101
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
102
|
Lei X, Jia YG, Song W, Qi D, Jin J, Liu J, Ren L. Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking. ACS APPLIED BIO MATERIALS 2019; 2:3861-3869. [DOI: 10.1021/acsabm.9b00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyue Lei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dawei Qi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiahong Jin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
103
|
Subramani B, Shantamurthy CD, Maru P, Belekar MA, Mardhekar S, Shanmugam D, Kikkeri R. Demystifying a hexuronic acid ligand that recognizes Toxoplasma gondii and blocks its invasion into host cells. Org Biomol Chem 2019; 17:4535-4542. [PMID: 30994681 DOI: 10.1039/c9ob00744j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is a ubiquitous eukaryotic pathogen responsible for toxoplasmosis in humans and animals. This parasite is an obligate intracellular pathogen and actively invades susceptible host cells, a process which is mediated by specific receptor-ligand interactions. Here, we have identified an unnatural 2,4-disulfated d-glucuronic acid (Di-S-GlcA), a hexuronic acid composed of heparin/heparan sulfate, as a potential carbohydrate ligand that can selectively bind to T. gondii parasites. More importantly, the gelatin conjugated Di-S-GlcA multivalent probe displayed strong inhibition of parasite entry into host cells. These results open perspective for the future use of Di-S-GlcA epitopes in biomedical applications against toxoplasmosis.
Collapse
Affiliation(s)
- Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| | | | | | | | | | | | | |
Collapse
|
104
|
Bai Y, Li S, Li X, Han X, Li Y, Zhao J, Zhang J, Hou X, Yuan X. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:662-678. [DOI: 10.1080/09205063.2019.1600821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Bai
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Juntao Zhang
- First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
105
|
Shirzaei Sani E, Kheirkhah A, Rana D, Sun Z, Foulsham W, Sheikhi A, Khademhosseini A, Dana R, Annabi N. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. SCIENCE ADVANCES 2019; 5:eaav1281. [PMID: 30906864 PMCID: PMC6426459 DOI: 10.1126/sciadv.aav1281] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/31/2019] [Indexed: 05/19/2023]
Abstract
Corneal injuries are common causes of visual impairment worldwide. Accordingly, there is an unmet need for transparent biomaterials that have high adhesion, cohesion, and regenerative properties. Herein, we engineer a highly biocompatible and transparent bioadhesive for corneal reconstruction using a visible light cross-linkable, naturally derived polymer, GelCORE (gel for corneal regeneration). The physical properties of GelCORE could be finely tuned by changing prepolymer concentration and photocrosslinking time. GelCORE revealed higher tissue adhesion compared to commercial adhesives. Furthermore, in situ photopolymerization of GelCORE facilitated easy delivery to the cornea, allowing for bioadhesive curing precisely according to the required geometry of the defect. In vivo experiments, using a rabbit stromal defect model, showed that bioadhesive could effectively seal corneal defects and induce stromal regeneration and re-epithelialization. Overall, GelCORE has many advantages including low cost and ease of production and use. This makes GelCORE a promising bioadhesive for corneal repair.
Collapse
Affiliation(s)
- Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Kheirkhah
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Zhongmou Sun
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
106
|
Nath J, Chowdhury A, Ali I, Dolui SK. Development of a gelatin‐
g
‐poly(acrylic acid‐
co
‐acrylamide)–montmorillonite superabsorbent hydrogels for
in vitro
controlled release of vitamin B
12. J Appl Polym Sci 2019. [DOI: 10.1002/app.47596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
107
|
Hou S, Lake R, Park S, Edwards S, Jones C, Jeong KJ. Injectable Macroporous Hydrogel Formed by Enzymatic Cross-Linking of Gelatin Microgels. ACS APPLIED BIO MATERIALS 2018; 1:1430-1439. [PMID: 31701093 DOI: 10.1021/acsabm.8b00380] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Injectable hydrogels can be useful tools for facilitating wound healing since they conform to the irregular shapes of wounds, serving as a temporary matrix during the healing process. However, the lack of inherent pore structures of most injectable hydrogels prohibits desired interactions with the cells of the surrounding tissues limiting their clinical efficacy. Here, we introduce a simple, cost-effective and highly biofunctional injectable macroporous hydrogel made of gelatin microgels crosslinked by microbial transglutaminase (mTG). Pores are created by the interstitial space among the microgels. A water-in-oil emulsion technique was used to create gelatin microgels of an average size of 250μm in diameter. When crosslinked with mTG, the microgels adhered to each other to form a bulk hydrogel with inherent pores large enough for cell migration. The viscoelastic properties of the porous hydrogel were similar to those of nonporous gelatin hydrogel made by adding mTG to a homogeneous gelatin solution. The porous hydrogel supported higher cellular proliferation of human dermal fibroblasts (hDFs) than the nonporous hydrogel over two weeks, and allowed the migration of hDFs into the pores. Conversely, the hDFs were unable to permeate the surface of the nonporous hydrogel. To demonstrate its potential use in wound healing, the gelatin microgels were injected with mTG into a cut out section of an excised porcine cornea. Due to the action of mTG, the porous hydrogel stably adhered to the cornea tissue for two weeks. Confocal images showed that a large number of cells from the cornea tissue migrated into the interstitial space of the porous hydrogel. The porous hydrogel was also used for the controlled release of platelet-derived growth factor (PDGF), increasing the proliferation of hDFs compared to the nonporous hydrogel. This gelatin microgel-based porous hydrogel will be a useful tool for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Rachel Lake
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Seth Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Chante Jones
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
108
|
Zhu Y, Lu W, Guo Y, Chen Y, Wu Y, Lu H. Biocompatible, stretchable and mineral PVA–gelatin–nHAP hydrogel for highly sensitive pressure sensors. RSC Adv 2018; 8:36999-37007. [PMID: 35557828 PMCID: PMC9088965 DOI: 10.1039/c8ra06193a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Conductive hydrogels have attracted increasing attention because of their important application in flexible pressure sensors. However, designing hydrogels with a combination of excellent mechanical properties, high sensitivity, and good biocompatibility is still a profound challenge. Here we report a conductive and biocompatible PVA–Gelatin–nHAP hydrogel (PGHAP gel) by connecting a double network with inorganic nano-particles via ionic bonds. The as-prepared gel achieves excellent elasticity and good fatigue resistance even after 50 cycles of compression. Then a hydrogel pressure sensor was obtained using the as-prepared gel, exhibiting high pressure sensitivity almost linearly responding up to 1.5 kPa and adequate stability of the capacitance–pressure over 4 cycles. These results demonstrate the great potential applications of the hydrogel in biomedical devices, including artificial intelligence, human motion detection, and wearable devices. A biocompatible, stretchable and mineral conductive hydrogel used for highly sensitive pressure sensors.![]()
Collapse
Affiliation(s)
- Yi Zhu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
| | - Weipeng Lu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
- Key Laboratory of Photochemical Conversion and Optoelectronic Material
| | - Yanchuan Guo
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
- Key Laboratory of Photochemical Conversion and Optoelectronic Material
| | - Yu Chen
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
| | - Yuxiao Wu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
| | - Haojun Lu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310000
- China
| |
Collapse
|