101
|
de Souza PM, de Sousa LA, Noronha FB, Wojcieszak R. Dehydration of levoglucosan to levoglucosenone over solid acid catalysts. Tuning the product distribution by changing the acid properties of the catalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
102
|
Investigation of solvent-free esterification of levulinic acid in the presence of tin(IV) complexes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
103
|
Wu X, Wang Y, Wu ZS. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
104
|
Mori A, Curpanen S, Pezzetta C, Perez-Luna A, Poli G, Oble J. C–H Activation Based Functionalizations of Furfural Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessia Mori
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| | | | | | | | | | - Julie Oble
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| |
Collapse
|
105
|
Bender MT, Choi K. Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition. CHEMSUSCHEM 2022; 15:e202200675. [PMID: 35522224 PMCID: PMC9401862 DOI: 10.1002/cssc.202200675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/05/2022] [Indexed: 06/14/2023]
Abstract
A great deal of attention has been directed toward studying the electrochemical oxidation of 5-hydroxymethylfurfural (HMF), a molecule that can be obtained from biomass-derived cellulose and hemicellulose, to 2,5-furandicarboxylic acid (FDCA), a molecule that can replace the petroleum-derived terephthalic acid in the production of widely used polymers such as polyethylene terephthalate. NiOOH is one of the best and most well studied electrocatalysts for achieving this transformation; however, the mechanism by which it does so is still poorly understood. This study quantitatively examines how two different dehydrogenation mechanisms on NiOOH impact the oxidation of HMF and its oxidation intermediates on the way to FDCA. The first mechanism is a well-established indirect oxidation mechanism featuring chemical hydrogen atom transfer to Ni3+ sites while the second mechanism is a newly discovered potential-dependent (PD) oxidation mechanism involving electrochemically induced hydride transfer to Ni4+ sites. The composition of NiOOH was also tuned to shift the potential of the Ni(OH)2 /NiOOH redox couple and to investigate how this affects the rates of indirect and PD oxidation as well as intermediate accumulation during a constant potential electrolysis. The new insights gained by this study will allow for the rational design of more efficient electrochemical dehydrogenation catalysts.
Collapse
Affiliation(s)
- Michael T. Bender
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI-53706USA
| | - Kyoung‐Shin Choi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI-53706USA
| |
Collapse
|
106
|
Hu Q, Jiang S, Wu Y, Xu H, Li G, Zhou Y, Wang J. Ambient-Temperature Reductive Amination of 5-Hydroxymethylfurfural Over Al 2 O 3 -Supported Carbon-Doped Nickel Catalyst. CHEMSUSCHEM 2022; 15:e202200192. [PMID: 35233939 DOI: 10.1002/cssc.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
An efficient catalytic system for the conversion of 5-hydroxymethylfurfural (HMF) into N-containing compounds over low-cost non-noble-metal catalysts is preferable, but it is challenging to reach high conversion and selectivity under mild conditions. Herein, an Al2 O3 -supported carbon-doped Ni catalyst was obtained via the direct pyrolysis-reduction of a mixture of Ni3 (BTC)2 ⋅ 12H2 O and Al2 O3 , generating stable Ni0 species due to the presence of carbon residue. A high yield of 96 % was observed in the reductive amination of HMF into 5-hydroxymethyl furfurylamine (HMFA) with ammonia and hydrogen at ambient temperature. The catalyst was recyclable and could be applied to the ambient-temperature synthesis of HMF-based secondary/tertiary amines and other biomass-derived amines from the carbonyl compounds. The significant performance was attributable to the synergistic effect of Ni0 species and acidic property of the support Al2 O3 , which promoted the selective ammonolysis of the imine intermediate while inhibiting the potential side reaction of over-hydrogenation.
Collapse
Affiliation(s)
- Qizhi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongzhong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Guoqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
107
|
Zuo M, Wang X, Wang Q, Zeng X, Lin L. Aqueous-Natural Deep Eutectic Solvent-Enhanced 5-Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. CHEMSUSCHEM 2022; 15:e202101889. [PMID: 34730878 DOI: 10.1002/cssc.202101889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
5-Hydroxymethylfurfural (HMF) has been regarded as an essential building block for synthesizing chemicals and biofuels, but the direct conversion of biomass to HMF is still a critical challenge. In this study, a cheap and green aqueous-natural deep eutectic solvent (A-NADES) was used to efficiently produce HMF from various carbohydrates, with a low amount of SnCl4 as the catalyst. High HMF yields of 64.3, 64.0, 61.3, and 54.5 % were obtained from glucose, starch, rice waste, and bread waste at 130 °C in the A-NADES/MIBK (methyl isobutyl ketone) biphasic system, respectively. Mechanistic study results revealed that the water in A-NADES was the key factor in facilitating the conversion of Sn atom existent forms and promoted the HMF production. The choline chloride in NADES stabilized the HMF product with the cooperation of extraction solvent MIBK and inhibited the side reactions of HMF. This study investigated the multiple interaction functions of A-NADES to feedstocks and proposed a practical application of novel solvents to facilitate biomass and food waste conversion with a green method.
Collapse
Affiliation(s)
- Miao Zuo
- College of Forestry, Hebei Agriculture University, Baoding, 071101, P. R. China
| | - Xinyu Wang
- College of Forestry, Hebei Agriculture University, Baoding, 071101, P. R. China
| | - Qian Wang
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
108
|
Hoang Tran P. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. CHEMSUSCHEM 2022; 15:e202200220. [PMID: 35307983 DOI: 10.1002/cssc.202200220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The conversion of biomass into a great variety of valuable chemicals, polymers, and fuels gives a sustainable alternative for the insufficiency of non-renewable fossil fuel resources and reduces environmental pollution. 5-Hydroxymethylfurfural (HMF), converted from sustainable carbohydrates, is a significant building block chemical, and the selective oxidation of HMF into 2,5-diformylfuran (DFF) presents an ongoing challenge. DFF is a versatile platform molecule derived from biomass and has promising application in pharmaceuticals and polymers. This Review provides an overview of the latest developments of efficient catalytic systems for the sustainable conversion of HMF to DFF.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
109
|
Wan Y, Lee JM. Recent Advances in Reductive Upgrading of 5-Hydroxymethylfurfural via Heterogeneous Thermocatalysis. CHEMSUSCHEM 2022; 15:e202102041. [PMID: 34786865 DOI: 10.1002/cssc.202102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The catalytic conversion of 5-hydroxymethylfufural (HMF), one of the vital platform chemicals in biomass upgrading, holds great promise for producing highly valuable chemicals through sustainable routes, thereby alleviating the dependence on fossil feedstocks and reducing CO2 emissions. The reductive upgrading (hydrogenation, hydrogenolysis, ring-opening, ring-rearrangement, amination, etc.) of HMF has exhibited great potential to produce monomers, liquid fuel additives, and other valuable chemicals. Thermocatalytic conversion has a significant advantage over photocatalysis and electrocatalysis in productivity. In this Review, the recent achievements of thermo-reductive transformation of HMF to various chemicals using heterogeneous catalytic systems are presented, including the catalytic systems (catalyst and solvent), reaction conditions, (reaction temperature, pressure, etc.), and reaction mechanisms. The current challenges and future opportunities are discussed as well, aiming at guiding the catalyst design and practical scalable productions.
Collapse
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
110
|
Yue X, Queneau Y. 5-Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. CHEMSUSCHEM 2022; 15:e202102660. [PMID: 35015340 PMCID: PMC9401606 DOI: 10.1002/cssc.202102660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The use of 5-hydroxymethylfurfural (HMF), furfural, and furan as scaffolds for designing alternative surfactants is a rapidly developing research area. This Review gathers recent examples highlighting the variety of methods for grafting the necessary polar and non-polar appendages, exploiting the specific chemical reactivity of each of these platform molecules. While the furan (or tetrahydrofuran) backbone is maintained in some targeted amphiphiles, alternatives using rearranged HMF or furfural such as cyclopentanols or furanones have also been reported. This topic is an illustration of the diversification of the use of HMF and other biobased furanic platform molecules in the field of fine and specialty chemicals. The surfactants sector, which concerns some of the most largely consumed chemicals in everyday life, and still mostly produced from fossil resources, will benefit from such alternatives enabling increased renewable carbon content and structural innovation.
Collapse
Affiliation(s)
- Xiaoyang Yue
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon ICBMS, UMR 5246, CNRS, UCBL, INSA Lyon, CPE Lyon Bât. Lederer1 rue Victor Grignard69622Villeurbanne CedexFrance
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon ICBMS, UMR 5246, CNRS, UCBL, INSA Lyon, CPE Lyon Bât. Lederer1 rue Victor Grignard69622Villeurbanne CedexFrance
| |
Collapse
|
111
|
Priya B, Kumar A, Dostagir SKNHM, Shrotri A, Singh SK. Catalytic hydrogenation of biomass‐derived furoic acid to tetrahydrofuroic acid derivatives over Pd/CoOx catalyst in water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhanu Priya
- Indian Institute of Technology Indore Chemistry 453552 Indore INDIA
| | - Ankit Kumar
- Indian Institute of Technology Indore Chemistry 453552 Indore INDIA
| | | | - Abhijit Shrotri
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis 0010021 Sapporo JAPAN
| | - Sanjay Kumar Singh
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| |
Collapse
|
112
|
Hu W, Zhou L, Chen JH. Conversion sweet sorghum biomass to produce value-added products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:72. [PMID: 35765054 PMCID: PMC9241265 DOI: 10.1186/s13068-022-02170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Currently, most biotechnological products are produced from sugar- or starch-containing crops via microbial conversion, but accelerating the conflict with food supply. Thus, it has become increasingly interesting for industrial biotechnology to seek alternative non-food feedstock, such as sweet sorghum. Value-added chemical production from sweet sorghum not only alleviates dependency and conflict for traditional starch feedstocks (especially corn), but also improves efficient utilization of semi-arid agricultural land resources, especially for China. Sweet sorghum is rich in components, such as fermentable carbohydrates, insoluble lignocellulosic parts and bioactive compounds, making it more likely to produce value-added chemicals. Thus, this review highlights detailed bioconversion methods and its applications for the production of value-added products from sweet sorghum biomass. Moreover, strategies and new perspectives on improving the production economics of sweet sorghum biomass utilization are also discussed, aiming to develop a competitive sweet sorghum-based economy.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Libin Zhou
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ji-Hong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
113
|
Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring‐Opening Polymerization of Bio‐renewable Bifunctional α‐Methylene‐δ‐valerolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
114
|
Conversion of furfuryl alcohol to 1,5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
115
|
Dhingra S, Sharma M, Krishnan V, Nagaraja C. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2,5-Bis(hydroxymethyl)furan. J Colloid Interface Sci 2022; 615:346-356. [DOI: 10.1016/j.jcis.2022.01.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
|
116
|
Lu S, Zhang J, Wu Z, Su Z, Huang J, Liang Y, Xiao FS. Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
117
|
Curpanen S, Poli G, Perez Luna A, Oble J. C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sébastien Curpanen
- Sorbonne Universite Institut Parisien de Chimie Moléculaire paris FRANCE
| | - Giovanni Poli
- Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | | | - Julie Oble
- Sorbonne University IPCM 4 place Jussieu 75005 Paris FRANCE
| |
Collapse
|
118
|
Selim A, Sharma R, Arumugam SM, Elumalai S, Jayamurugan G. Sulphonated Carbon Dots Synthesized Through a One‐Pot, Facile and Scalable Protocol Facilitates the Preparation of Renewable Precursors Using Glucose/Levulinic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202104448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abdul Selim
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Raina Sharma
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Senthil Murugan Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| |
Collapse
|
119
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
120
|
Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation. Carbohydr Polym 2022; 284:119159. [DOI: 10.1016/j.carbpol.2022.119159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
|
121
|
Wang Z, Li S, Wang S, Liu J, Zhao Y, Ma X. Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
122
|
Li H, Yan P, Xu BQ, Conrad Zhang Z. Oxygen Affinity of Transition Metal Cations: A Coherent Descriptor Elucidating Catalytic Oxygenate Transformations. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
123
|
Lan F, Zhang H, Zhao C, Shu Y, Guan Q, Li W. Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fujun Lan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Huiling Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Chaoyue Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yu Shu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
124
|
Li X, Li M, Liu Y, Feng Y, Pan P. Preparation of 5-hydroxymethylfurfural using magnetic Fe 3O 4@SiO 2@mSiO 2-TaOPO 4 catalyst in 2-pentanol. RSC Adv 2022; 12:13251-13260. [PMID: 35520126 PMCID: PMC9062888 DOI: 10.1039/d2ra02182j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
5-Hydroxymethylfurfural (HMF) is one of the most important platform molecules and could be transformed into a variety of fuel additives and high value-added chemicals. Multiple catalyst systems have been developed for the conversion of carbohydrates to HMF, but there are still unavoidable problems, including high temperature and pressure, difficult recovery of solvent, corrosion of equipment, poor catalyst circulation, etc. Herein, a new magnetic Fe3O4@SiO2@mSiO2-TaOPO4 catalyst for the preparation of HMF from fructose in 2-pentanol was developed. The structures of the catalysts were characterized by FT-IR, TSM, EDS, SEM, XRD and VSM. The 2-pentanol solvent is not only conducive to the production of HMF, but also enables the reaction to be carried out at a lower pressure. The highest yield of HMF (85.4%) was obtained using 20 wt% catalyst under 10% substrate concentration (0.5 g of fructose) at 120 °C for 3 h. The catalysts can be easily separated by magnetism. The slight decrease in catalyst activity after 7 cycles was mainly due to the loss of catalyst during the cycle operation. Simultaneously, the total yield of HMF was 51.3% after scale-up to 15 g of fructose, showing the possible industrial application potential of this catalyst system.
Collapse
Affiliation(s)
- Xinglong Li
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| | - Mingming Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 Anhui P. R. China +86 551 62904405 +86 551 62904405
| | - Yuxin Liu
- Technology Center of Hefei Customs Hefei 230022 P. R. China
| | - Yisi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 Anhui P. R. China +86 551 62904405 +86 551 62904405
| | - Pan Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology 193 Tunxi Road Hefei 230009 Anhui P. R. China +86 551 62904405 +86 551 62904405
| |
Collapse
|
125
|
Zhang Q, Ren M, Liu Y, Zhang C, Guo Y, Song D. Fabrication of Brønsted acidic ionic liquids functionalized organosilica nanospheres for microwave-assisted fructose valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151761. [PMID: 34801500 DOI: 10.1016/j.scitotenv.2021.151761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
A series of Brønsted acidic ionic liquids (BAILs) functionalized hollow organosilica nanospheres ([C3/4Im][OTs/OTf]-Si(Et)Si, C3/4 = Pr/BuSO3H) were synthesized by two steps. The process involved the preparation of hollow nanosphere supports via a toluene-swollen sol-gel co-condensation of 1,2-bis(trimethoxysilyl)ethane and 3-chloropropyltriethoxysilane in the presence of F127, and followed by a successive quaternary ammonization and protonation with imidazole, 1,3-propane/1,4-butane sultone and trifluoromethane sulfonic acid/p-toluenesulfonic acid. The adjustable acid property, hollow inner diameter (5-15 nm) and shell thickness (5-9 nm) of [C3/4Im][OTs/OTf]-Si(Et)Si are achieved by introducing different organic acids and controlling toluene concentration, respectively. The [C3/4Im][OTs/OTf]-Si(Et)Si were applied in selective conversion of fructose to 5-hydroxymethylfurfural (HMF) and 5-ethoxymethylfurfural (EMF) under microwave heating. Under the optimized conditions, the [C4Im][OTs]-Si(Et)Si3.0 nanospheres with the largest inner diameter and the smallest shell thickness exhibit the highest HMF yield (79.4%, 15 min) in fructose dehydration. And the [C3Im][OTf]-Si(Et)Si0.5 nanospheres with the highest acid strength possess the highest EMF yield (70.4%, 30 min) in fructose ethanolysis. The high Brønsted acid-site density and acid strength of [C3/4Im][OTs/OTf]-Si(Et)Si catalysts accompanied by high microwave heating energy lead to excellent dehydration/ethanolysis activity. The product selectivity strongly depended on the BAILs structures and morphological characteristics of the catalyst. More importantly, the [C3/4Im][OTs/OTf]-Si(Et)Si can be reused three times without changes in leaching of BAILs, due to strong covalent bond between BAILs and silicon/carbon framework. This work will provide a simple strategy of chemically bonded BAILs on suitable supports as efficient solid acids, and an approach of combining morphology-controlled solid acids with microwave-heating for catalytic conversion of biomass/derivatives to fuels and value-added chemicals.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Miao Ren
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yunqing Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Chaoyue Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yihang Guo
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Daiyu Song
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
126
|
Shao YR, Zhou L, Yu L, Li ZF, Li YT, Li W, Hu TL. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17195-17207. [PMID: 35384659 DOI: 10.1021/acsami.1c25097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient hydrogenation of biomass-derived levulinic acid (LA) to value-added γ-valerolactone (GVL) based on nonprecious metal catalysts under mild conditions is crucial challenge because of the intrinsic inactivity and instability of these catalysts. Herein, a series of highly active and stable carbon-encapsulated Co/ZnO@C-X (where X = 0.1, 0.3, 0.5, the molar ratios of Zn/(Co+Zn)) heterojunction catalysts were obtained by in situ pyrolysis of bimetal CoZn MOF-74. The optimal Co/ZnO@C-0.3 catalyst could achieve 100% conversion of LA and 98.35% selectivity to GVL under mild conditions (100 °C, 5 bar, 3 h), which outperformed most of the state-of-the-art catalysts reported so far. Detailed characterizations, experimental investigations, and theoretical calculations revealed that the interfacial interaction between Co and ZnO nanoparticles (NPs) could promote the dispersibility and air stability of the active Co0 for the activation of H2. Moreover, the strong Co-ZnO interaction also enhanced the Lewis acidity of the Co/ZnO interface, contributing to the adsorption of LA and the esterification of intermediates. The synergy between the hydrogenation sites and the Lewis acid sites at the Co/ZnO interface enabled the conversion of LA to GVL with high efficiency. In addition, benefiting from the Co-ZnO interfacial interaction as well as the unique carbon-encapsulated structure of the heterojunction catalyst, the recyclability was also greatly improved and the yield of GVL was nearly unchanged even after six cycles.
Collapse
Affiliation(s)
- Ya-Ru Shao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Zhuo-Fei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
127
|
Abstract
Biolubricants generated from biomass and other wastes can reduce the carbon footprint of manufacturing processes and power generation. In this paper, the properties and uses of biolubricants have been compared thoroughly with conventional mineral-based lubricants. The biolubricants, which are currently based on vegetable oils, are discussed in terms of their physicochemical and thermophysical properties, stability, and biodegradability. This mini-review points out the main features of the existing biolubricants, and puts forward the case of using sustainable biolubricants, which can be generated from agro-residues via thermochemical processes. The properties, applications, and limitations of non-edible oils and waste-derived oils, such as bio-oil from pyrolysis and bio-crude from hydrothermal liquefaction, are discussed in the context of biolubricants. While the existing studies on biolubricants have mostly focused on the use of vegetable oils and some non-edible oils, there is a need to shift to waste-derived oils, which is highlighted in this paper. This perspective compares the key properties of conventional oils with different oils derived from renewable resources and wastes. In the authors’ opinion, the use of waste-derived oils is a potential future option to address the problem of the waste management and supply of biolubricant for various applications including machining, milling applications, biological applications, engine oils, and compressor oils. In order to achieve this, significant research needs to be conducted to evaluate salient properties such as viscosity, flash point, biodegradability, thermo-oxidative and storage stability of the oils, technoeconomics, and sustainability, which are highlighted in this review.
Collapse
|
128
|
Reaction Extraction of Levulinic Acid and Formic Acid from Cellulose Deep Hydrolyzate. Processes (Basel) 2022. [DOI: 10.3390/pr10040734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Levulinic acid (LA), a platform chemical with high added value, can be obtained by deep hydrolysis of cellulose, but accompanied by the production of formic acid (FA). Due to its high water content, the recovery of levulinic acid and formic acid from aqueous solution consumes a lot of energy in industry. This paper will use the method of reactive extraction to explore the optimal conditions for the recovery of levulinic acid and formic acid from deep hydrolysate. First, the kinetic and thermodynamic parameters of the reaction process were studied. Then, the effects of different parameters, such as temperature, catalyst dosage, and raw material ratio, on the reaction extraction process were investigated. Finally, through the simulation and optimization of the process, the optimized recovery conditions were chosen to realize the recovery of formic acid and levulinic acid. It is found that reactive extraction can achieve the purpose of efficiently separating levulinic acid and formic acid from the aqueous solution by the yield of 99.1% and 99.9%, respectively.
Collapse
|
129
|
Zhu X, Fan M, Cui T, Du C, He B. Dual Responsive Molecular-Arm Modified Single Enzyme Molecules for Efficient Cellulose Hydrolysis. Macromol Rapid Commun 2022; 43:e2200092. [PMID: 35366032 DOI: 10.1002/marc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/20/2022] [Indexed: 11/08/2022]
Abstract
Immobilizing cellulase for improving its hydrolysis activity and recyclability is critical for a cost-effective and environment-friendly conversion of cellulosic biomass. However, developing a strategy for achieving a high mass-transfer rate and good separation efficiency between an insoluble cellulose substrate and cellulase remains difficult. Instead of the traditional method, a single-enzyme molecular modification method is used in this study. To modify cellulase and provide it with a temperature-pH dual responsive property, systemized poly (acrylic acid)-polyacrylonitrile (PAA-PAN) molecular arms are used. The modified cellulase could reversibly transform between liquid and solid phases. In the liquid phase, the modified cellulase could adjust its active center, increasing its hydrolysis efficiency and separation efficiency. Cellulase and glucose products could be easily separated in the solid phase, allowing the reuse of cellulase. The results showed that the modified cellulase's hydrolysis efficiency is comparable to that of free cellulase and that the modified enzyme preserved more than 60% of its initial activity after 15 batches of efficient hydrolysis. Thus, the proposed modification route considerably lowers the cost of cellulose enzymatic hydrolysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Mingliang Fan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Tianyu Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenxi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
130
|
Sala R, Kiala G, Veiros LF, Broggini G, Poli G, Oble J. Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. J Org Chem 2022; 87:4640-4648. [PMID: 35290058 DOI: 10.1021/acs.joc.1c03044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new Ru3(CO)12-catalyzed directed alkenylation of 2-carboxaldimine-heterocyclopentadienes has been accomplished. This process allows coupling of furan, pyrrole, indole, and thiophene 2-carboxaldimines with electron-poor alkenes such as acrylates, vinylsulfones, and styrenes. This regio- and chemoselective oxidative C-H coupling does not require the presence of an additional sacrificial oxidant. Density functional theory calculations allowed us to propose a mechanism and unveiled the nature of the H2 acceptor.
Collapse
Affiliation(s)
- Roberto Sala
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France.,Dipartimento di Scienza e Alta Tecnologia (DISAT), Università degli Studi dell'Insubria, Via Valleggio 9, Como (CO) 22100, Italy
| | - Gredy Kiala
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia (DISAT), Università degli Studi dell'Insubria, Via Valleggio 9, Como (CO) 22100, Italy
| | - Giovanni Poli
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Julie Oble
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
131
|
Wang Z, Xie C, Li X, Nie J, Yang H, Zhang Z. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions. Chem Commun (Camb) 2022; 58:4067-4070. [PMID: 35262544 DOI: 10.1039/d2cc00157h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Meerwein-Ponndorf-Verley (MPV) reaction is an important chemoselective route for carbonyl group hydrogenation, and thus designing new and effective catalysts for this transformation remains important and challenging. In this work, a new sulfonate coordinated Zr(IV) catalyst was prepared by the coordination of Zr(IV) onto the sulfonate groups of Amberlyst-15, which can effectively catalyze the MPV reaction and quantitatively convert carbonyl compounds to the corresponding alcohols with high reactivity and stability. Detailed mechanistic investigations reveal that the catalytic performance of Zr-AIER can be attributed to the synergetic effect between Zr4+ and the sulfonate group, and the porous structure with high surface area.
Collapse
Affiliation(s)
- Zixin Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Jiabao Nie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Hanmin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
132
|
Sustainable Catalytic Synthesis of 2,5-Diformylfuran from Various Carbohydrates. Catalysts 2022. [DOI: 10.3390/catal12040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Versatile homogeneous and heterogeneous catalysts that convert carbohydrates to 2,5-diformylfuran (DFF) are essential for the development of sustainable processes for producing high-value chemicals from biomass-derived carbohydrates. An efficient catalytic system consisting of Br−, disulfide, and dimethylsulfoxide (DMSO) promoted the sustainable and selective synthesis of DFF in modest-to-good yields from various carbohydrates, such as fructose, glucose, mannose, galactose, and sucrose. Heterogeneous catalysts containing Br− also facilitated this reaction with recyclable high yields.
Collapse
|
133
|
van der Klis F, Gootjes L, Verstijnen NH, van Haveren J, Stephan van Es D, Bitter JH. Carbohydrate structure-activity relations of Au-catalysed base-free oxidations: gold displaying a platinum lustre. RSC Adv 2022; 12:8918-8923. [PMID: 35424875 PMCID: PMC8985091 DOI: 10.1039/d2ra00255h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
This paper describes the base-free gold-catalysed oxidation of four different carbohydrates in a packed bed plug flow reactor. The influence of the carbohydrate structure on the catalytic activity and selectivity was investigated by comparing two neutral sugars (glucose (Glc) and galactose (Gal), both with primary alcohols at C6), with their sugar-acid analogues (glucuronic acid (GlcA) and galacturonic acid (GalA), both with carboxylic acids at C6). The orientation of OH-groups at the C4-position (equatorial in Glc/GlcA and axial in Glc/GlcA), and the C6-functionality (primary alcohols in Gal/Glc and carboxylic acids in GalA/GlcA) has a profound influence on the catalytic activity. When the OH-groups are in an axial position their reactivity was higher compared to the OH-groups in the equatorial position for both the sugars and the sugar acids. In addition the reactivity of carbohydrates over Au-catalysts under base-free conditions is different compared to alkaline conditions, and is more in line with a Pt-catalysed dehydrogenation mechanism. Gold mimicking Platinum in base-free catalytic carbohydrate oxidations.![]()
Collapse
Affiliation(s)
- Frits van der Klis
- Wageningen University Biobased Chemistry and Technology Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 480 303.,Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 481 160
| | - Linda Gootjes
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 481 160
| | - Noud Hendrik Verstijnen
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 481 160
| | - Jacco van Haveren
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 481 160
| | - Daniël Stephan van Es
- Wageningen Food & Biobased Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 481 160
| | - Johannes Hendrik Bitter
- Wageningen University Biobased Chemistry and Technology Bornse Weilanden 9 6708 WG Wageningen The Netherlands +31 317 480 303
| |
Collapse
|
134
|
Divya PS, Nair S, Kunnikuruvan S. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions. Chemphyschem 2022; 23:e202200057. [PMID: 35285118 DOI: 10.1002/cphc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.
Collapse
Affiliation(s)
- P S Divya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Swetha Nair
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Sooraj Kunnikuruvan
- IISER Thiruvananthapuram: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala PO, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
135
|
Duan Y, Wang R, Liu Q, Qin X, Li Z. Tungsten Promoted Ni/Al2O3 as a Noble-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-Hexanedione. Front Chem 2022; 10:857199. [PMID: 35355788 PMCID: PMC8959628 DOI: 10.3389/fchem.2022.857199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The conversion of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD) represented a typical route for high-value utilization of biomass. However, this reaction was often catalyzed by the noble metal catalyst. In this manuscript, W promoted Ni/Al2O3 was prepared as a noble-metal-free catalyst for this transformation. The catalysts were characterized by XRD, XPS, NH3-TPD, TEM, and EDS-mapping to study the influence of the introduction of W. There was an interaction between Ni and W, and strong acid sites were introduced by the addition of W. The W promoted Ni/Al2O3 showed good selectivity to HHD when used as a catalyst for the hydrogenation of HMF in water. The influences of the content of W, temperature, H2 pressure, reaction time, and acetic acid (AcOH) were studied. NiWOx/Al2O3-0.5 (mole ratio of W:Ni = 0.5) was found to be the most suitable catalyst. The high selectivity to HHD was ascribed to the acid sites introduced by W. This was proved by the fact that the selectivity to HHD was increased a lot when AcOH was added just using Ni/Al2O3 as catalysts. 59% yield of HHD was achieved on NiWOx/Al2O3-0.5 at 393 K, 4 MPa H2 reacting for 6 h, which was comparable to the noble metal catalyst, showing the potential application in the production of HHD from HMF.
Collapse
Affiliation(s)
- Ying Duan
- College of Food and Drug, Luoyang Normal University, Luoyang, China
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
- *Correspondence: Ying Duan,
| | - Rui Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Qihang Liu
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Xuya Qin
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Zuhuan Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| |
Collapse
|
136
|
Salvitti C, de Petris G, Troiani A, Managò M, Villani C, Ciogli A, Sorato A, Ricci A, Pepi F. Accelerated d-Fructose Acid-Catalyzed Reactions in Thin Films Formed by Charged Microdroplets Deposition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:565-572. [PMID: 35112862 DOI: 10.1021/jasms.1c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin films derived by the deposition of charged microdroplets generated in the ESI source of a mass spectrometer act as highly concentrated reaction vessels in which the final products of an ion-molecule reaction can be isolated by their precipitation onto a solid surface under ambient conditions. In this study, the ESI Z-spray source supplied to a Q-TOF Ultima mass spectrometer was used to investigate the d-fructose acid-catalyzed reactions by microdroplets deposition onto a stainless-steel target surface. High conversion ratios of d-fructose into 5-hydroxymethylfuraldehyde (5-HMF), 5-methoxymethylfuraldehyde (5-MMF), and difructrose anhydrides (DFAs) were obtained with HCl and KHSO4 as metal-free catalysts by using synthetic conditions under which the same products in bulk are not formed. Furthermore, the reaction outcome was found to be highly sensitive to the catalyst and the solvent employed as well as to the ESI source parameters influencing the thin film formation from microdroplets deposition onto the solid surface.
Collapse
Affiliation(s)
- Chiara Salvitti
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Sorato
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Viale Lincoln 5, 81100 Caserta, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
137
|
Mokale Kognou AL, Shrestha S, Jiang ZH, Xu C, Sun F, Qin W. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
138
|
Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over PrOx promoted Ni catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
139
|
Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
140
|
Dhingra S, Sharma M, Krishnan V, Nagaraja CM. Design of noble metal-free CoTiO 3/Zn 0.5Cd 0.5S heterostructure photocatalyst for selective synthesis offurfuraldehyde combined withH 2production. J Colloid Interface Sci 2022; 608:1040-1050. [PMID: 34785452 DOI: 10.1016/j.jcis.2021.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
The development of photocatalytic systems composed of earth-abundant metal-based catalysts for efficient production of clean fuel, H2 as well as value-added chemicals is of significant importance towards sustainable generation of energy resources. Consequently, herein we report rational construction of Z-scheme CoTiO3/xZn0.5Cd0.5S (x = 5 (S1), 10 (S2), 15 (S3) and 20 wt% (S4)) heterostructures featuring suitable band structure for efficient photocatalytic reduction of protons of water to H2 combined with selective oxidation of furfuryl alcohol (biomass derivative) to a value-added product, furfuraldehyde. Electron microscopy analysis of heterostructure S2 revealed that Zn0.5Cd0.5S nanoparticles are decorated over the surface of CoTiO3 microrods. The photocatalytic studies showed higher catalytic performance by S2, for selective oxidation of furfuryl alcohol to furfuraldehyde with 95% yield coupled with a H2 generation rate of 1929 μmol g-1h-1 which is about 4-fold higher than that of pristine Zn0.5Cd0.5S. The enhanced catalytic performance of heterostructure S2 has been ascribed to synergistic interaction aided by the Z-scheme heterojunction formation between CoTiO3 and Zn0.5Cd0.5S. Overall, this work demonstrates the application of noble metal-free photocatalyst for simultaneous production of H2 and value-added chemical under mild and environment-friendly conditions.
Collapse
Affiliation(s)
- Suman Dhingra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Manisha Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175 075, India
| | - Venkata Krishnan
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175 075, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
141
|
Wu H, Zou Y, Xu H, Wu L, Mai Y. Efficient Electrocatalytic Upgradation of Furan-Based Biomass: Key Roles of a Two-Dimensional Mesoporous Poly(m-phenylenediamine)-Graphene Heterostructure and a Ternary Electrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haoran Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yashi Zou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
142
|
Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6:197-214. [PMID: 37117437 DOI: 10.1038/s41570-022-00359-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Photocatalysis is an emerging approach for sustainable chemical production from renewable biomass under mild conditions. Active radicals are always generated as key intermediates, in which their high reactivity renders them versatile for various upgrading processes. However, controlling their reaction is a challenge, especially in highly functionalized biomass frameworks. In this Review, we summarize recent advanced photocatalytic systems for selective biomass valorization, with an emphasis on their distinct radical-mediated reaction patterns. The strategies for generating a specific radical intermediate and controlling its subsequent conversion towards desired chemicals are also highlighted, aiming to provide guidance for future studies. We believe that taking full advantage of the unique reactivity of radical intermediates would provide great opportunities to develop more efficient photocatalytic systems for biomass valorization.
Collapse
|
143
|
Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. Int J Mol Sci 2022; 23:ijms23041959. [PMID: 35216072 PMCID: PMC8875992 DOI: 10.3390/ijms23041959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxymethylfurfural (5-HMF) is a key platform chemical, essential for the production of other chemicals, as well as fuels. Despite its importance, the production methods applied so far still lack in sustainability. In this work, acidic deep eutectic solvents (DES), acting both as solvent and catalyst, were studied for the conversion of fructose into 5-HMF using microwave-assisted reactions. These solvents were screened and optimized by varying the hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). The bio-based solvent γ-valerolactone (GVL) was also applied as additive, leading to a boost in 5-HMF yield. Then, a response surface methodology was applied to further optimize operating conditions, such as reaction time, temperature and wt.% of added GVL. The highest 5-HMF yield attained, after optimization, was 82.4% at 130 °C, in 4 min of reaction time and with the addition of 10 wt.% of GVL. Moreover, a process for 5-HMF recovery and DES reuse was developed through the use of the bio-based solvent 2-methyltetrahydrofuran (2-Me-THF), allowing at least three cycles of 5-HMF production with minimal yield losses, while maintaining the purity of the isolated 5-HMF and the efficacy of the reaction media.
Collapse
|
144
|
Dutta S, Bhat NS. Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview. RSC Adv 2022; 12:4891-4912. [PMID: 35425469 PMCID: PMC8981328 DOI: 10.1039/d1ra09196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| | - Navya Subray Bhat
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| |
Collapse
|
145
|
Nawaz A, Khan A, Ali N, Mao P, Gao X, Ali N, Bilal M, Khan H. Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. CHEMOSPHERE 2022; 289:133121. [PMID: 34871610 DOI: 10.1016/j.chemosphere.2021.133121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The release of dyes-loaded wastewater from various industries is a major threat to human beings due to their health hazard effects. Ternary ferrites-based visible light photocatalyst Fe2Zn0.5Cu0.5 O4-CM (CZF-CM) was formed via the co-precipitation method. These prepared ternary ferrites nanoparticles Fe2Zn0.5Cu0.5O4 (CZF-NPs) and photocatalyst (CZF-CM) were analyzed using different spectroscopic techniques. The average crystallite size of CZF-NPs was calculated from XRD data using Scherer's equation and found to be 12 nm. The elemental composition of the synthesized ternary ferrites nanoparticles (CZF-NPs) was defined by the EDX images. The morphology of CZF-CM photocatalyst is spherical, having a smooth surface and average microspheres size of 810 μm based on SEM micrographs. The photocatalyst has bandgap of 2.57 eV, which lies in the visible range of the electromagnetic spectrum derived by extrapolating Tauc's plot. Photocatalyst CZF-CM showed 94% degradation efficiency for Rhodamine B (RB) dye at optimized conditions of initial dye concentration, catalyst dosage, pH and sunlight irradiation contact time as 40 ppm, 0.7 g, pH 8 and 125 min, respectively. Maximum degradation (96%) of methyl orange (MO) dye occurred at pH 6, at similar optimized conditions as the RB dye. The binary ferrites photocatalyst Fe2CuO4-CM (CF-CM) and Fe2ZnO4-CM (ZF-CM) of the selected metals showed lesser photocatalytic efficiency than ternary ferrites. An artificial neural network in addition to the response surface methodology was used for the optimization process. The artificial neural network is highly in agreement with the experimental results obtained for the selected dyes. The corresponding predicted response for each data set from ANOVA showed high R2, R2adj, and R2pred values for the proposed model. It also indicates that contributing parameters in the model are significant due to having very high F-values and low p-values. It is concluded that the synthesized photocatalysts are considered an efficient entrant for the decolorization of industrial wastewater.
Collapse
Affiliation(s)
- Arif Nawaz
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ping Mao
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xiaoyan Gao
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hammad Khan
- Faculty of Materials & Chemical Engineering GIK, Institute of Engineering Sciences & Technology, 23460, Topi, KP, Pakistan
| |
Collapse
|
146
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
147
|
Yuan L, Hu Y, Zhao Z, Li G, Wang A, Cong Y, Wang F, Zhang T, Li N. Production of Copolyester Monomers from Plant‐Based Acrylate and Acetaldehyde. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Yancheng Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zhitong Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
148
|
de la Sovera V, López GV, Porcal W. Synthetic study of 5‐hydroxymethylfurfural in Groebke‐Blackburn‐Bienaymé reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Victoria de la Sovera
- Universidad de la Republica Facultad de Quimica Organic Chemistry Department URUGUAY
| | - Gloria V. López
- Universidad de la República Facultad de Química Organic Chemistry Department Avda. Gral. Flores 2124Uruguay 11800 Montevideo URUGUAY
| | - Williams Porcal
- Universidad de la Republica Facultad de Química Organic Chemistry department Avda. Gral. Flores 2124Montevideo 11800 Montevideo URUGUAY
| |
Collapse
|
149
|
Wang R, Zhang J, Zhu Y, Chai Z, An Z, Shu X, Song H, Xiang X, He J. Selective Photocatalytic Activation of Ethanol C-H and O-H Bonds over Multi-Au@SiO 2/TiO 2: Role of Catalyst Surface Structure and Reaction Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2848-2859. [PMID: 34995054 DOI: 10.1021/acsami.1c20514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chemical bond diversity and flexible reactivity of biomass-derived ethanol make it a vital feedstock for the production of value-added chemicals but result in low conversion selectivity. Herein, composite catalysts comprising SiO2-coated single- or multiparticle Au cores hybridized with TiO2 nanoparticles (mono- or multi-Au@SiO2/TiO2, respectively) were fabricated via electrostatic self-assembly. The C-H and O-H bonds of ethanol were selectively activated (by SiO2 and TiO2, respectively) under irradiation to form CH3CH•(OH) or CH3CH2O• radicals, respectively. The formation and depletion kinetics of these radicals was analyzed by electron spin resonance to reveal marked differences between mono- and multi-Au@SiO2/TiO2. Consequently, the selectivity of these catalysts for 1,1-diethoxyethane after 6 h irradiation was determined as 81 and 99%, respectively, which was attributed to the more pronounced effect of localized surface plasmon resonance for multi-Au@SiO2/TiO2. Notably, only acetaldehyde was formed on a Au/TiO2 catalyst without a SiO2 shell. Fourier transform infrared (FTIR) spectroscopy indicated that the C-H adsorption of ethanol was enhanced in the case of multi-Au@SiO2/TiO2, while NH3 temperature-programmed desorption and pyridine adsorption FTIR spectroscopy revealed that multi-Au@SiO2/TiO2 exhibited enhanced surface acidity. Collectively, the results of experimental and theoretical analyses indicated that the adsorption of acetaldehyde on multi-Au@SiO2/TiO2 was stronger than that on Au/TiO2, which resulted in the oxidative coupling of ethanol to afford 1,1-diethoxyethane on the former and the dehydrogenation of ethanol to acetaldehyde on the latter.
Collapse
Affiliation(s)
- Ruirui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| |
Collapse
|
150
|
Guo W, Bruining HC, Heeres HJ, Yue J. Efficient synthesis of furfural from xylose over
HCl
catalyst in slug flow microreactors promoted by
NaCl
addition. AIChE J 2022. [DOI: 10.1002/aic.17606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenze Guo
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Herman Carolus Bruining
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Hero Jan Heeres
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Jun Yue
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|