101
|
Gillooly KM, Pulicicchio C, Pattoli MA, Cheng L, Skala S, Heimrich EM, McIntyre KW, Taylor TL, Kukral DW, Dudhgaonkar S, Nagar J, Banas D, Watterson SH, Tino JA, Fura A, Burke JR. Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLoS One 2017; 12:e0181782. [PMID: 28742141 PMCID: PMC5524405 DOI: 10.1371/journal.pone.0181782] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA) and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjögren’s syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM), blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation) in human B cells (IC50 ≤ 5 nM), inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA), including collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA). In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig) in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.
Collapse
Affiliation(s)
- Kathleen M. Gillooly
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Claudine Pulicicchio
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Mark A. Pattoli
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Lihong Cheng
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Stacey Skala
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Elizabeth M. Heimrich
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Kim W. McIntyre
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Tracy L. Taylor
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Daniel W. Kukral
- Exploratory Clinical and Translational Research, Imaging, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Shailesh Dudhgaonkar
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research Center, Syngene International Limited, Bangalore, India
| | - Jignesh Nagar
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research Center, Syngene International Limited, Bangalore, India
| | - Dana Banas
- Discovery Translational Sciences, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Scott H. Watterson
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Joseph A. Tino
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - Aberra Fura
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
| | - James R. Burke
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
102
|
Musumeci F, Sanna M, Greco C, Giacchello I, Fallacara AL, Amato R, Schenone S. Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors. Expert Opin Ther Pat 2017; 27:1305-1318. [DOI: 10.1080/13543776.2017.1355908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Monica Sanna
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Chiara Greco
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Ilaria Giacchello
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Rosario Amato
- Dipartimento di “Scienze della Salute”, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
103
|
Kulkarni MR, Mane MS, Ghosh U, Sharma R, Lad NP, Srivastava A, Kulkarni-Almeida A, Kharkar PS, Khedkar VM, Pandit SS. Discovery of tetrahydrocarbazoles as dual pERK and pRb inhibitors. Eur J Med Chem 2017; 134:366-378. [PMID: 28431342 DOI: 10.1016/j.ejmech.2017.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
The extracellular signal-regulated kinase (ERK) is one of the most important molecular targets for cancer that controls diverse cellular processes such as proliferation, survival, differentiation and motility. Similarly, the Rb (retinoblastoma protein) is a tumor suppressor protein and its function is to prevent excessive cell growth by inhibiting cell cycle progression. When the cell is ready to divide, pRb is phosphorylated, becomes inactive and allows cell cycle progression. Herein, we discovered a new series of tetrahydrocarbazoles as dual inhibitors of pERK and pRb phosphorylation. The in-house small molecule library was screened for inhibition of pERK and pRb phosphorylation, which led to the discovery of tetrahydrocarbazole series of compounds as potential leads. N-(3-methylcyclopentyl)-6-nitro-2,3,4,4a,9,9a-hexahydro-1H-carbazol-2-amine (1) is the dual inhibitor lead identified through screening, displaying inhibition of pERK and pRb phosphorylation with IC50 values of 5.5 and 4.8 μM, respectively. A short structure-activity relationship (SAR) study has been performed, which identified another dual inhibitor 9-methyl-N-(4-methylbenzyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-2-amine (16) with IC50 values 4.4 and 3.5 μM for inhibition of pERK and pRb phosphorylation, respectively. This compound has a potential for further lead optimization to discover promising molecularly-targeted anticancer agents.
Collapse
Affiliation(s)
- Mahesh R Kulkarni
- Post Graduate and Research Centre, Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India; Department of Medicinal Chemistry, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400 063, India
| | - Madhav S Mane
- Department of Medicinal Chemistry, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400 063, India
| | - Usha Ghosh
- Department of Medicinal Chemistry, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400 063, India
| | - Rajiv Sharma
- Department of Medicinal Chemistry, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400 063, India
| | - Nitin P Lad
- Post Graduate and Research Centre, Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India; Department of Medicinal Chemistry, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400 063, India
| | - Ankita Srivastava
- Department of Pharmacology, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400063, India
| | - Asha Kulkarni-Almeida
- Department of Pharmacology, Piramal Enterprises Limited 1, Nirlon Complex, Off Western Exp. Highway, Near NSE Complex, Goregaon East, Mumbai, Maharashtra 400063, India
| | - Prashant S Kharkar
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Vijay M Khedkar
- School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa
| | - Shivaji S Pandit
- Post Graduate and Research Centre, Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India.
| |
Collapse
|
104
|
Wang X, Barbosa J, Blomgren P, Bremer MC, Chen J, Crawford JJ, Deng W, Dong L, Eigenbrot C, Gallion S, Hau J, Hu H, Johnson AR, Katewa A, Kropf JE, Lee SH, Liu L, Lubach JW, Macaluso J, Maciejewski P, Mitchell SA, Ortwine DF, DiPaolo J, Reif K, Scheerens H, Schmitt A, Wong H, Xiong JM, Xu J, Zhao Z, Zhou F, Currie KS, Young WB. Discovery of Potent and Selective Tricyclic Inhibitors of Bruton's Tyrosine Kinase with Improved Druglike Properties. ACS Med Chem Lett 2017. [PMID: 28626519 PMCID: PMC5467183 DOI: 10.1021/acsmedchemlett.7b00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
![]()
In our continued effort to discover
and develop best-in-class Bruton’s tyrosine kinase (Btk) inhibitors
for the treatment of B-cell lymphomas, rheumatoid arthritis, and systemic
lupus erythematosus, we devised a series of novel tricyclic compounds
that improved upon the druglike properties of our previous chemical
matter. Compounds exemplified by G-744 are highly potent,
selective for Btk, metabolically stable, well tolerated, and efficacious
in an animal model of arthritis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - James Barbosa
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Peter Blomgren
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Meire C. Bremer
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob Chen
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei Deng
- ChemPartner, No. 1 Building,
998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China 201203
| | - Liming Dong
- ChemPartner, No. 1 Building,
998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China 201203
| | - Charles Eigenbrot
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steve Gallion
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Jonathon Hau
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Huiyong Hu
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam R. Johnson
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Arna Katewa
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey E. Kropf
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Seung H. Lee
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Lichuan Liu
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W. Lubach
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jen Macaluso
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Pat Maciejewski
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Scott A. Mitchell
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Daniel F. Ortwine
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Julie DiPaolo
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Karin Reif
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Heleen Scheerens
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron Schmitt
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Harvey Wong
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jin-Ming Xiong
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Jianjun Xu
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Zhongdong Zhao
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Fusheng Zhou
- ChemPartner, No. 1 Building,
998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China 201203
| | - Kevin S. Currie
- Gilead
Sciences (formerly CGI Pharmaceuticals), 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Wendy B. Young
- Genentech, Inc., Research and
Early Development, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
105
|
Lee SK, Xing J, Catlett IM, Adamczyk R, Griffies A, Liu A, Murthy B, Nowak M. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. Eur J Clin Pharmacol 2017; 73:689-698. [PMID: 28265691 PMCID: PMC5423977 DOI: 10.1007/s00228-017-2226-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE BMS-986142 is an oral, small-molecule reversible inhibitor of Bruton's tyrosine kinase. The main objectives of our phase I studies were to characterize the safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-986142 in healthy participants, and to investigate the potential for the effect of BMS-986142 on the PK of methotrexate (MTX) in combination. METHODS In a combined single ascending dose and multiple ascending dose study, the safety, pharmacokinetics, and pharmacodynamics of BMS-986142 were assessed in healthy non-Japanese participants following administration of a single dose (5-900 mg) or multiple doses (25-350 mg, once daily for 14 days). In a drug-drug interaction study, the effect of BMS-986142 (350 mg, once daily for 5 days) on the single-dose pharmacokinetics of MTX (7.5 mg) was assessed in healthy participants. RESULTS BMS-986142 was generally well tolerated, alone and in combination with MTX. BMS-986142 was rapidly absorbed with peak concentrations occurring within 2 h, and was eliminated with a mean half-life ranging from 7 to 11 h. Exposure of BMS-986142 appeared dose proportional within the dose ranges tested. A dose- and concentration-dependent inhibition of CD69 expression was observed following administration of BMS-986142. BMS-986142 did not affect the pharmacokinetics of MTX. CONCLUSIONS BMS-986142 was well tolerated at the doses tested, had pharmacokinetic and pharmacodynamic profiles which support once-daily dosing, and can be coadministered with MTX without the pharmacokinetic interaction of BMS-986142 on MTX.
Collapse
Affiliation(s)
- Sun Ku Lee
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA.
| | - Jun Xing
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Ian M Catlett
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Robert Adamczyk
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Amber Griffies
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Ang Liu
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Bindu Murthy
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| | - Miroslawa Nowak
- Bristol-Myers Squibb, 3551 Lawrenceville Rd, Princeton, NJ, 08540, USA
| |
Collapse
|
106
|
Discovery and evaluation of 1 H -pyrrolo[2,3- b ]pyridine based selective and reversible small molecule BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 2017; 27:1867-1873. [DOI: 10.1016/j.bmcl.2017.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
|
107
|
Dai J, Wang C, Traeger SC, Discenza L, Obermeier MT, Tymiak AA, Zhang Y. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton’s tyrosine kinase. J Chromatogr A 2017; 1487:116-128. [DOI: 10.1016/j.chroma.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
|
108
|
Beutner GL, Hsiao Y, Razler T, Simmons EM, Wertjes W. Nickel-Catalyzed Synthesis of Quinazolinediones. Org Lett 2017; 19:1052-1055. [DOI: 10.1021/acs.orglett.7b00052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory L. Beutner
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Yi Hsiao
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Thomas Razler
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Eric M. Simmons
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - William Wertjes
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| |
Collapse
|