101
|
Hu F, Wang M, Wang N, Hu Y, Gan M, Liu D, Xie Y, Feng Q. All‐cellulose composites prepared by partially dissolving cellulose using
NaOH
/thiourea aqueous solution. J Appl Polym Sci 2021. [DOI: 10.1002/app.51298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fuqiang Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Miaolin Wang
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan China
| | - Na Wang
- Technology R&D Center China Tobacco Hubei Industrial Corporation Wuhan China
| | - Yucheng Hu
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan China
| | - Meixue Gan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Danqing Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Qinghua Feng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education Qilu University of Technology Jinan China
| |
Collapse
|
102
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
103
|
Kazarina O, Agieienko V, Nagrimanov R, Atlaskina M, Petukhov A, Moskvichev A, Nyuchev A, Barykin A, Vorotyntsev I. A rational synthetic approach for producing quaternary ammonium halides and physical properties of the room temperature ionic liquids obtained by this way. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
104
|
Direct and selective methanation of biomass via oxygen vacancy-mediated catalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
105
|
Wu X, Xie S, Zhang H, Zhang Q, Sels BF, Wang Y. Metal Sulfide Photocatalysts for Lignocellulose Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007129. [PMID: 34117812 DOI: 10.1002/adma.202007129] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Transition metal sulfides are an extraordinarily vital class of semiconductors with a wide range of applications in the photocatalytic field. A great number of recent advances in photocatalytic transformations of lignocellulosic biomass, the largest renewable carbon resource, into high-quality fuels and value-added chemicals has been achieved over metal sulfide semiconductors. Herein, the progress and breakthroughs in metal-sulfide-based photocatalytic systems for lignocellulose valorization with an emphasis on selective depolymerization of lignin and oxidative coupling of some important bioplatforms are highligted. The key issues that control reaction pathways and mechanisms are carefully examined. The functions of metal sulfides in the elementary reactions, including CO-bond cleavage, selective oxidations, CC coupling, and CH activation, are discussed to offer insights to guide the rational design of active and selective photocatalysts for sustainable chemistry. The prospects of sulfide photocatalysts in biomass valorization are also analyzed and briefly discussed.
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Centre for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bert F Sels
- Centre for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
106
|
Yang J, Sun M, Jiao L, Dai H. Molecular Weight Distribution and Dissolution Behavior of Lignin in Alkaline Solutions. Polymers (Basel) 2021; 13:polym13234166. [PMID: 34883669 PMCID: PMC8659866 DOI: 10.3390/polym13234166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Lignin, as the sole renewable aromatic resource in nature, has great potential for replacing fossil resources. However, the complexity of its structure limits its high value utilization, and the molecular weight distribution and dissolution behavior of lignin in alkaline solutions is still unclear. In this study, a conventional lignin separation during the pulping process in an alkaline hydrothermal system was performed by controlling the amount of NaOH, reaction temperature and holding time. Various analysis methods, including GPC, 2D–HSQC NMR and FTIR were used to study the characteristics of lignin fragments dissolved from wood. We were aiming to understand the rule of lignin dissolution and the recondensation mechanism during the process. The results showed dissolution of lignin due to ether bond fracturing by OH− attacking the Cα or Cβ positions of the side chain with penetration of NaOH, and the lignin fragments in solution recondensed into complex lignin with more stable C–C bonds. The experimental results also prove that the average molecular weight increased from 4337 g/mol to 11,036 g/mol and that holding time from 60 min to 120 min at 150 °C with 14 wt% of NaOH.
Collapse
|
107
|
Chandrashekhar VG, Natte K, Alenad AM, Alshammari AS, Kreyenschulte C, Jagadeesh RV. Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5‐Hydroxymethylfurfural using Silica‐supported Cobalt‐ Nanoparticles. ChemCatChem 2021. [DOI: 10.1002/cctc.202101234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kishore Natte
- Chemical and Material Science Division CSIR - Indian Institute of Petroleum Haridwar road Mohkampur, Dehradun 248005 India
| | - Asma M. Alenad
- Chemistry Department College of Science Jouf University P.O. Box: 2014 Sakaka Kingdom of Saudi Arabia
| | - Ahmad S. Alshammari
- King Abdulaziz City for Science and Technology P.O. Box 6086 Riyadh 1442 Kingdom of Saudi Arabia
| | | | | |
Collapse
|
108
|
Xin Y, Shen X, Dong M, Cheng X, Liu S, Yang J, Wang Z, Liu H, Han B. Organic amine mediated cleavage of C aromatic-C α bonds in lignin and its platform molecules. Chem Sci 2021; 12:15110-15115. [PMID: 34909152 PMCID: PMC8612377 DOI: 10.1039/d1sc05231d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
The activation and cleavage of C-C bonds remains a critical scientific issue in many organic reactions and is an unmet challenge due to their intrinsic inertness and ubiquity. Meanwhile, it is crucial for the valorization of lignin into high-value chemicals. Here, we proposed a novel strategy to enhance the Caromatic-Cα bond cleavage by pre-functionalization with amine sources, in which an active amine intermediate is first formed through Markovnikov hydroamination to reduce the dissociation energy of the Caromatic-Cα bond which is then cleaved to form target chemicals. More importantly, this strategy provides a method to achieve the maximum utilization of the aromatic nucleus and side chains in lignin or its platform molecules. Phenols and N,N-dimethylethylamine compounds with high yields were produced from herbaceous lignin or the p-coumaric acid monomer in the presence of industrially available dimethylamine (DMA).
Collapse
Affiliation(s)
- Yu Xin
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaojun Shen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL) Dalian China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Shulin Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
109
|
Aleaba G, Khedmatgozar Asadi S, Daneshvar N, Shirini F. Introduction of [2,2'-Bipyridine]-1,1'-Diium Perchlorate as a Novel and Highly Efficient Dicationic Brönsted Acidic Organic Salt for the Synthesis of 3-Methyl-4-Arylmethylene Isoxazole-5(4 H)-One Derivatives in Water. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2005641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gilda Aleaba
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | | | | | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
- Department of Chemistry, University of Guilan, Rasht, Iran
| |
Collapse
|
110
|
Robust superbase-based emerging solvents for highly efficient dissolution of cellulose. Carbohydr Polym 2021; 272:118454. [PMID: 34420714 DOI: 10.1016/j.carbpol.2021.118454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
The development of robust solvent systems for cellulose dissolution is of significant importance for cellulose utilization and transformation. Herein, six kinds of novel superbase-based solvents were designed by a combination of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) with pyridine N-oxide (PyO) or 2-picoline-N-oxide (PiO) for dissolution of cellulose. It was observed that the prepared superbase-based solvents (denoted as DBN-PyO-x and DBN-PiO-4) could efficiently dissolve cellulose at mild temperatures (<80 °C). The chemical structure of the prepared superbase-based solvents and the molar ratio of the components significantly affected the solubility of cellulose, and DBN-PyO-4 showed the best performance with a cellulose solubility of 14.1 wt% 70 °C. The systematic study revealed that the good performance of the prepared superbase-based solvents on cellulose dissolution resulted from the synergistic effect of their ability to form hydrogen bonds and their polarizability.
Collapse
|
111
|
Beil S, Markiewicz M, Pereira CS, Stepnowski P, Thöming J, Stolte S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem Rev 2021; 121:13132-13173. [PMID: 34523909 DOI: 10.1021/acs.chemrev.0c01265] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.
Collapse
Affiliation(s)
- Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jorg Thöming
- Chemical Process Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
112
|
Ning H, Chen Y, Wang Z, Mao S, Chen Z, Gong Y, Wang Y. Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
113
|
Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
114
|
Lin L, Han X, Han B, Yang S. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chem Soc Rev 2021; 50:11270-11292. [PMID: 34632985 DOI: 10.1039/d1cs00039j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of efficient catalysts to break down and convert woody biomass will be a paradigm shift in delivering the global target of sustainable economy and environment via the use of cheap, highly abundant, and renewable carbon resources. However, such development is extremely challenging due to the complexity of lignocellulose, and today most biomass is treated simply as waste. The solution lies in the design of multifunctional catalysts that can place effective control on substrate activation and product selectivity. This is, however, severely hindered by the lack of fundamental understanding of (i) the precise role of active sites, and (ii) the catalyst-substrate chemistry that underpins the catalytic activity. Moreover, active sites alone often cannot deliver the desired selectivity of products, and full understanding of the microenvironment of the active sites is urgently needed. Here, we review key recent advances in the study of reaction mechanisms of biomass conversion over emerging heterogeneous catalysts. These insights will inform the design of future catalytic systems showing improved activity and selectivity.
Collapse
Affiliation(s)
- Longfei Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
115
|
Shen L, Chen ZN, Zheng Q, Wu J, Xu X, Tu T. Selective Transformation of Vicinal Glycols to α-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
116
|
Guo T, Wang X, Shu Y, Wang J. Effects of alkyl side-chain length on binding with bovine serum albumin, cytotoxicity, and antibacterial properties of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
117
|
Chen C, Wu D, Ren J, Liu P, Xia H, Zhou M, Jiang J. Environmentally-friendly and sustainable synthesis of bimetallic NiCo-based carbon nanosheets for catalytic cleavage of lignin dimers. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
118
|
Zhang H, Kong M, Jiang Q, Hu K, Ouyang M, Zhong F, Qin M, Zhuang L, Wang G. Chitosan membranes from acetic acid and imidazolium ionic liquids: Effect of imidazolium structure on membrane properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
119
|
Fu B, Xiao G, Zhang Y, Yuan J. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11336-11341. [PMID: 34529433 DOI: 10.1021/acs.jafc.1c03960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lignin is regarded as the most abundant renewable aromatic compound on earth. In this study, we established Escherichia coli-based whole-cell biocatalytic systems to efficiently convert two lignin-derived substrates (ferulic acid and p-coumaric acid) to gallic acid. For the synthesis of gallic acid from ferulic acid, we used the recombinant E. coli expressing feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase from Pseudomonas putida, aldehyde dehydrogenase (HFD1) from Saccharomyces cerevisiae, vanillic acid O-demethylase (VanAB) from P. putida, and a mutant version of p-hydroxybenzoate hydroxylase (PobAY385F) from P. putida. Under the fed-batch mode, 19.57 mM gallic acid was obtained from 20 mM ferulic acid with a conversion rate of 97.9%. To achieve gallic acid synthesis from p-coumaric acid, we replaced VanAB with the two-component flavin-dependent monooxygenase (HpaBC) from E. coli. Under optimal conditions, 20 mM p-coumaric acid afforded the production of 19.96 mM gallic acid with near 100% conversion. To the best of our knowledge, our work represented the first study to develop E. coli-based whole-cell biocatalysts for the eco-friendly synthesis of gallic acid from lignin-derived renewable feedstocks.
Collapse
Affiliation(s)
- Bixia Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Gezhi Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
120
|
Deshmukh SR, Nalkar AS, Thopate SR. Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1984259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Santosh R. Deshmukh
- Prof. John Barnabas Post Graduate School for Biological Studies, Department of Chemistry, Ahmednagar College, Ahmednagar, Maharashtra, India
| | - Archana S. Nalkar
- Prof. John Barnabas Post Graduate School for Biological Studies, Department of Chemistry, Ahmednagar College, Ahmednagar, Maharashtra, India
| | - Shankar R. Thopate
- Prof. John Barnabas Post Graduate School for Biological Studies, Department of Chemistry, Ahmednagar College, Ahmednagar, Maharashtra, India
- Department of Chemistry, Shri Sadguru Gangageer Maharaj Science, Gautam Arts & Sanjivani Commerce College, Kopargaon, Maharashtra, India
| |
Collapse
|
121
|
Abstract
Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.
Collapse
|
122
|
Wang YL, Li B, Laaksonen A. Coarse-grained simulations of ionic liquid materials: from monomeric ionic liquids to ionic liquid crystals and polymeric ionic liquids. Phys Chem Chem Phys 2021; 23:19435-19456. [PMID: 34524303 DOI: 10.1039/d1cp02662c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquid (IL) materials are promising electrolytes with striking physicochemical properties for energy and environmental applications. Heterogeneous structures and transport quantities of monomeric and polymeric ILs are intrinsically intercorrelated and span multiple spatiotemporal scales, which is more feasible for coarse-grained (CG) simulations than atomistic modelling. Herein we constructed a novel CG model for ethyl-imidazolium tetrafluoroborate ILs with varied cation alkyl chains ranging from C2 to C20, and the interaction parameters were validated against representative static and dynamic properties that were obtained from atomistic reference simulations and experimental characterizations at relevant thermodynamic states. This CG model was extended to study thermotropic phase behaviors of monomeric ILs and to explore ion association structures and ion transport quantities in polymeric ILs with different architectures. A systematic analysis of structural and dynamical quantities identifies an evolution of liquid morphology from homogeneous to nanosegregated structures and then a smectic mesomorphism via a gradual lengthening of cation alkyl chains, and thereafter a distinct structural transition characterized by a monotonic decrease in orientational and translational order parameters in a sequential heating cascade. Backbone and pendant polymeric ILs exhibit evident anion association structures with cation monomers and polymer chains, and striking intra- and interchain coordinations between cation monomers owing to an intrinsic polymer architecture effect. Such a peculiar ion pairing association leads to a progressive increase in anion intrachain hopping probabilities, and a concomitant decrease in anion interchain hopping events with a gradual lengthening of polymeric ILs. The anion diffusivities in polymeric ILs are intrinsically correlated with ion pairing association lifetimes and ion structural relaxation times via a universal power law correlation D ∼ τ-1, irrespective of polymer architectures.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden. .,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
123
|
Ji M, Chang C, Wu X, Zhu C. Photocatalytic intermolecular carboarylation of alkenes by selective C-O bond cleavage of diarylethers. Chem Commun (Camb) 2021; 57:9240-9243. [PMID: 34519298 DOI: 10.1039/d1cc04038c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disclosed herein is a novel radical-mediated intermolecular carboarylation of alkenes by cleaving inert C-O bonds. The strategically designed arylbenzothiazolylether diazonium salts are harnessed as dual-function reagents. A vast array of alkenes are proven to be suitable substrates. The benzothiazolyl moiety in the products serves as the formyl precursor, and the OH residue provides the cross-coupling site for further product elaboration, indicating the robust transformability of the products.
Collapse
Affiliation(s)
- Meishan Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chenyang Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
124
|
Teng J, Zhu R, Li X, Fu Y. Heterogeneous Cobalt‐Catalyzed C−C Bond Cleavage in Alcohols to Carbonyl Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐nan Teng
- Anhui Province Key Laboratory of Biomass Clean Energy CAS Key Laboratory of Urban Pollutant Conversion University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 P. R. China
| | - Rui Zhu
- Anhui Province Key Laboratory of Biomass Clean Energy CAS Key Laboratory of Urban Pollutant Conversion University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 P. R. China
| | - Xinglong Li
- Anhui Province Key Laboratory of Biomass Clean Energy CAS Key Laboratory of Urban Pollutant Conversion University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 P. R. China
| | - Yao Fu
- Anhui Province Key Laboratory of Biomass Clean Energy CAS Key Laboratory of Urban Pollutant Conversion University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 P. R. China
| |
Collapse
|
125
|
Yang Y, Qi H, Li H, Xu Z, Liu X, Yu S, Zhang ZC. Heterometallic Pd II–Cl–Cu I Catalyst for Efficient Hydrolysis of β-1,4-Glycosidic Bonds in 1-Butyl-3-methylimidazolium Chloride. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiwen Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Haifeng Qi
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhanwei Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| | - Xiumei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| | - Shuyin Yu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072, P.R. China
| | - Zongchao Conrad Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| |
Collapse
|
126
|
Chen M, Xia J, Li H, Zhao X, Peng Q, Wang J, Gong H, Dai S, An P, Wang H, Hou Z. A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manyu Chen
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Xia
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Huan Li
- Institute of Crystalline Materials Shanxi University Taiyuan 030006 Shanxi P. R. China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiajia Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Honghui Gong
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Pengfei An
- Institute of High Energy Physics Chinese Academy of Sciences Beijing Synchrotron Radiation Facility (BSRF) Beijing 100049 P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
127
|
The Effect of Gold Nanoparticles on the Catalytic Activity of NiTiO3 for Hydrodeoxygenation of Guaiacol. Catalysts 2021. [DOI: 10.3390/catal11080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Guaiacol is a typical model compound used to investigate and understand the hydrodeoxygenation behaviour of bio-oils, which is critical to their application as an alternative to fossil resources. While extensive research has been carried out on developing catalysts for guaiacol hydrodeoxygenation, the true active sites in these catalysts are often illusive. This study investigated the effect of Au-loading on the catalytic activity of NiTiO3 for the hydrodeoxygenation of guaiacol. It showed that metallic Ni formed by the partial reduction in NiTiO3 was responsible for its catalytic activity. Au-loading in NiTiO3 effectively reduces the temperature required for the NiTiO3 reduction from 400 °C to 300 °C. Consequently, at an Au-loading of 0.86 wt%, the 0.86 Au/NiTiO3-300 °C catalyst was found to deliver a guaiacol conversion of ~32%, more than 6 times higher than that of the pure NiTiO3-300 °C catalyst.
Collapse
|
128
|
Catalytic Pyrolysis of Lignin Model Compounds (Pyrocatechol, Guaiacol, Vanillic and Ferulic Acids) over Nanoceria Catalyst for Biomass Conversion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms of thermal transformations of model lignin compounds (MLC) over nanoscale catalysts is important for improving the technologic processes occurring in the pyrolytic conversion of lignocellulose biomass into biofuels and value-added chemicals. Herein, we investigate catalytic pyrolysis of MLC (pyrocatechol (P), guaiacol (G), ferulic (FA), and vanillic acids (VA)) over nanoceria using FT-IR spectroscopy, temperature-programmed desorption mass spectrometry (TPD MS), and thermogravimetric analysis (DTG/DTA/TG). FT-IR spectroscopic studies indicate that the active groups of aromatic rings of P, G, VA, and FA as well as carboxylate groups of VA and FA are involved in the interaction with nanoceria surface. We explore the general transformation mechanisms of different surface complexes and identify their decomposition products. We demonstrate that decomposition of carboxylate acid complexes occurs by decarboxylation. When FA is used as a precursor, this reaction generates 4-vinylguaiacol. Complexes of VA and FA formed through both active groups of the aromatic ring and decompose on the CeO2 surface to generate hydroxybenzene. The formation of alkylated products accompanies catalytic pyrolysis of acids due to processes of transalkylation on the surface.
Collapse
|
129
|
Ikeda T. Facile Synthesis of Tetra-Branched Tetraimidazolium and Tetrapyrrolidinium Ionic Liquids. ACS OMEGA 2021; 6:19623-19628. [PMID: 34368549 PMCID: PMC8340402 DOI: 10.1021/acsomega.1c02187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
A facile synthetic route for tetra-branched tetraimidazolium and tetrapyrrolidinium ionic liquids was developed. In contrast to the previous synthetic scheme, the new synthetic route requires only three reaction steps instead of seven. The total yield of tetracation was also improved from 17-21 to 39-41%. Using the new synthetic scheme, four kinds of tetracations were synthesized from the combination of two cationic units (imidazolium and pyrrolidinium) and two counteranions [bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)]. Basic physical properties including glass transition temperature, thermal decomposition temperature, density, viscosity, and ionic conductivity were determined. The counterion exchange from TFSI to FSI resulted in lower glass transition temperature and higher ionic conductivity. Tetrapyrrolidinium exhibited higher viscosity and lower ionic conductivity than tetraimidazolium. The counterion exchange from TFSI to FSI resulted in lower viscosity in the case of tetraimidazolium, while the opposite result was obtained in the case of tetrapyrrolidinium. Tetracations composed of ethyl imidazolium units, diethylene glycol spacers, and FSI counterions exhibited the highest ionic conductivity of 3.5 × 10-4 S cm-1 at 25 °C under anhydrous conditions. This is the best ionic conductivity in the tetracations ever reported.
Collapse
|
130
|
Zhang X, Xu S, Li Q, Zhou G, Xia H. Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis. RSC Adv 2021; 11:27042-27058. [PMID: 35479988 PMCID: PMC9037638 DOI: 10.1039/d1ra04633k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Furfural is a promising renewable platform molecule derived from hemi-cellulose, which can be further converted to fossil fuel alternatives and valuable chemicals due to its highly functionalized molecular structure. This mini-review summarizes the recent progress in the chemo-catalytic and/or bio-catalytic conversion of furfural into high-value-added chemicals, including furfurylamine, C6 carboxylic acid, i.e., furandicarboxylic acid, furfural alcohol, aromatics, levulinic acid, maleic acid, succinic acid, furoic acid, and cyclopentanone, particularly the advances in the catalytic valorization of furfural into useful chemicals in the last few years. The possible reaction mechanisms for the conversion of furfural into bio-chemicals are summarized and discussed. The future prospective and challenges in the utilization of furfural through chemo- and bio-catalysis are also put forward for the further design and optimization of catalytic processes for the conversion of furfural.
Collapse
Affiliation(s)
- Xu Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University Chongqing 400067 China +86-25-85428873 +86-25-85427635.,Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China .,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Siquan Xu
- School of Forestry, Anhui Agricultural University Hefei 230036 China
| | - Qinfang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China .,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Guilin Zhou
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University Chongqing 400067 China +86-25-85428873 +86-25-85427635
| | - Haian Xia
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China .,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
131
|
Abstract
ConspectusMetal-free catalysis is a promising protocol to access chemicals without metal contamination. Ionic liquids (ILs) that are entirely composed of organic cations and inorganic/organic anions have emerged as promising alternatives to molecular solvents and metal catalysts due to their unique properties such as structural tunability, the coexistence of multiple interactions among ions (e.g., electrostatic interaction, hydrogen bonding, van de Waals forces, acid/base interactions, hydrophilic/hydrophobic interactions, etc.), unique affinity for a wide range of chemicals, good chemical and thermal stability, and quite low volatility. ILs have shown potential applications in various chemical processes.In this Account, we systematically described our most recent work on IL-catalyzed approaches under metal-free conditions. The first section presents the IL-catalyzed strategies toward the transformation of CO2 to value-added chemicals, focusing on the CO2-reactive IL-catalyzed CO2 transformation to various heterocycles and the IL-catalyzed reductive transformation of CO2 to chemicals. In these approaches, we designed task-specific ILs that are able to chemically capture and activate CO2 via forming anion-based carbonate/carbamate or cation-based carboxylate/carbamate intermediates, thus further accomplishing its transformation to a series of heterocycles including quinazoline-2,4(1H,3H)-diones, cyclic carbonates, 2-oxazolidinones, oxazolones, and benzimidazolones under metal-free conditions. For the IL-catalyzed approaches to reducing CO2 with hydrosilanes to chemicals, we employed ILs capable of activating the Si-H bond in hydrosilanes and the N-H bond in amine substrates via H-bonding, thus achieving the reductive transformation of CO2 to formamides, benzimidazoles, and benzothiazoles via cooperative catalysis. The second section describes our finding on the IL-catalyzed hydration of the C≡C bond in propargylic alcohols. Azolate anion-based ILs that can chemically capture CO2 via the formation of carbamates could serve as robust nucleophiles to attack the C≡C bond in propargylic alcohols and then efficiently catalyze the hydration of propargylic alcohols to produce α-hydroxy ketones with the assistance of atmospheric CO2 gas under metal-free conditions. The third section unveils the cooperative catalysis strategy of hydrogen bond donors and acceptors of ILs for chemical reactions. In the hydrogen-bonding catalysis protocols, cations of the ILs act as H-bond donors and anions, as acceptors, forming H-bonds with the reactant molecules, respectively, in opposite ways, which can cooperatively catalyze the ring-closing C-O/C-O bond metathesis reactions of aliphatic diethers to O-heterocycles, the dehydrative etherification of alcohols to ethers, and direct oxidative esterification of alcohols to esters. We believe that these IL-catalyzed metal-free processes and strategies display promising practical applications, and their commercialization would bring great benefits to the production of the as-afforded value-added chemicals.
Collapse
Affiliation(s)
- Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
132
|
Tuci G, Liu Y, Rossin A, Guo X, Pham C, Giambastiani G, Pham-Huu C. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Chem Rev 2021; 121:10559-10665. [PMID: 34255488 DOI: 10.1021/acs.chemrev.1c00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Charlotte Pham
- SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
133
|
Jaiswal R, Ranganath KVS. Carbon Nanoparticles on Magnetite: A New Heterogeneous Catalyst for the Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Diformoylfuran (DFF). J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02062-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
134
|
Hua M, Song J, Huang X, Hou M, Fan H, Zhang Z, Wu T, Han B. Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
135
|
Thapaliya BP, Puskar NG, Slaymaker S, Feider NO, Do-Thanh CL, Schott JA, Jiang DE, Teague CM, Mahurin SM, Dai S. Synthesis and Characterization of Macrocyclic Ionic Liquids for CO 2 Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bishnu Prasad Thapaliya
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nicolette G. Puskar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Nicole Onishi Feider
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jennifer A. Schott
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | | | - Shannon M. Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
136
|
Shi S, Wu Y, Liu P, Zhang M, Zhang Z, Gao L, Xiao G. Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03693-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
137
|
Yin X, Wei L, Pan X, Liu C, Jiang J, Wang K. The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. FRONTIERS IN PLANT SCIENCE 2021; 12:670061. [PMID: 34168668 PMCID: PMC8218942 DOI: 10.3389/fpls.2021.670061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 06/02/2023]
Abstract
Converting agriculture and forestry lignocellulosic residues into high value-added liquid fuels (ethanol, butanol, etc.), chemicals (levulinic acid, furfural, etc.), and materials (aerogel, bioresin, etc.) via a bio-refinery process is an important way to utilize biomass energy resources. However, because of the dense and complex supermolecular structure of lignocelluloses, it is difficult for enzymes and chemical reagents to efficiently depolymerize lignocelluloses. Strikingly, the compact structure of lignocelluloses could be effectively decomposed with a proper pretreatment technology, followed by efficient separation of cellulose, hemicellulose and lignin, which improves the conversion and utilization efficiency of lignocelluloses. Based on a review of traditional pretreatment methods, this study focuses on the discussion of pretreatment process with recyclable and non-toxic/low-toxic green solvents, such as polar aprotic solvents, ionic liquids, and deep eutectic solvents, and provides an outlook of the industrial application prospects of solvent pretreatment.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Linshan Wei
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Xueyuan Pan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Chao Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| |
Collapse
|
138
|
Catalytic C–O bond cleavage in a β-O-4 lignin model through intermolecular hydrogen transfer. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
139
|
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym 2021; 261:117884. [PMID: 33766371 DOI: 10.1016/j.carbpol.2021.117884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Due to over-consumption of fossil resources and environmental problems, lignocellulosic biomass as the most abundant and renewable materials is considered as the best candidate to produce biomaterials, biochemicals, and bioenergy, which is of strategic significance and meets the theme of Green Chemistry. Highly efficient and green fractionation of lignocellulose components significantly boosts the high-value utilization of lignocellulose and the biorefinery development. However, heterogeneity of lignocellulosic structure severely limited the lignocellulose fractionation. This paper offers the summary and perspective of the extensive investigation that aims to give insight into the lignocellulose prior-fractionation. Based on the role and structure of lignocellulose component in the plant cell wall, lignocellulose prior-fractionation can be divided into cellulose-first strategy, hemicelluloses-first strategy, and lignin-first strategy, which realizes the selective dissociation and transformation of a component in lignocellulose. Ultimately, the challenges and opportunities of lignocellulose prior-fractionation are proposed on account of the existing problems in the biorefining valorization.
Collapse
Affiliation(s)
- Xiaojun Shen
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
140
|
Gonçalves AR, Paredes X, Cristino AF, Santos FJ, Queirós CS. Ionic Liquids-A Review of Their Toxicity to Living Organisms. Int J Mol Sci 2021; 22:5612. [PMID: 34070636 PMCID: PMC8198260 DOI: 10.3390/ijms22115612] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids (ILs) were initially hailed as a green alternative to traditional solvents because of their almost non-existent vapor pressure as ecological replacement of most common volatile solvents in industrial processes for their damaging effects on the environment. It is common knowledge that they are not as green as desired, and more thought must be put into the biological consequences of their industrial use. Still, compared to the amount of research studying their physicochemical properties and potential applications in different areas, there is a scarcity of scientific papers regarding how these substances interact with different organisms. The intent of this review was to compile the information published in this area since 2015 to allow the reader to better understand how, for example, bacteria, plants, fish, etc., react to the presence of this family of liquids. In general, lipophilicity is one of the main drivers of toxicity and thus the type of cation. The anion tends to play a minor (but not negligible) role, but more research is needed since, owing to the very nature of ILs, except for the most common ones (imidazolium and ammonium-based), many of them are subject to only one or two articles.
Collapse
Affiliation(s)
| | | | | | | | - Carla S.G.P. Queirós
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.R.P.G.); (X.P.); (A.F.C.); (F.J.V.S.)
| |
Collapse
|
141
|
Yang Y, Ren Z, Zhou S, Wei M. Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00699] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shijie Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
142
|
Ionic Liquid-Derived Carbon-Supported Metal Electrocatalysts as Anodes in Direct Borohydride-Peroxide Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11050632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three different carbon-supported metal (gold, platinum, nickel) nanoparticle (M/c-IL) electrocatalysts are prepared by template-free carbonization of the corresponding ionic liquids, namely [Hmim][AuCl4], [Hmim]2[PtCl4], and [C16mim]2[NiCl4], as confirmed by X-ray diffraction analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The electrochemical investigation of borohydride oxidation reaction (BOR) at the three electrocatalysts by cyclic voltammetry reveals different behavior for each material. BOR is found to be a first-order reaction at the three electrocatalysts, with an apparent activation energy of 10.6 and 13.8 kJ mol−1 for Pt/c-IL and Au/c-IL electrocatalysts, respectively. A number of exchanged electrons of 5.0, 2.4, and 2.0 is obtained for BOR at Pt/c-IL, Au/c-IL, and Ni/c-IL electrodes, respectively. Direct borohydride-peroxide fuel cell (DBPFC) tests done at temperatures in the 25–65 °C range show ca. four times higher power density when using a Pt/c-IL anode than with an Au/c-IL anode. Peak power densities of 40.6 and 120.5 mW cm−2 are achieved at 25 and 65 °C, respectively, for DBPFC with a Pt/c-IL anode electrocatalyst.
Collapse
|
143
|
Sun Y, Wang R, Liu T, Jin W, Wang B, Zhang Y, Xia Y, Liu C. In Situ
Preparation of Palladium Nanoparticles for C‐2 Selective Arylation of Indoles in Agro‐Waste Extract Based Mixed Solvents. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yajun Sun
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Rui Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Tianxiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
144
|
Fang R, Chen L, Shen Z, Li Y. Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
145
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
146
|
Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Oxidative α-C-C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O 2 at Room Temperature via Iron Photocatalysis. Org Lett 2021; 23:2915-2920. [PMID: 33769053 DOI: 10.1021/acs.orglett.1c00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The selective α-C-C bond cleavage of unfunctionalized secondary (2°) and tertiary alcohols (3°) is essential for valorization of macromolecules and biopolymers. We developed a blue-light-driven iron catalysis for aerobic oxidation of 2° and 3° alcohols to acids via α-C-C bond cleavages at room temperature. The first example of oxygenation of the simple tertiary alcohols was reported. The iron catalyst and blue light play critical roles to enable the formation of highly reactive O radicals from alcohols and the consequent two α-C-C bond cleavages.
Collapse
|
147
|
Song X, Yue J, Zhu Y, Wen C, Chen L, Liu Q, Ma L, Wang C. Efficient Conversion of Glucose to 5-Hydroxymethylfurfural over a Sn-Modified SAPO-34 Zeolite Catalyst. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangbo Song
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yuting Zhu
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyan Wen
- School of Energy and Environment, Southeast University, Nanjing 210009, P. R. China
| | - Lungang Chen
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiying Liu
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Longlong Ma
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chenguang Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
148
|
Chen X, Song S, Li H, Gözaydın G, Yan N. Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass. Acc Chem Res 2021; 54:1711-1722. [PMID: 33576600 DOI: 10.1021/acs.accounts.0c00842] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organonitrogen chemicals are essential in many aspects of modern life. Over 80% of the top 200 prescribed pharmaceutical products contain at least one nitrogen atom in the molecule, while all top 10 agrochemicals contain nitrogen, just to name a few. At present, the prevailing industrial processes for manufacturing organonitrogen chemicals start from nonrenewable fossil resources, but eventually we have to make these chemicals in a more sustainable manner. Biomass represents the largest renewable carbon resource on earth, which is inexpensive and widely available. Integrating biomass into the organonitrogen chemical supply chain will mitigate the carbon footprint, diversify the product stream, and enhance the economic competitiveness of biorefinery. Short-cut synthesis routes can be created for oxygen-containing organonitrogen compounds by exploiting the inherent oxygen functionalities in the biomass resources. Moreover, for nitrogen-containing biomass components such as chitin, a unique opportunity to make organonitrogen chemicals bypassing the energy-intensive Haber-Bosch ammonia synthesis process arises. Estimated at 100 billion tons of annual production in the world, chitin captures more nitrogen than the Haber-Bosch process in the form of amide functional groups in its polymer side chain.In this Account, we intend to summarize our efforts to establish new reaction routes to synthesize valuable organonitrogen chemicals from renewable resources. Enabled by tailor-designed catalytic systems, diverse nitrogen-containing products including amines, amino acids, nitriles, and N-heterocycles have been obtained from a range of biomass feedstock either directly or via intermediate platform compounds. Two strategies to produce organonitrogen chemicals are presented. For platform chemicals derived from cellulose, hemicellulose, lignin, and lipids, which are enriched with oxygen functionalities, in particular, hydroxyl groups, the key chemistry to be developed is the catalytic transformation of hydroxyl groups into nitrogen-containing groups using NH3 as the nitrogen source. Along this line, Ru- and Ni-based heterogeneous catalysts are developed to convert alcohols to amines and/or nitriles via a thermal catalytic pathway, while CdS nanomaterials are explored to promote -OH to -NH2 conversion under visible-light irradiation. Metal-zeolite multifunctional systems are further established to enable the synthesis of N-heterocycles from O-heterocycles. The second strategy involves the use of chitin and chitin derivatives as the starting materials. Under the concept of shell biorefinery, distinctive protocols have been established to chemically transform chitin as the sole feedstock to amino sugars, amino alcohols, furanic amides, and N-heterocycles. By combining mechanochemistry with biotransformation, an integrated process to convert shrimp shell waste to complex, high-value, chiral compounds including tyrosine and l-DOPA is also demonstrated.
Collapse
Affiliation(s)
- Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Song Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Haoyue Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gökalp Gözaydın
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
149
|
Adeleye AT, Akande AA, Odoh CK, Philip M, Fidelis TT, Amos PI, Banjoko OO. Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
150
|
Ling R, Wu W, Yuan Y, Wei W, Jin Y. Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 326:124748. [PMID: 33508645 DOI: 10.1016/j.biortech.2021.124748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, a pretreatment that consisting of choline chloride (ChCl) and formic acid (FA) were performed to improve sugarcane bagasse (SCB) enzymatic hydrolysis. Results showed that the ChCl-FA pretreatment exhibited an extraordinary ability to selectively extract hemicellulose (~95.6%) and degrade a large number of lignin (~72.6%) at 110 °C for 120 min, which enhanced the enzymatic hydrolysis of pretreated SCB. Besides, the impact of various additives on pretreated substrate enzymatic hydrolysis confirmed that Tween 80 was the best enzymatic additive, which could significantly improve the glucose produced from pretreated SCB and remarkably reduce the hydrolysis time (from 72 h to 48 h) and enzyme dosage (from 20 FPU/g pretreated solid to 10 FPU/g pretreated solid). In summary, the coupling of ChCl-FA pretreatment and Tween 80 exhibited a promising way to enhance the sugar release from SCB.
Collapse
Affiliation(s)
- Rongxin Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|