|
Yu S, Xie Z, Ran M, Wu F, Zhong Y, Dan M, Zhou Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J Colloid Interface Sci 2020; 573:71-77. [DOI: 10.1016/j.jcis.2020.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022]
|
131
|
Chen B, Li D, Wang F. InP Quantum Dots: Synthesis and Lighting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002454. [PMID: 32613755 DOI: 10.1002/smll.202002454] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Indexed: 05/24/2023]
Abstract
InP quantum dots (QDs) are typical III-V group semiconductor nanocrystals that feature large excitonic Bohr radius and high carrier mobility. The merits of InP QDs include large absorption coefficient, broad color tunability, and low toxicity, which render them promising alternatives to classic Cd/Pb-based QDs for applications in practical settings. Over the past two decades, the advances in wet-chemistry methods have enabled the synthesis of small-sized colloidal InP QDs with the assistance of organic ligands. By proper selection of synthetic protocols and precursor materials coupled with surface passivation, the QYs of InP QDs are pushed to near unity with modest color purity. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications with the potential for commercialization. This work focuses on the recent development of wet-chemistry protocols and various precursor materials for the synthesis and surface modification of InP QDs. Current methods for constructing light-emitting diodes using novel InP-based QDs are also summarized.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dongyu Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- Key Laboratory of Environmentally Friendly Functional Materials and Devices, Lingnan Normal University, Zhanjiang, 524048, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
132
|
Bai X, Purcell-Milton F, Gun'ko YK. Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures. NANOSCALE 2020; 12:15295-15303. [PMID: 32648560 DOI: 10.1039/d0nr02777d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multicomponent quantum nanostructures have attracted significant attention due to their potential applications in photovoltaics, optoelectronics and bioimaging. However, the preparation of anisotropic quaternary nanoheterostructures such as Cu-In-Zn-S(Se) (CIZS and CIZSe) is still very poorly explored and understood. Here, we report the synthesis and studies of NIR emissive CIZSe/CIZS/ZnS core/shell/shell nanoheterostructures with a unique hetero-nanonail (HNN) morphology. In our approach, wurtzite (WZ) CIZSe/CIZS core/shell QDs have been prepared by depositing a CIZS shell onto a previously synthesized chalcopyrite CIZSe QD core using a seeded growth technique. Following careful control of the ZnS shell growth resulted in the formation of the distinct nail-like CIZSe/CIZS/ZnS nanoheterostructure, where the CIZSe/CIZS core/shell QD is located near the "head" of the nail. The emission in the NIR region of the CIZSe/CIZS/ZnS nanocrystals is assigned to the CIZSe/CIZS core/shell quantum nanostructure. The CIZSe/CIZS/ZnS HNNs are particularly interesting due to a range of potential applications including bioimaging, biosensing, energy harvesting and NIR photodetectors. Finally, we also report the successful controlled growth of gold nanoparticles on the surface of the CIZSe/CIZS/ZnS nanonail-like heterostructure and the investigation of the resulting multimodal nanocomposites.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| | - Yurii K Gun'ko
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland and ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
133
|
Jia H, Wang F, Tan Z. Material and device engineering for high-performance blue quantum dot light-emitting diodes. NANOSCALE 2020; 12:13186-13224. [PMID: 32614007 DOI: 10.1039/d0nr02074e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal quantum dots (QDs) have attracted extensive attention due to their excellent optoelectronic properties, such as high quantum efficiency, narrow emission peaks, high color saturation, high stability and solution processability. Compared with the traditional display technology, QD based light-emitting diodes (QLEDs) show broad application prospects in the field of flat-panel displays and solid-state lighting. However, for full-color displays, the efficiency and lifetime of blue QLEDs are inferior to those of their green and red counterparts. Therefore, it is urgent for us to deeply understand the device physics and improve the performance of blue QLEDs through material and device engineering. An in-depth understanding of the optoelectronic properties (such as the structure of electronic states, electron-phonon interactions, Auger processes, etc.) and material engineering (such as size distribution control, composition control, and surface engineering) of blue emission QDs is greatly helpful for their applications in other fields. Herein, we review the key progress in the area of blue QLEDs, including the compositions and nanostructures of blue quantum dots, advances in the device architectures and the improvement of the device lifetime of blue QLEDs. The key factors that influence the blue device performance, including the nanostructure design and surface modification of QDs, interface engineering and architecture design of devices are discussed, aiming to propose possible solutions for these challenges, which will help to promote the commercialization process of QLEDs.
Collapse
Affiliation(s)
- Haoran Jia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fuzhi Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
134
|
Santos CIL, S. Machado W, Wegner KD, Gontijo LAP, Bettini J, Schiavon MA, Reiss P, Aldakov D. Hydrothermal Synthesis of Aqueous-Soluble Copper Indium Sulfide Nanocrystals and Their Use in Quantum Dot Sensitized Solar Cells. NANOMATERIALS 2020; 10:nano10071252. [PMID: 32605163 PMCID: PMC7407332 DOI: 10.3390/nano10071252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
A facile hydrothermal method to synthesize water-soluble copper indium sulfide (CIS) nanocrystals (NCs) at 150 °C is presented. The obtained samples exhibited three distinct photoluminescence peaks in the red, green and blue spectral regions, corresponding to three size fractions, which could be separated by means of size-selective precipitation. While the red and green emitting fractions consist of 4.5 and 2.5 nm CIS NCs, the blue fraction was identified as in situ formed carbon nanodots showing excitation wavelength dependent emission. When used as light absorbers in quantum dot sensitized solar cells, the individual green and red fractions yielded power conversion efficiencies of 2.9% and 2.6%, respectively. With the unfractionated samples, the efficiency values approaching 5% were obtained. This improvement was mainly due to a significantly enhanced photocurrent arising from complementary panchromatic absorption.
Collapse
Affiliation(s)
- Calink I. L. Santos
- Grupo de Pesquisa em Química de Materiais (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160 São João del-Rei, MG, Brazil; (C.I.L.S.); (W.S.M.); (L.A.P.G.); (M.A.S.)
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France; (K.D.W.); (P.R.)
| | - Wagner S. Machado
- Grupo de Pesquisa em Química de Materiais (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160 São João del-Rei, MG, Brazil; (C.I.L.S.); (W.S.M.); (L.A.P.G.); (M.A.S.)
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France; (K.D.W.); (P.R.)
| | - Karl David Wegner
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France; (K.D.W.); (P.R.)
| | - Leiriana A. P. Gontijo
- Grupo de Pesquisa em Química de Materiais (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160 São João del-Rei, MG, Brazil; (C.I.L.S.); (W.S.M.); (L.A.P.G.); (M.A.S.)
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970 Campinas-SP, Brazil;
| | - Marco A. Schiavon
- Grupo de Pesquisa em Química de Materiais (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160 São João del-Rei, MG, Brazil; (C.I.L.S.); (W.S.M.); (L.A.P.G.); (M.A.S.)
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France; (K.D.W.); (P.R.)
| | - Dmitry Aldakov
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France; (K.D.W.); (P.R.)
- Correspondence:
| |
Collapse
|
135
|
Rubinsztajn S, Mizerska U, Zakrzewska J, Uznanski P, Cypryk M, Fortuniak W. Effect of temperature on B(C 6F 5) 3-catalysed reduction of germanium alkoxides by hydrosilanes - a new route to germanium nanoparticles. Dalton Trans 2020; 49:7319-7323. [PMID: 32478766 DOI: 10.1039/d0dt01555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of Ge(OBu)4 with PhMe2SiH catalyzed by B(C6F5)3 at ambient temperature leads to GeH4. We discovered that a higher temperature (above 100 °C) completely changes the reaction course by producing germanium nanoparticles (Ge NPs) in high yield. This process provides a simple one-pot method for Ge NPs synthesis from readily available substrates under mild conditions.
Collapse
Affiliation(s)
- Slawomir Rubinsztajn
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Urszula Mizerska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Joanna Zakrzewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Pawel Uznanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Marek Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| | - Witold Fortuniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland.
| |
Collapse
|
136
|
Huang X, Tong X, Wang Z. Rational design of colloidal core/shell quantum dots for optoelectronic applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.jnlest.2020.100018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
137
|
Hirase A, Hamanaka Y, Kuzuya T. Ligand-Induced Luminescence Transformation in AgInS 2 Nanoparticles: From Defect Emission to Band-Edge Emission. J Phys Chem Lett 2020; 11:3969-3974. [PMID: 32353234 DOI: 10.1021/acs.jpclett.0c01197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
I-III-VI2 semiconductor nanoparticles are strong candidates for fluorescent materials composed of nontoxic elements substituting highly fluorescent CdSe nanoparticles. Photoluminescence of I-III-VI2 nanoparticles essentially arise due to defect emission characterized by a broad spectral feature. Band-edge emission exhibits radiation with high monochromaticity, which can drastically expand its application range. Hence, numerous studies were conducted to realize band-edge emission. A successful observation of the band-edge emission was reported only when fabricating GaSx or InSx shells around AgInS2 nanoparticles via surface trap site passivation. This study demonstrates a much easier method of providing band-edge emission from AgInS2 nanoparticles using organic ligands of trioctylphosphine (TOP). Along with the TOP ligand formation around AgInS2 nanoparticles, the defect emission increases once and then decreases in conjunction with the appearance of the band-edge emission. Therefore, TOP ligands can passivate carrier trapping sites for radiative recombination as well as fluorescence quenching sites.
Collapse
Affiliation(s)
- Akemitsu Hirase
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yasushi Hamanaka
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Toshihiro Kuzuya
- College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran 050-8585, Japan
| |
Collapse
|
138
|
Liu Z, Lin CH, Hyun BR, Sher CW, Lv Z, Luo B, Jiang F, Wu T, Ho CH, Kuo HC, He JH. Micro-light-emitting diodes with quantum dots in display technology. LIGHT, SCIENCE & APPLICATIONS 2020; 9:83. [PMID: 32411368 PMCID: PMC7214519 DOI: 10.1038/s41377-020-0268-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 05/03/2023]
Abstract
Micro-light-emitting diodes (μ-LEDs) are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications, such as mobile phones, wearable watches, virtual/augmented reality, micro-projectors and ultrahigh-definition TVs. However, as the LED chip size shrinks to below 20 μm, conventional phosphor colour conversion cannot present sufficient luminance and yield to support high-resolution displays due to the low absorption cross-section. The emergence of quantum dot (QD) materials is expected to fill this gap due to their remarkable photoluminescence, narrow bandwidth emission, colour tuneability, high quantum yield and nanoscale size, providing a powerful full-colour solution for μ-LED displays. Here, we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology, including μ-LED design and fabrication, large-scale μ-LED transfer and QD full-colour strategy. Outlooks on QD stability, patterning and deposition and challenges of μ-LED displays are also provided. Finally, we discuss the advanced applications of QD-based μ-LED displays, showing the bright future of this technology.
Collapse
Affiliation(s)
- Zhaojun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), 2052 Sydney, NSW Australia
| | - Byung-Ryool Hyun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chin-Wei Sher
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Chiao Tung University, 30010 Hsinchu, Taiwan China
| | - Zhijian Lv
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bingqing Luo
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| | - Fulong Jiang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), 2052 Sydney, NSW Australia
| | | | - Hao-Chung Kuo
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Chiao Tung University, 30010 Hsinchu, Taiwan China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
139
|
Synthesis from aqueous solutions and optical properties of Ag–In–S quantum dots. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01407-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
140
|
Bugakov M, Abdullaeva S, Samokhvalov P, Abramchuk S, Shibaev V, Boiko N. Hybrid fluorescent liquid crystalline composites: directed assembly of quantum dots in liquid crystalline block copolymer matrices. RSC Adv 2020; 10:15264-15273. [PMID: 35495438 PMCID: PMC9052221 DOI: 10.1039/d0ra02442b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
Hybrid fluorescent liquid crystalline (LC) composites containing inorganic quantum dots (QDs) are promising materials for many applications in optics, nanophotonics and display technology, combining the superior emission capability of QDs with the externally controllable optical properties of LCs. In this work, we propose the hybrid LC composites that were obtained by embedding CdSe/ZnS QDs into a series of host LC block copolymers of different architectures by means of a two-stage ligand exchange procedure. The ABA/BAB triblock copolymers and AB diblock copolymers with different polymerization degrees are composed of nematogenic phenyl benzoate acrylic monomer units and poly(4-vinylpyridine) blocks, which are capable of binding to the QD surface. Our results clearly show that the spatial distribution of QDs within composite films as well as the formation of QD aggregates can be programed by varying the structure of the host block copolymer. The obtained composites form a nematic LC phase, with isotropization temperatures being close to those of the initial host block copolymers. In addition, the influence of the molecular architecture of the host block copolymers on fluorescence properties of the obtained composites is considered. The described strategy for the QD assembly should provide a robust and conventional route for the design of highly ordered hierarchical hybrid materials for many practical applications.
Collapse
Affiliation(s)
- Miron Bugakov
- Department of Chemistry, Moscow State University Leninskie Gory-1 119991 Moscow Russian Federation
| | - Sharifa Abdullaeva
- Department of Chemistry, Moscow State University Leninskie Gory-1 119991 Moscow Russian Federation
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) 115522 Moscow Russia
| | - Sergey Abramchuk
- Department of Chemistry, Moscow State University Leninskie Gory-1 119991 Moscow Russian Federation
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Moscow 119991 Russia
| | - Valery Shibaev
- Department of Chemistry, Moscow State University Leninskie Gory-1 119991 Moscow Russian Federation
| | - Natalia Boiko
- Department of Chemistry, Moscow State University Leninskie Gory-1 119991 Moscow Russian Federation
| |
Collapse
|
141
|
Miller RC, Neilson JR, Prieto AL. Amide-Assisted Synthesis of Iron Germanium Sulfide (Fe 2GeS 4) Nanostars: The Effect of LiN(SiMe 3) 2 on Precursor Reactivity for Favoring Nanoparticle Nucleation or Growth. J Am Chem Soc 2020; 142:7023-7035. [PMID: 32212651 DOI: 10.1021/jacs.0c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olivine Fe2GeS4 has been identified as a promising photovoltaic absorber material introduced as an alternate candidate to iron pyrite, FeS2. The compounds share similar benefits in terms of elemental abundance and relative nontoxicity, but Fe2GeS4 was predicted to have higher stability with respect to decomposition to alternate phases and, therefore, more optimal device performance. Our initial report of the nanoparticle (NP) synthesis for Fe2GeS4 was not well understood and required an inefficient 24 h growth to dissolve an iron sulfide impurity. Here, we report an amide-assisted Fe2GeS4 NP synthesis that directly forms the phase-pure product in minutes. This significant advance was achieved by the replacement of the poorly understood hexamethyldisilazane (HMDS) additive and TMS2S by the conjugate base, lithium bis(trimethylsilyl)amide (LiN(SiMe3)2), and elemental S, respectively. We hypothesized that fragments of both TMS2S and HMDS had carried out the roles that Brønsted bases play in amide-assisted NP syntheses and were necessary for Ge incorporation. Convolution of this role with the supply of S in TMS2S caused the iron sulfide impurities. Separating these effects in the use of LiN(SiMe3)2 and elemental S resulted in synthetic control over the ternary phase. Herein we explore the Fe-Ge-S reaction landscape and the role of the base. Its concentration was found to increase the reactivities of the Fe, Ge, and S precursors, and we discuss possible metal-amide intermediates. This affords tunability in two areas: favorability of NP nucleation versus growth and phase formation. The phase-purity of Fe2GeS4 depends on the molar ratios of the cations, base, and amine as well as the Fe:Ge:S molar ratios. The resultant Fe2GeS4 NPs exhibit an interesting star anise-like morphology with stacks of nanoplates that intersect along a 6-fold rotation axis. The optical properties of the Fe2GeS4 NPs are consistent with previously published measurements showing a measured band gap of 1.48 eV.
Collapse
Affiliation(s)
- Rebecca C Miller
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - James R Neilson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amy L Prieto
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
142
|
Basel S, Bhardwaj K, Pradhan S, Pariyar A, Tamang S. DBU-Catalyzed One-Pot Synthesis of Nearly Any Metal Salt of Fatty Acid (M-FA): A Library of Metal Precursors to Semiconductor Nanocrystal Synthesis. ACS OMEGA 2020; 5:6666-6675. [PMID: 32258902 PMCID: PMC7114616 DOI: 10.1021/acsomega.9b04448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The metal salts of fatty acid (M-FA) are the most widely used metal precursors to colloidal semiconductor nanocrystals (NCs). They play a key role in controlling the composition, shape, and size of semiconductor NCs, and their purity is essential for attaining impeccable batch-to-batch reproducibility in the optical and electrical properties of the NCs. Herein, we report a novel, one-pot synthesis of a library of highly pure M-FAs at near-quantitative yields (up to 91%) using 1,8-diazabicyclo[5.4.0]undec-7-ene or the related nonionic/noncoordinating base as an inexpensive and ecofriendly catalyst in a green solvent medium. The method is highly general and scalable with vast academic and industrial potential. As a practical application, we also demonstrate the use of these high-quality M-FAs in the synthesis of the spectrum of colloidal semiconductor NCs (III-V, II-VI, IV-VI, I-VI, I-III-VI, and perovskite) having absorption/emission in visible to the near-infrared region.
Collapse
Affiliation(s)
- Siddhant Basel
- Department of Chemistry, School of
Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India
| | - Karishma Bhardwaj
- Department of Chemistry, School of
Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India
| | - Sajan Pradhan
- Department of Chemistry, School of
Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India
| | - Anand Pariyar
- Department of Chemistry, School of
Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India
| | - Sudarsan Tamang
- Department of Chemistry, School of
Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India
| |
Collapse
|
143
|
Volokh M, Mokari T. Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. NANOSCALE ADVANCES 2020; 2:930-961. [PMID: 36133041 PMCID: PMC9418511 DOI: 10.1039/c9na00729f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/04/2020] [Indexed: 05/11/2023]
Abstract
Hybrid nanostructures, composed of multi-component crystals of various shapes, sizes and compositions are much sought-after functional materials. Pairing the ability to tune each material separately and controllably combine two (or more) domains with defined spatial orientation results in new properties. In this review, we discuss the various synthetic mechanisms for the formation of hybrid nanostructures of various complexities containing at least one metal/semiconductor interface, with a focus on colloidal chemistry. Different synthetic approaches, alongside the underlying kinetic and thermodynamic principles are discussed, and future advancement prospects are evaluated. Furthermore, the proved unique properties are reviewed with emphasis on the connection between the synthetic method and the resulting physical, chemical and optical properties with applications in fields such as photocatalysis.
Collapse
Affiliation(s)
- Michael Volokh
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Taleb Mokari
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
144
|
Zheng M, Cai W, Fang Y, Wang X. Nanoscale boron carbonitride semiconductors for photoredox catalysis. NANOSCALE 2020; 12:3593-3604. [PMID: 32020138 DOI: 10.1039/c9nr09333h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conversion of solar energy to chemical energy achieved by photocatalysts comprising homogeneous transition-metal based systems, organic dyes, or semiconductors has received significant attention in recent years. Among these photocatalysts, boron carbon nitride (BCN) materials, as an emerging class of metal-free heterogeneous semiconductors, have extended the scope of photocatalysts due to their good performance and Earth abundance. The combination of boron (B), carbon (C), and nitrogen (N) constitutes a ternary system with large surface area and abundant activity sites, which together contribute to the good performance for reduction reactions, oxidation reactions and orchestrated both reduction and oxidation reactions. This Minireview reports the methods for the synthesis of nanoscale hexagonal boron carbonitride (h-BCN) and describes the latest advances in the application of h-BCN materials as semiconductor photocatalysts for sustainable photosynthesis, such as water splitting, reduction of CO2, acceptorless dehydrogenation, oxidation of sp3 C-H bonds, and sp2 C-H functionalization. h-BCN materials may have potential for applications in other organic transformations and industrial manufacture in the future.
Collapse
Affiliation(s)
- Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wancang Cai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
145
|
La Rosa M, Payne EH, Credi A. Semiconductor Quantum Dots as Components of Photoactive Supramolecular Architectures. ChemistryOpen 2020; 9:200-213. [PMID: 32055433 PMCID: PMC7008307 DOI: 10.1002/open.201900336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs - in particular, those based on cadmium chalcogenides - as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.
Collapse
Affiliation(s)
- Marcello La Rosa
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Emily H. Payne
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- EaStChem School of ChemistryThe University of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale Risorgimento 440136BolognaItaly
| |
Collapse
|
146
|
Liu J, Zhang J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem Rev 2020; 120:2123-2170. [DOI: 10.1021/acs.chemrev.9b00443] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
147
|
Lee JM, Kraynak LA, Prieto AL. A Directed Route to Colloidal Nanoparticle Synthesis of the Copper Selenophosphate Cu
3
PSe
4. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jennifer M. Lee
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Leslie A. Kraynak
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Amy L. Prieto
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
148
|
Lee JM, Kraynak LA, Prieto AL. A Directed Route to Colloidal Nanoparticle Synthesis of the Copper Selenophosphate Cu 3 PSe 4. Angew Chem Int Ed Engl 2020; 59:3038-3042. [PMID: 31828911 DOI: 10.1002/anie.201911385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 11/08/2022]
Abstract
The first colloidal nanoparticle synthesis of the copper selenophosphate Cu3 PSe4 , a promising new material for photovoltaics, is reported. Because the formation of binary copper selenide impurities seemed to form more readily, two approaches were developed to install phosphorus bonds directly: 1) the synthesis of molecular P4 Se3 and subsequent reaction with a copper precursor, (P-Se)+Cu, and 2) the synthesis of copper phosphide, Cu3 P, nanoparticles and subsequent reaction with a selenium precursor, (Cu-P)+Se. The isolation and purification of Cu3 P nanoparticles and subsequent selenization yielded phase-pure Cu3 PSe4 . Solvent effects and Se precursor reactivities were elucidated and were key to understanding the final reaction conditions.
Collapse
Affiliation(s)
- Jennifer M Lee
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Leslie A Kraynak
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Amy L Prieto
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
149
|
Lai S, Jin Y, Shi L, Zhou R, Zhou Y, An D. Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots. NANOSCALE 2020; 12:591-601. [PMID: 31828259 DOI: 10.1039/c9nr08461d] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite numerous efforts, the mechanism behind multicolor photoluminescence (PL) in graphene quantum dots (GQDs) is still controversial. A deep insight into the origin of the multicolor emissions in GQDs is quite necessary for modulating their luminescence to facilitate the better use of this fluorescent material. Herein, GQDs with amino, carboxyl, and ammonium carboxylate groups were synthesized. The as-prepared GQDs exhibited intriguing excitation- and concentration-dependent multicolor PL characteristics. By regulating the excitation wavelength or concentration of GQDs, specific luminescence colors including blue, cyan, green, yellow, and even orange can be obtained. Systematic structural and optical studies indicated that the graphene basal plane and different functional groups dominantly exhibited nN 2P-σ*, π-π*, nO 2p-π* (-COOH), nO 2p-π* (-COO-) and nN 2p-π* electronic transitions, which appeared as multi-fluorescent centers that gave rise to the excitation-dependent multicolor PL. The occurrence of different types of electronic transitions and their color emissions were proved by pH-dependent PL measurements. In addition, systematic optical and morphology analyses revealed that GQDs could self-assemble into J-type aggregates with different morphologies and sizes as the concentration increased, and the observed concentration-dependent multicolor PL can be ascribed to aggregation-mediated energy level reconstruction in GQDs. Our findings further suggest that the competition among various fluorescent centers and self-aggregation processes dominated the luminescent properties of GQDs. This work will contribute to understand the origins of excitation- and concentration-dependent multicolor emissions in GQDs, which is also highly instructive for broadening the application fields of GQDs.
Collapse
Affiliation(s)
- Shuangquan Lai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P. R. China.
| | | | | | | | | | | |
Collapse
|
150
|
Swain RA, McVey BFP, Virieux H, Ferrari F, Tison Y, Martinez H, Chaudret B, Nayral C, Delpech F. Sustainable quantum dot chemistry: effects of precursor, solvent, and surface chemistry on the synthesis of Zn 3P 2 nanocrystals. Chem Commun (Camb) 2020; 56:3321-3324. [PMID: 32080695 DOI: 10.1039/c9cc09368k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quest of exploring alternative materials for the replacement of toxic cadmium- and lead-based quantum dots (QDs) is necessary for envisaging a sustainable future but remains highly challenging. Tackling this issue, we present the synthesis of Zn3P2 nanocrystals (NCs) of unprecedented quality. New, reactive zinc precursors yield highly crystalline, colloidally stable particles, exhibiting oxide-free surfaces, size tunability and outstanding optical properties relative to previous reports of zinc phosphide QDs.
Collapse
Affiliation(s)
- Robert A Swain
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Benjamin F P McVey
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Héloïse Virieux
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Fabio Ferrari
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Yann Tison
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Av. Président Angot, F-64053 Pau, France
| | - Hervé Martinez
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Av. Président Angot, F-64053 Pau, France
| | - Bruno Chaudret
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Céline Nayral
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Fabien Delpech
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|