101
|
Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. Chembiochem 2020; 21:811-817. [PMID: 31605652 PMCID: PMC7154551 DOI: 10.1002/cbic.201900624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.
Collapse
Affiliation(s)
- Lei Huang
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | | | - Sven Jakobtorweihen
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | - Selin Kara
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| |
Collapse
|
102
|
Triolo A, Lo Celso F, Russina O. Structural Features of β-Cyclodextrin Solvation in the Deep Eutectic Solvent, Reline. J Phys Chem B 2020; 124:2652-2660. [DOI: 10.1021/acs.jpcb.0c00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alessandro Triolo
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
| | - Fabrizio Lo Celso
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
- Dipartimento di Fisica e Chimica ‘Emilio Segrè’, Università degli studi di Palermo, 90128 Palermo, Italy
| | - Olga Russina
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
- Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
103
|
Alkhatib II, Bahamon D, Llovell F, Abu-Zahra MR, Vega LF. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112183] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
104
|
Figueiredo NM, Voroshylova IV, Koverga VA, Ferreira ES, Cordeiro MND. Influence of alcohols on the inter-ion interactions in ionic liquids: A molecular dynamics study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
105
|
Chatterjee S, Ghosh D, Haldar T, Deb P, Sakpal SS, Deshmukh SH, Kashid SM, Bagchi S. Hydrocarbon Chain-Length Dependence of Solvation Dynamics in Alcohol-Based Deep Eutectic Solvents: A Two-Dimensional Infrared Spectroscopic Investigation. J Phys Chem B 2019; 123:9355-9363. [DOI: 10.1021/acs.jpcb.9b08954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil S. Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samadhan H. Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somnath M. Kashid
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
106
|
Kaur S, Malik A, Kashyap HK. Anatomy of Microscopic Structure of Ethaline Deep Eutectic Solvent Decoded through Molecular Dynamics Simulations. J Phys Chem B 2019; 123:8291-8299. [DOI: 10.1021/acs.jpcb.9b06624] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
107
|
Thomas DA, Mucha E, Lettow M, Meijer G, Rossi M, von Helden G. Characterization of a trans-trans Carbonic Acid-Fluoride Complex by Infrared Action Spectroscopy in Helium Nanodroplets. J Am Chem Soc 2019; 141:5815-5823. [PMID: 30883095 PMCID: PMC6727381 DOI: 10.1021/jacs.8b13542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The high Lewis basicity
and small ionic radius of fluoride promote
the formation of strong ionic hydrogen bonds in the complexation of
fluoride with protic molecules. Herein, we report that carbonic acid,
a thermodynamically disfavored species that is challenging to investigate
experimentally, forms a complex with fluoride in the gas phase. Intriguingly,
this complex is highly stable and is observed in abundance upon nanoelectrospray
ionization of an aqueous sodium fluoride solution in the presence
of gas-phase carbon dioxide. We characterize the structure and properties
of the carbonic acid–fluoride complex, F–(H2CO3), and its deuterated isotopologue, F–(D2CO3), by helium nanodroplet
infrared action spectroscopy in the photon energy range of 390–2800
cm–1. The complex adopts a C2v symmetry structure with the carbonic acid
in a planar trans–trans conformation and both OH groups forming
ionic hydrogen bonds with the fluoride. Substantial vibrational anharmonic
effects are observed in the infrared spectra, most notably a strong
blue shift of the symmetric hydrogen stretching fundamental relative
to predictions from the harmonic approximation or vibrational second-order
perturbation theory. Ab initio thermostated ring-polymer molecular
dynamics simulations indicate that this blue shift originates from
strong coupling between the hydrogen stretching and bending vibrations,
resulting in an effective weakening of the OH···F– ionic hydrogen bonds.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Mariana Rossi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| |
Collapse
|
108
|
Baz J, Held C, Pleiss J, Hansen N. Thermophysical properties of glyceline–water mixtures investigated by molecular modelling. Phys Chem Chem Phys 2019; 21:6467-6476. [DOI: 10.1039/c9cp00036d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Water activity and shear viscosity of water–glyceline mixtures are important process parameters that can be effectively calculated using molecular modelling.
Collapse
Affiliation(s)
- Jörg Baz
- Institute of Thermodynamics and Thermal Process Engineering
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Christoph Held
- Department of Biochemical and Chemical Engineering
- Laboratory of Thermodynamics
- Technische Universität Dortmund
- 44227 Dortmund
- Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
109
|
Turner AH, Holbrey JD. Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction. Phys Chem Chem Phys 2019; 21:21782-21789. [DOI: 10.1039/c9cp04343h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutron scattering reveals the persistent three-dimensional hydrogen-bonding network between glycerol molecules in the 1 : 2 choline chloride/glycerol eutectic.
Collapse
Affiliation(s)
- Adam H. Turner
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - John D. Holbrey
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
110
|
Silva LP, Araújo CF, Abranches DO, Melle-Franco M, Martins MAR, Nolasco MM, Ribeiro-Claro PJA, Pinho SP, Coutinho JAP. What a difference a methyl group makes - probing choline-urea molecular interactions through urea structure modification. Phys Chem Chem Phys 2019; 21:18278-18289. [PMID: 31396606 DOI: 10.1039/c9cp03552d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is a lack of fundamental knowledge on deep eutectic solvents, even for the most extensively studied mixtures, such as the mixture of cholinium chloride and urea, which prevents a judicious choice of components to prepare new solvents. The objective of this work is to study and understand the fundamental interactions between cholinium chloride and urea that lead to the experimentally observed melting temperature depression. To do so, the structure of urea was strategically and progressively modified, in order to block certain interaction centres, and the solid-liquid equilibrium data of each new binary system was experimentally measured. Using this approach, it was concluded that the most important interaction between cholinium chloride and urea occurs through hydrogen bonding between the chloride anion and the amine groups. Any blockage of these groups severely hampers the melting point depression effect. Raman spectroscopy and DFT calculations were utilized to study in more detail this hydrogen bonding and its nuances.
Collapse
Affiliation(s)
- Liliana P Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|