101
|
Kong GD, Song H, Yoon S, Kang H, Chang R, Yoon HJ. Interstitially Mixed Self-Assembled Monolayers Enhance Electrical Stability of Molecular Junctions. NANO LETTERS 2021; 21:3162-3169. [PMID: 33797252 DOI: 10.1021/acs.nanolett.1c00406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrical breakdown is a critical problem in electronics. In molecular electronics, it becomes more problematic because ultrathin molecular monolayers have delicate and defective structures and exhibit intrinsically low breakdown voltages, which limit device performances. Here, we show that interstitially mixed self-assembled monolayers (imSAMs) remarkably enhance electrical stability of molecular-scale electronic devices without deteriorating function and reliability. The SAM of the sterically bulky matrix (SC11BIPY rectifier) molecule is diluted with a skinny reinforcement (SCn) molecule via the new approach, so-called repeated surface exchange of molecules (ReSEM). Combined experiments and simulations reveal that the ReSEM yields imSAMs wherein interstices between the matrix molecules are filled with the reinforcement molecules and leads to significantly enhanced breakdown voltage inaccessible by traditional pure or mixed SAMs. Thanks to this, bias-driven disappearance and inversion of rectification is unprecedentedly observed. Our work may help to overcome the shortcoming of SAM's instability and expand the functionalities.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyunsun Song
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seungmin Yoon
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
| | - Hungu Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, Seoul 02543, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
102
|
Yuan D, Awais MA, Sharapov V, Liu X, Neshchadin A, Chen W, Yu L. Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. J Am Chem Soc 2021; 143:5239-5246. [PMID: 33755466 DOI: 10.1021/jacs.1c01659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lack of design principle for developing high-performance polymer materials displaying strong fluorescence and high ambipolar charge mobilities limited their performance in organic light-emitting transistors (OLETs), electrically pumped organic laser, and other advanced electronic devices. A series of semiladder polymers by copolymerization of weak acceptors (TPTQ or TPTI) and weak donors (fluorene (F) or carbazole (C)) have been developed for luminescent and charge transporting properties. It was found that enhanced planarity, high crystallinity, and a delicate balance in interchain aggregation obtained in the new copolymer, TPTQ-F, contributed to high ambipolar charge mobilities and photoluminescent quantum yield. TPTQ-F showed excellent performance in solution-processed multilayered OLET devices with an external quantum efficiency (EQE) of 5.3%.
Collapse
Affiliation(s)
- Dafei Yuan
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mohammad A Awais
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Valerii Sharapov
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xunshan Liu
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andriy Neshchadin
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Luping Yu
- Department of Chemistry and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
103
|
Akahori S, Sasamori T, Shinokubo H, Miyake Y. Enthalpically and Entropically Favorable Self-Assembly: Synthesis of C 4h -Symmetric Tetraazatetrathia[8]circulenes by Regioselective Introduction of Pyridine Rings. Chemistry 2021; 27:5675-5682. [PMID: 33300177 DOI: 10.1002/chem.202005077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/07/2022]
Abstract
Self-assembly of π-conjugated molecules in solution generally occurs owing to either an enthalpic or an entropic gain; however, designing π-conjugated systems that simultaneously exhibit enthalpically and entropically favorable self-assembly behavior is challenging. Herein, the self-assembly behavior of tetraazatetrathia[8]circulenes is disclosed, which is driven by both enthalpy and entropy. Single-crystal X-ray diffraction analysis demonstrated that molecules of these tetraazatetrathia[8]circulenes form face-to-face stacked dimers with a 1D columnar structure owing to the circularly arranged dipole moments. Importantly, concentration- and temperature-dependent 1 H NMR spectra revealed that the formation of self-assemblies of tetraazatetrathia[8]circulenes in chloroform and methanol is favored by both enthalpic and entropic factors. The unique association behavior is due to the presence of sp2 -hybridized nitrogen atoms, which weakly coordinate to the hydrogen atoms of these solvents and reduce the π-electron density of the circulene cores.
Collapse
Affiliation(s)
- Shuhei Akahori
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| |
Collapse
|
104
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
105
|
Geiger M, Hagel M, Reindl T, Weis J, Weitz RT, Solodenko H, Schmitz G, Zschieschang U, Klauk H, Acharya R. Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors. Sci Rep 2021; 11:6382. [PMID: 33737629 PMCID: PMC7973517 DOI: 10.1038/s41598-021-85517-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/28/2021] [Indexed: 11/08/2022] Open
Abstract
A critical requirement for the application of organic thin-film transistors (TFTs) in mobile or wearable applications is low-voltage operation, which can be achieved by employing ultrathin, high-capacitance gate dielectrics. One option is a hybrid dielectric composed of a thin film of aluminum oxide and a molecular self-assembled monolayer in which the aluminum oxide is formed by exposure of the surface of the aluminum gate electrode to a radio-frequency-generated oxygen plasma. This work investigates how the properties of such dielectrics are affected by the plasma power and the duration of the plasma exposure. For various combinations of plasma power and duration, the thickness and the capacitance of the dielectrics, the leakage-current density through the dielectrics, and the current-voltage characteristics of organic TFTs in which these dielectrics serve as the gate insulator have been evaluated. The influence of the plasma parameters on the surface properties of the dielectrics, the thin-film morphology of the vacuum-deposited organic-semiconductor films, and the resulting TFT characteristics has also been investigated.
Collapse
Affiliation(s)
- Michael Geiger
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Marion Hagel
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Thomas Reindl
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Jürgen Weis
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - R Thomas Weitz
- The 1st Physical Institute, University of Göttingen, Göttingen, Germany
- Faculty of Physics, Ludwig-Maximilians-University, München, Germany
| | - Helena Solodenko
- Institute of Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Guido Schmitz
- Institute of Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Rachana Acharya
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Institute of Materials Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
106
|
Yin H, Chen J, Zheng D. Effect of Molecular Substitution and Isomerization on Charge-Transport Parameters in Molecular Organic Semiconductors. J Phys Chem Lett 2021; 12:2660-2667. [PMID: 33689354 DOI: 10.1021/acs.jpclett.1c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charge transport in an organic semiconductor is strongly dependent on the molecular packing motif, which could be modified by the molecular substitutions and molecular isomerization. We constructed a series of benzodithiophene-based organic semiconductor molecules with different silyethyne substitutions and isomers. The existence of different conformations of these molecules is supported by a low isomerization energy barrier from density functional theory. By using Marcus semiclassical theory calculation, we make a comprehensive assessment for the effect of molecular substitution and isomerization on charge transport. We found that the hole mobility of cis-isomer molecular packing can be enhanced by increasing the length of silylethyne substitutions. We demonstrated that a favorable charge-transport material would possess an identical direction of induced ring currents, stable induced magnetic fields, and dominant π-π stacking interaction in their molecular packing motif to ensure good π-overlap area. Our findings will provide direct guidance for developing organic semiconductor materials.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
107
|
Liu Z, Li X, Masai H, Huang X, Tsuda S, Terao J, Yang J, Guo X. A single-molecule electrical approach for amino acid detection and chirality recognition. SCIENCE ADVANCES 2021; 7:eabe4365. [PMID: 33658198 PMCID: PMC7929498 DOI: 10.1126/sciadv.abe4365] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/15/2021] [Indexed: 05/27/2023]
Abstract
One of the ultimate goals of analytic chemistry is to efficiently discriminate between amino acids. Here we demonstrate this ability using a single-molecule electrical methodology based on molecular nanocircuits formed from stable graphene-molecule-graphene single-molecule junctions. These molecular junctions are fabricated by covalently bonding a molecular machine featuring a permethylated-β-cyclodextrin between a pair of graphene point contacts. Using pH to vary the type and charge of the amino acids, we find distinct multimodal current fluctuations originating from the different host-guest interactions, consistent with theoretical calculations. These conductance data produce characteristic dwell times and shuttling rates for each amino acid, and allow accurate, statistical real-time, in situ measurements. Testing four amino acids and their enantiomers shows the ability to distinguish between them within a few microseconds, thus paving a facile and precise way to amino acid identification and even single-molecule protein sequencing.
Collapse
Affiliation(s)
- Zihao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xingxing Li
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Xinyi Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Susumu Tsuda
- Department of Chemistry, Osaka Dental University, Osaka 573-1121, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Jinlong Yang
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
108
|
Yang Y, Hong Y, Wang X. Utilizing the Diffusion of Fluorinated Polymers to Modify the Semiconductor/Dielectric Interface in Solution-Processed Conjugated Polymer Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8682-8691. [PMID: 33565853 DOI: 10.1021/acsami.0c23058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been demonstrated that tailoring the properties of semiconductor/dielectric interfaces with fluorinated polymers yields better performance for organic field-effect transistors (OFETs). However, it remains a challenge to fabricate bottom-gate OFET devices on fluorinated dielectrics using solution-processed methods due to the poor wettability of fluorinated dielectrics. Here, we utilized the diffusion of fluorinated poly(methyl methacrylate) (PMMA) to construct the fluorine-rich semiconductor/dielectric interface to achieve the fabrication of bottom-gate OFETs with a solution-processed poly(3-hexylthiophene) (P3HT) semiconductor layer. The consequences indicate that the fluorinated dielectrics can effectively decrease the charge traps density at the semiconductor/dielectric interface and promote the edge-on orientation of P3HT on the dielectric surface. Thus, the devices based on fluorinated PMMA modified dielectrics exhibit higher carrier mobility and electrical stability than those of the fluorine-free devices. Our investigation affords a new strategy for the design and interface optimization of devices, which may further advance the performance of OFET devices.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongming Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
109
|
Peng X, Li Q, Shuai Z. Influences of dynamic and static disorder on the carrier mobility of BTBT-C12 derivatives: a multiscale computational study. NANOSCALE 2021; 13:3252-3262. [PMID: 33533394 DOI: 10.1039/d0nr08320h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of dynamic and static disorder has been widely discussed for carrier transport in organic semiconductors. In this work, we apply a multiscale approach by combining molecular dynamics simulations, quantum mechanics calculations and kinetic Monte-Carlo simulations to study the influence of dynamic and static disorder on the hole mobility of four didodecyl[1]benzothieno[3,2-b]benzothiophene (BTBT-C12) isomers. It is found that the dynamic disorder of transfer integral tends to decrease the mobility for quasi-1D (quasi one-dimensional) BTBT1 and BTBT4 isomers and increase the mobility for 2D (two-dimensional) BTBT2 and BTBT3 isomers, while the dynamic disorder of site energy tends to decrease mobility for all the four isomers; however, the reduction in 2D molecules is much less than that in quasi-1D molecules. Results show that trap defects could reduce the mobility for both the quasi-1D and 2D molecular structures significantly, even to several orders of magnitude. In addition, our work also reveals that there might exist two kinds of oxidation defects of the scatter type for the concerned isomers, which thus leads to greater reduction in mobility for the quasi-1D molecular structures than the 2D molecular structures. The study shows that the 2D molecular structures are favored over the quasi-1D or 1D molecular structure, and it is expected that these results could be used to shed light on device design in organic electronics.
Collapse
Affiliation(s)
- Xingliang Peng
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | |
Collapse
|
110
|
Ye X, Zhao X, Wang S, Wei Z, Lv G, Yang Y, Tong Y, Tang Q, Liu Y. Blurred Electrode for Low Contact Resistance in Coplanar Organic Transistors. ACS NANO 2021; 15:1155-1166. [PMID: 33337129 DOI: 10.1021/acsnano.0c08122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inefficient charge injection and transport across the electrode/semiconductor contact edge severely limits the device performance of coplanar organic thin-film transistors (OTFTs). To date, various approaches have been implemented to address the adverse contact problems of coplanar OTFTs. However, these approaches mainly focused on reducing the injection resistance and failed to effectively lower the access resistance. Here, we demonstrate a facile strategy by utilizing the blurring effect during the deposition of metal electrodes, to significantly reduce the access resistance. We find that the transition region formed by the blurring behavior can continuously tune the molecular packing and thin-film growth of organic semiconductors across the contact edge, as well as provide continuously distributed gap states for carrier tunnelling. Based on this versatile strategy, the fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) coplanar OTFT shows a high field-effect mobility of 6.08 cm2 V-1 s-1 and a low contact resistance of 2.32 kΩ cm, comparable to the staggered OTFTs fabricated simultaneously. Our work addresses the crucial impediments for further reducing the contact resistance in coplanar OTFTs, which represents a significant step of contact injection engineering in organic devices.
Collapse
Affiliation(s)
- Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhan Wei
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Guangshuang Lv
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
111
|
Li J, Shen P, Zhen S, Tang C, Ye Y, Zhou D, Hong W, Zhao Z, Tang BZ. Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers. Nat Commun 2021; 12:167. [PMID: 33420002 PMCID: PMC7794330 DOI: 10.1038/s41467-020-20311-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular potentiometers that can indicate displacement-conductance relationship, and predict and control molecular conductance are of significant importance but rarely developed. Herein, single-molecule potentiometers are designed based on ortho-pentaphenylene. The ortho-pentaphenylene derivatives with anchoring groups adopt multiple folded conformers and undergo conformational interconversion in solutions. Solvent-sensitive multiple conductance originating from different conformers is recorded by scanning tunneling microscopy break junction technique. These pseudo-elastic folded molecules can be stretched and compressed by mechanical force along with a variable conductance by up to two orders of magnitude, providing an impressively higher switching factor (114) than the reported values (ca. 1~25). The multichannel conductance governed by through-space and through-bond conducting pathways is rationalized as the charge transport mechanism for the folded ortho-pentaphenylene derivatives. These findings shed light on exploring robust single-molecule potentiometers based on helical structures, and are conducive to fundamental understanding of charge transport in higher-order helical molecules.
Collapse
Affiliation(s)
- Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Shijie Zhen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiling Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Dahai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China.
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
112
|
Pan Y, Huang J, Gao D, Chen Z, Zhang W, Yu G. An insight into the role of side chains in the microstructure and carrier mobility of high-performance conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d1py00105a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of linear-chain interdigitation on device performance was studied in detail by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Yuchai Pan
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianyao Huang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Dong Gao
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
113
|
Rani P, Husain A, Shukla A, Singla N, Srivastava AK, Kumar G, Bhasin KK, Kumar G. Functionalized naphthalenediimide based supramolecular charge-transfer complexes via self-assembly and their photophysical properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01719a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two new intermolecular CT complexes having large Stokes shift (>170 nm) and significant fluorescence life-time (∼1.55 ns) have been prepared and exploited for cell imaging application.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ahmad Husain
- Department of Chemistry
- DAV University Jalandhar
- India
| | - Ananya Shukla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | - Neha Singla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | | | - Gulshan Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - K. K. Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
114
|
Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. NANOSCALE 2020; 12:23391-23423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The substantial amount of data generated every second in the big data age creates a pressing requirement for new and advanced data storage techniques. Luminescent nanomaterials (LNMs) not only possess the same optical properties as their bulk materials but also have unique electronic and mechanical characteristics due to the strong constraints of photons and electrons at the nanoscale, enabling the development of revolutionary methods for data storage with superhigh storage capacity, ultra-long working lifetime, and ultra-low power consumption. In this review, we investigate the latest achievements in LNMs for constructing next-generation data storage systems, with a focus on optical data storage and optoelectronic data storage. We summarize the LNMs used in data storage, namely upconversion nanomaterials, long persistence luminescent nanomaterials, and downconversion nanomaterials, and their applications in optical data storage and optoelectronic data storage. We conclude by discussing the superiority of the two types of data storage and survey the prospects for the field.
Collapse
Affiliation(s)
- Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, 518060, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Sun H, Martinez D, Li Z, Schanze KS. Biofunctionalization of Water-Soluble poly(Phenylene Ethynylene)s. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53310-53317. [PMID: 33190474 PMCID: PMC7927151 DOI: 10.1021/acsami.0c15464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the use of amide coupling chemistry to covalently link five different biofunctional groups onto an anionic water-soluble poly(phenylene ethynylene) (PPE) polymer. Two of the biofunctionalized PPEs are used in prototype applications, including pH sensing and flow cytometry labeling. The PPE is functionalized with carboxylate (R-CO2-) and sulfonate (R-SO3-) ionic groups. By using an activated ester, the amine-functionalized groups are covalently linked to the PPE polymer via amide linkages. The reaction chemistry is optimized using biotin-ethylene diamine, making it possible to control the loading of the biotin functionality on the PPE chains. Using the optimized approach, a family of five PPEs were prepared that contain biotin, rhodamine, cholesterol, mannose, or folic acid moieties appended to the polymer backbones. The rhodamine- and biotin-modified PPEs were further applied for pH response and flow cytometry applications. The reported approach can be utilized for other classes of water-soluble conjugated polymers, allowing facile development of a variety of new functionalized water-soluble conjugated polymers for a range of applications including sensing, bioimaging, and flow cytometry analysis.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Daniel Martinez
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Zhiliang Li
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
116
|
Li P, Jia C, Guo X. Molecule-Based Transistors: From Macroscale to Single Molecule. CHEM REC 2020; 21:1284-1299. [PMID: 33140918 DOI: 10.1002/tcr.202000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
Molecule-based field-effect transistors (FETs) are of great significance as they have a wide range of application prospects, such as logic operations, information storage and sensor monitoring. This account mainly introduces and reviews our recent work in molecular FETs. Specifically, through molecular and device design, we have systematically investigated the construction and performance of FETs from macroscale to nanoscale and even single molecule. In particular, we have proposed the broad concept of molecular FETs, whose functions can be achieved through various external controls, such as light stimulation, and other physical, chemical or biological interactions. In the end, we tend to focus the discussion on the development challenges of single-molecule FETs, and propose prospects for further breakthroughs in this field.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
117
|
Jiang H, Cao Y, Yang Q, Xian L, Tao Y, Chen R, Huang W. Organic Resonance Materials: Molecular Design, Photophysical Properties, and Optoelectronic Applications. J Phys Chem Lett 2020; 11:7739-7754. [PMID: 32804505 DOI: 10.1021/acs.jpclett.0c01571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic optoelectronic molecules with resonance effects are a striking class of functional materials that have witnessed booming progress in recent years. Various resonances induced by particularly constructed molecular structures can effectively influence key photophysical processes to afford particular optoelectronic properties of the organic resonance materials. The charge transport behaviors were tuned to be dynamic and self-adaptive; emission spectra were made to be very narrow with high color purity; optical bandgaps were significantly reduced, and intersystem crossing was greatly promoted. Therefore, great success has been achieved in various optoelectronic devices by using organic resonance materials to function as smart host materials with high triplet energies, highly luminescent emitters with high quantum yields and narrow emission bands, efficient organic afterglow molecules, and sensitive fluorescent probes. In this Perspective, material design principles, molecular structures and properties, and device performance of organic resonance materials are highlighted and future directions and challenges for this series of amazing materials are discussed.
Collapse
Affiliation(s)
- He Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Cao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qingqing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lijie Xian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
118
|
Garner MH, Solomon GC. Simultaneous Suppression of π- and σ-Transmission in π-Conjugated Molecules. J Phys Chem Lett 2020; 11:7400-7406. [PMID: 32787288 DOI: 10.1021/acs.jpclett.0c01727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular dielectric materials require ostensibly conflicting requirements of high polarizability and low conductivity. As previous efforts toward molecular insulators focused on saturated molecules, it remains an open question whether π- and σ-transport can be simultaneously suppressed in conjugated systems. Here, we demonstrate that there are conjugated molecules where the σ-transmission is suppressed by destructive σ-interference, while the π-transmission can be suppressed by a localized disruption of conjugation. Using density functional theory, we study the Landauer transmission and ballistic current density, which allow us to determine how the transmission is affected by various structural changes in the molecule. We find that in para-linked oligophenyl rings the σ-transmission can be suppressed by changing the remaining hydrogens to methyl groups due to the inherent gauche-like structure of the carbon backbone within a benzene ring, similar to what was previously seen in saturated systems. At the same time, the methyl groups fulfill a dual purpose as they modulate the twist angle between neighboring phenyl rings. When neighboring rings are orthogonal to each other, the transmission through both π- and σ-systems is effectively suppressed. Alternatively, breaking conjugation in a single phenyl ring by saturating two carbons atoms with two methyl substituents on each carbon, results in suppressed π- and σ-transport independent of dihedral angle. These two strategies demonstrate that methyl-substituted oligophenyls are promising candidates for the development of molecular dielectric materials.
Collapse
Affiliation(s)
- Marc H Garner
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|