101
|
Lyu B, Bao X, Gao D, Guo X, Lu X, Ma J. Highly Stable CsSnCl 3 Quantum Dots Grown in an Ionic Liquid/Gelatin Composite System through an In Situ Method. Inorg Chem 2022; 61:5672-5682. [PMID: 35333522 DOI: 10.1021/acs.inorgchem.2c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lead halide perovskite quantum dots (QDs) are controversial due to their high lead content. Tin, a low-toxic element with an outer electronic structure similar to that of Pb, becomes a strong candidate for preparing lead-free perovskite QDs. However, tin-based perovskite QDs, especially CsSnCl3 QDs, exhibit poor environmental stability. Herein, we proposed an strategy for highly stable CsSnCl3 QDs using an ionic liquid as a solvent and antioxidant and gelatin as a multidentate ligand and coating material through an in situ method ([AMIM]Cl/gelatin-QDs). The results showed that the abundant active groups of gelatin served as the nucleation growth center for QDs and further passivated QDs. At the same time, the long molecular chain of gelatin can coat the QDs to isolate the environment and fully protect QDs, and the size of QDs grown in gelatin was 5-10 nm. In addition, the oxidation resistance of ionic liquids and the halogen-rich environment formed also played an important role. Even if [AMIM]Cl/gelatin-QDs were treated with water and ultraviolet light simultaneously, its remaining fluorescence intensity was still above 60% within 72 h. Meaningfully, QDs endowed the composite system mildew resistance, which can resist the erosion of gelatin by molds, thereby realizing the system's long-term protection toward CsSnCl3 QDs.
Collapse
Affiliation(s)
- Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiangrui Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology, Xi'an 710021, China.,Xi'an Key Laboratory of Green Chemicals and Functional Materials Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
102
|
Zhu H, Pan Y, Peng C, Lian H, Lin J. 4‐Bromo‐Butyric Acid‐Assisted In Situ Passivation Strategy for Superstable All‐Inorganic Halide Perovskite CsPbX
3
Quantum Dots in Polar Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Zhu
- Nanomaterials and Chemistry Key Laboratory Faculty of Chemistry and Materials Engineering Wenzhou University Zhejiang Province Wenzhou 325027 P. R. China
| | - Yuexiao Pan
- Nanomaterials and Chemistry Key Laboratory Faculty of Chemistry and Materials Engineering Wenzhou University Zhejiang Province Wenzhou 325027 P. R. China
| | - Chengdong Peng
- Nanomaterials and Chemistry Key Laboratory Faculty of Chemistry and Materials Engineering Wenzhou University Zhejiang Province Wenzhou 325027 P. R. China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
103
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
104
|
Wu D, Huo B, Huang Y, Zhao X, Yang J, Hu K, Mao X, He P, Huang Q, Tang X. Synthesis of Stable Lead-Free Cs 3 Sb 2 (Br x I 1- x ) 9 (0 ≤ x ≤ 1) Perovskite Nanoplatelets and Their Application in CO 2 Photocatalytic Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106001. [PMID: 35112495 DOI: 10.1002/smll.202106001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Exploring photocatalysts to foster CO2 photoreduction into high value-added chemicals is of great significance. Lead halide perovskites (LHPs) have recently been extensively investigated as photocatalysts, owing to their facile fabrication and prominent optoelectronic properties. However, the toxicity of lead and instability will hinder their future large-scale applications. To address these challenges, a series of lead-free Sb-based all-inorganic mixed halide perovskite Cs3 Sb2 (Brx I1- x )9 (0 ≤ x ≤ 1) nanoplatelets (NPLs) is synthesized. The perovskite NPLs are prepared using a ligand-assisted re-precipitation approach at 50 °C. The authors observe the tunability of their optical band gaps from 2.1 to 2.5 eV, and they can maintain the excellent stability over 120 h under heating at 100 °C or UV light irradiation. The resultant materials are employed as efficient photocatalysts for visible-light driven CO2 reduction at the gas-solid interface. The Cs3 Sb2 (Br0.7 I0.3 )9 perovskite NPLs afford an impressive overall yield of 27.7 µmol g-1 for the selective photocatalytic conversion of CO2 into CO. This study represents a significant demonstration for practical artificial photosynthesis by using LHP materials as photocatalysts.
Collapse
Affiliation(s)
- Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Benjun Huo
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Yanyi Huang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xusheng Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiayu Yang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ke Hu
- Department of Chemistry, Shandong University, Weihai, 264200, China
| | - Xinchun Mao
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou, 621908, China
| | - Peng He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Huang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
105
|
Bera S, Hudait B, Mondal D, Shyamal S, Mahadevan P, Pradhan N. Transformation of Metal Halides to Facet-Modulated Lead Halide Perovskite Platelet Nanostructures on A-Site Cs-Sublattice Platform. NANO LETTERS 2022; 22:1633-1640. [PMID: 35157475 DOI: 10.1021/acs.nanolett.1c04624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conversion of metal halides to lead halide perovskites with B-site metal ion diffusion has remained a convenient approach for obtaining shape-modulated perovskite nanocrystals. These transformations are typically observed for materials having a common A-site Cs-sublattice platform. However, due to the fast reactions, trapping the interconversion process has been difficult. In an exploration of the tetragonal phase of Cs7Cd3Br13 platelets as the parent material, herein, a slower diffusion of Pb(II) leading to facet-modulated CsPbBr3 platelets is reported. This was expected due to the presence of Cd(II) halide octahedra along with Cd(II) halide tetrahedra in the parent material. This helped in microscopically monitoring their phase transformation via an epitaxially related core/shell intermediate heterostructure. The transformation was also derived and predicted by density functional theory calculations. Further, when the reaction chemistry was tuned, core/shell platelets were transformed to different facet-modulated and hollow CsPbBr3 platelet nanostructures. These platelets having different facets were also explored for catalytic CO2 reduction, and their catalytic rates were compared.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Hudait
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
106
|
Wang Z, Shen X, Tang C, Li X, Hu J, Zhu J, Yu WW, Song H, Bai X. Efficient and Stable CF 3PEAI-Passivated CsPbI 3 QDs toward Red LEDs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8235-8242. [PMID: 35119813 DOI: 10.1021/acsami.1c19685] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oleylamine and oleic acid are common organic capping ligands used in the hot injection preparation of perovskite quantum dots (QDs). Their labile nature is responsible for the poor colloidal stability and conductivity that affect the performance of perovskite QD light-emitting diodes (LEDs). We introduced 4-trifluoro phenethylammonium iodide (CF3PEAI) directly in the synthesis and found that CF3PEAI efficiently modified the I- vacancy defects on the QD surface and partially substituted the surface capping ligand oleylamine. The strong electron pulling ability of F in CF3PEAI results in a more positive -NH3+ terminal compared to that of PEAI, which promotes tight bonding of CF3PEAI on the surface of CsPbI3 QDs. As a result, we achieved bright QDs with a photoluminescence quantum yield of 92% and efficient red LEDs. The maximal luminance was improved to 4550 cd m-2 for 685 nm red light, which was nearly 4.6-fold of the LEDs with plain CsPbI3 QDs. Additionally, the peak external quantum efficiency reached 12.5%.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xinyu Shen
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chengyuan Tang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xin Li
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junhua Hu
- Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyang Zhu
- Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - William W Yu
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115, United States
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
107
|
Enomoto J, Sato R, Yokoyama M, Kimura T, Oshita N, Umemoto K, Asakura S, Masuhara A. Highly luminescent MAPbI 3 perovskite quantum dots with a simple purification process via ultrasound-assisted bead milling. RSC Adv 2022; 12:5571-5576. [PMID: 35425546 PMCID: PMC8981582 DOI: 10.1039/d1ra08887d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Organic-inorganic hybrid lead halide perovskite quantum dots (QDs) have various excellent optical properties, and they have drastically enhanced the field of light-emitting diode (LED) research. However, red-emissive CH3NH3 (MA) PbI3 QDs have worse optical properties compared with those of green-emissive MAPbBr3 QDs due to their instability under high-moisture and high-temperature conditions. Therefore, it is quite difficult to prepare MAPbI3 QDs with good optical properties via bottom-up methods using conditions involving high temperature and high-solubility solvents. On the other hand, top-down methods for preparing MAPbI3 QDs under an air atmosphere have attracted attention; however, there are issues, such as PL emission with a wide FWHM being obtained due to the wide particle-size distribution. In this research, red-emissive MAPbI3 QDs were prepared via an ultrasound-assisted bead milling (UBM) method, and the MAPbI3 QDs were purified using various carboxylate esters. As a result, we solved the issue of the wide particle-size distribution unique to top-down methods via purifying the MAPbI3 QDs, and they achieved the following excellent optical properties: a FWHM of 44 to 48 nm and a PLQY of over 60%. Notably, a fabricated LED device with MAPbI3 QDs purified using methyl acetate showed a PL peak at 738 nm and a FWHM of 49 nm, resulting in an excellent EQE value of 3.2%.
Collapse
Affiliation(s)
- Junya Enomoto
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Ryota Sato
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Masaaki Yokoyama
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Taisei Kimura
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Naoaki Oshita
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Kazuki Umemoto
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Satoshi Asakura
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Ise Chemicals Corporation 1-3-1, Kyobashi Chuo-ku Tokyo Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM), Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
108
|
VanOrman ZA, Weiss R, Medina M, Nienhaus L. Scratching the Surface: Passivating Perovskite Nanocrystals for Future Device Integration. J Phys Chem Lett 2022; 13:982-990. [PMID: 35060738 DOI: 10.1021/acs.jpclett.1c04130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite materials have recently upended the field of photovoltaics and are aiming to make waves across a multitude of other fields and applications. Recently, perovskite nanocrystals have been synthesized and are rapidly outpacing traditional semiconductor nanocrystals in application driven fields due to their inherent defect tolerance and facile tunability, resulting in high photoluminescent quantum yields and efficient devices. Future improvements to perovskite nanocrystals toward device driven applications must come at the perovskite surface. The last half decade has resulted in considerable progress in tailoring the perovskite nanocrystal/ligand surface toward maximizing the optoelectronic performance. Here, we review the current progress and discuss how further improvements could be made to further improve this bright class of materials.
Collapse
Affiliation(s)
- Zachary A VanOrman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Rachel Weiss
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Megan Medina
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Lea Nienhaus
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
109
|
Liu J, Zheng X, Mohammed OF, Bakr OM. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Acc Chem Res 2022; 55:262-274. [PMID: 35037453 PMCID: PMC8811956 DOI: 10.1021/acs.accounts.1c00651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Over the past decade, the impressive development
of metal halide
perovskites (MHPs) has made them leading candidates for applications
in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes
(LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic
properties using a low-cost approach is critical to realizing their
commercial potential. Self-assembly and regrowth techniques provide
a simple and powerful “bottom-up” platform for controlling
the structure, shape, and dimensionality of MHP NCs. The soft ionic
nature of MHP NCs, in conjunction with their low formation energy,
rapid anion exchange, and ease of ion migration, enables the rearrangement
of their overall appearance via self-assembly or regrowth. Because
of their low formation energy and highly dynamic surface ligands,
MHP NCs have a higher propensity to regrow than conventional hard-lattice
NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously.
The self-assembly of NCs into close-packed, long-range-ordered mesostructures
provides a platform for modulating their electronic properties (e.g.,
conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit
collective properties (e.g., superfluorescence, renormalized emission,
longer phase coherence times, and long exciton diffusion lengths)
that can translate into dramatic improvements in device performance.
Further regrowth into fused MHP nanostructures with the removal of
ligand barriers between NCs could facilitate charge carrier transport,
eliminate surface point defects, and enhance stability against moisture,
light, and electron-beam irradiation. However, the synthesis strategies,
diversity and complexity of structures, and optoelectronic applications
that emanate from the self-assembly and regrowth of MHPs have not
yet received much attention. Consequently, a comprehensive understanding
of the design principles of self-assembled and fused MHP nanostructures
will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly
and regrowth of MHP NCs. We begin with a survey of the mechanisms,
driving forces, and techniques for controlling MHP NC self-assembly.
We then explore the phase transition of fused MHP nanostructures at
the atomic level, delving into the mechanisms of facet-directed connections
and the kinetics of their shape-modulation behavior, which have been
elucidated with the aid of high-resolution transmission electron microscopy
(HRTEM) and first-principles density functional theory calculations
of surface energies. We further outline the applications of assembled
and fused nanostructures. Finally, we conclude with a perspective
on current challenges and future directions in the field of MHP NCs.
Collapse
Affiliation(s)
- Jiakai Liu
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
110
|
Li M, Wang Y, Hu H, Feng Y, Zhu S, Li C, Feng N. A dual-readout sandwich immunoassay based on biocatalytic perovskite nanocrystals for detection of prostate specific antigen. Biosens Bioelectron 2022; 203:113979. [PMID: 35114470 DOI: 10.1016/j.bios.2022.113979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
Nanozymes have been regarded as an excellent alternative for natural enzymes because of their high stability, low cost, and high activity. However, their use in disease diagnosis is still challenging, since the complex biological samples foul the nanozymes' surface and generate interference signals, thereby compromising the performance of nanozyme-based assays. Here, we report a dual-readout, CsPbBr3 NCs-based sandwich immunoassay for the detection of prostate specific antigen (PSA). Thanks to their excellent fluorescence and intrinsic peroxidase-like catalytic activity, the designed phospholipid-coated CsPbBr3 NCs (PL-CsPbBr3 NCs) served as an attractive dual signal generator (fluorescent and colorimetric), which is hardly achieved by other nanozymes. The Michaelis-Menten constant (KM) values of PL-CsPbBr3 NCs for H2O2 and tetramethylbenzidine are 2.85 mM and 1.42 mM, respectively. Meanwhile, the lipid shell around CsPbBr3 NCs not only greatly improves their aqueous stability, but also helps them resist the unspecific adsorption of biological impurities. Thus, the proposed dual-readout immunoassay enables precise, cost-effective, and anti-jamming detection of PSA in real serum samples with a low detection limit of 0.29 ng mL-1 (colorimetric) and 0.081 ng mL-1 (fluorescence). This enhanced immunoassay opens new insights for the application of perovskites in bioanalysis, especially for protein assay, holding great potential for disease diagnosis.
Collapse
Affiliation(s)
- Menglu Li
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Hong Hu
- Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 210018, China
| | - Yangkun Feng
- Medical College of Nantong University, Nantong, 226007, China
| | - Sha Zhu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, 214000, China; Medical College of Nantong University, Nantong, 226007, China.
| |
Collapse
|
111
|
Ren D, Zhou H, Chen R, Wu D, Pan H, Zhang J, Duan J, Wang H. A-Site Substitute for Fabricating All-Inorganic Perovskite CsPbCl 3 with Application in Self-Powered Ultraviolet Photodetectors. J Phys Chem Lett 2022; 13:267-273. [PMID: 34978447 DOI: 10.1021/acs.jpclett.1c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of its stable chemical properties and wide band gap, CsPbCl3 perovskite has shown great application prospects in ultraviolet photodetectors (UPDs). However, the poor solubility of CsCl in organic solvents impedes the fabrication of high-quality CsPbCl3 films. Herein, we introduced an A-site substitute route for fabricating a high-quality CsPbCl3 microcrystalline (MC) film by spin-coating cesium acetate on a MAPbCl3 MC film followed by a high-temperature annealing process. To enhance the device performance of the FTO/SnO2/CsPbCl3 MCs/carbon structure UPD, a pressure-assisted annealing strategy was carried out, which reduced the void density and surface roughness of the microcrystal film. Finally, our optimized PDs showed high device performances with an on/off ratio of 6 × 104, a responsivity of 0.13 A W-1, a detectivity of as high as 1.07 × 1012 Jones, and a rise/fall time of 10/24 μs. Moreover, our unpacked PDs showed good storage and light stability. Our results lay a foundation for the application of all inorganic perovskite in the ultraviolet region.
Collapse
Affiliation(s)
- Dongjie Ren
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong 523808, P.R. China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Hai Zhou
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong 523808, P.R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Ruiping Chen
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Dingjun Wu
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Haizong Pan
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
| | - Jun Zhang
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Jinxia Duan
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| | - Hao Wang
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
112
|
Zeng P, Ren X, Wei L, Zhao H, Liu X, Zhang X, Xu Y, Yan L, Boldt K, Smith TA, Liu M. Control of Hot Carrier Relaxation in CsPbBr3 Nanocrystals Using Damping Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng Zeng
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Xinjian Ren
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Linfeng Wei
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Haifeng Zhao
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Xiaochun Liu
- University of Electronic Science and Technology of China School of Materials and Energy No.2006, Xiyuan AvenueHi Tech West District 611731 Chengdu CHINA
| | - Xinyang Zhang
- University of Electronic Science and Technology of China School of Materials and Energy No.2006, Xiyuan AvenueHi Tech West District 611731 Chengdu CHINA
| | - Yanmin Xu
- Xi'an Jiaotong University School of Electronic Science and Engineering CHINA
| | - Lihe Yan
- Xi'an Jiaotong University School of Electronic Science and Engineering CHINA
| | - Klaus Boldt
- Universität Konstanz: Universitat Konstanz Department of Chemistry and Zukunftskolleg GERMANY
| | | | - Mingzhen Liu
- University of Electronic Science and Technology of China Center for Applied Chemistry No.2006, Xiyuan Road 611731 Chendu CHINA
| |
Collapse
|
113
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
114
|
Guo R, Liu Y, Fang Y, Liu Z, Dong L, Wang L, Li W, Hou J. Large-scale continuous preparation of highly stable α-CsPbI 3/m-SiO 2 nanocomposites by a microfluidics reactor for solid state lighting application. CrystEngComm 2022. [DOI: 10.1039/d2ce00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CsPbI3-Mesoporous SiO2 nanocomposites with ultrahigh chemical stability were fabricated by the microfluidic technology for large-scale continuous production.
Collapse
Affiliation(s)
- Runze Guo
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Zhifu Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Langping Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyao Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| |
Collapse
|
115
|
Li M, Xu J, Song Y, Chen F. Enhance luminescence or change morphology: effect of the doping method on Cu 2+-doped CsPbBr 3 perovskite nanocrystals. CrystEngComm 2022. [DOI: 10.1039/d2ce01302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of Cu2+ on CsPbBr3 nanocrystals is compared between the hot-injection method and postsynthetic cation-exchange reaction.
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| |
Collapse
|
116
|
Hu X, Xu Y, Wang J, Ma J, Wang L, Jiang W. Ligand-modified synthesis of shape-controllable and highly luminescent CsPbBr 3 perovskite nanocrystals under ambient conditions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The intrinsic insights of ligand-modified shape-transformation of CsPbBr3 nanocrystals between nanocubes and nanorods are revealed systematically, which can accelerate their practical applications in the optoelectronic field.
Collapse
Affiliation(s)
- Xiaobo Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yanqiao Xu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333000, PR China
| | - Jiancheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jiaxin Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
117
|
2D/2D Schottky heterojunction of in-situ growth FAPbBr 3/Ti 3C 2 composites for enhancing photocatalytic CO 2 reduction. J Colloid Interface Sci 2021; 610:538-545. [PMID: 34838312 DOI: 10.1016/j.jcis.2021.11.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Mimicking the natural photosynthesis process to convert carbon dioxide into value-added chemicals is vital to solving both the climate crisis worldwide and the depletion of fossil fuels. Herein, we explore the synthesis of 2D FAPbBr3 nanoplate combined with 2D Ti3C2 nanosheet to form a 2D/2D FAPbBr3/Ti3C2 Schottky heterojunction using facile hot-injection and in-situ growth approaches. The Schottky heterojunction of FAPbBr3/Ti3C2 over large interfacial contact provides abundant channels for transferring photogenerated carriers from FAPbBr3 nanoplate to Ti3C2 nanosheet. The experimental results showed a CO yield of 93.82 μmol·g-1·h-1 with ethyl acetate/deionization water as a sacrificial reagent for FAPbBr3/Ti3C2 composite, which was 1.25-fold enhancement that on pristine FAPbBr3 nanoplates. The large 2D heterointerface can efficiently accelerate the spatial separation and transfer of photogenerated carriers and result in the superior photocatalytic activity and favorable stability of FAPbBr3/Ti3C2 photocatalysts, which are proved by in-situ X-ray photoelectron spectroscopy, photoluminescence, transient absorption spectra, and Mott-Schottky measurement. Thus, this work unveils that 2D/2D Schottky heterostructures would significantly improve the reaction activities of halide perovskite-based photocatalysts.
Collapse
|
118
|
Xie M, Zhu Y, Wang R, Tian J. High Efficiency and Narrow Emission Band Pure-Red Perovskite Colloidal Quantum Wells. J Phys Chem Lett 2021; 12:10735-10741. [PMID: 34714076 DOI: 10.1021/acs.jpclett.1c03244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal quantum wells (CQWs) have excellent optical performance, such as ultranarrow emission, due to strong quantum confinement in the vertical direction. However, there are few reports on metal halide perovskite CQWs with high-purity red emission (∼630 nm) for the display application, owing to the broadened photoluminescence spectrum and beyond the red emission range. Herein, we successfully synthesize high-quality CsPbI3 CQWs in a strong electronegative solvent (mesitylene), which cut the chemical reaction rate of the precursor system to slow down the crystal nuclei growth. The number of PbI64- octahedral layers (n) of CQWs can be regulated to achieve the emission of the CQW shift from orange (596 nm, n = 3) to red (626 nm, n = 4). The pure-red-emitting CQWs have a high photoluminescence quantum yield of 99% and a narrow emission bandwidth (28 nm). The Commission Internationale de l'Eclairage coordinates (0.69, 0.31) meet the requirement of the Rec. 2020 standard.
Collapse
|
119
|
Li M, Zeng Y, Qu X, Jalalah M, Alsareii SA, Li C, Harraz FA, Li G. Biocatalytic CsPbX 3 Perovskite Nanocrystals: A Self-Reporting Nanoprobe for Metabolism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103255. [PMID: 34605143 DOI: 10.1002/smll.202103255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
CsPbX3 perovskite nanocrystals (NCs), with excellent optical properties, have drawn considerable attention in recent years. However, they also suffer from inherent vulnerability and hydrolysis, causing the new understanding or new applications to be difficultly explored. Herein, for the first time, it is discovered that the phospholipid membrane (PM)-coated CsPbX3 NCs have intrinsic biocatalytic activity. Different from other peroxidase-like nanozymes relying on extra chromogenic reagents, the PM-CsPbX3 NCs can be used as a self-reporting nanoprobe, allowing an "add-to-answer" detection model. Notably, the fluorescence of PM-CsPbX3 NCs can be rapidly quenched by adding H2 O2 and then be restored by removing excess H2 O2 . Initiated from this unexpected observation, the PM-CsPbX3 NCs can be explored to prepare multi-color bioinks and metabolite-responsive paper analytical devices, demonstrating the great potential of CsPbX3 NCs in bioanalysis. This is the first report on the discovery of nanozyme-like property of all-inorganic CsPbX3 perovskite NCs, which adds another piece to the nanozyme puzzle and opens new avenues for in vitro disease diagnostics.
Collapse
Affiliation(s)
- Menglu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Xinyu Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - Saeed A Alsareii
- Department of Surgery, College of Medicine, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo, 11421, Egypt
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
120
|
Yu M, Zhang D, Xu Y, Lin J, Yu C, Fang Y, Liu Z, Guo Z, Tang C, Huang Y. Surface ligand engineering of CsPbBr 3 perovskite nanowires for high-performance photodetectors. J Colloid Interface Sci 2021; 608:2367-2376. [PMID: 34753622 DOI: 10.1016/j.jcis.2021.10.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Surface ligand engineering is of great importance for the preparation of one-dimensional (1D) CsPbBr3 nanowires for high-performance photodetectors. The traditional long-chain terminated ligands such as oleylamine/oleic acid (C18) used in the preparation of CsPbBr3 nanowires will form an electrically insulating layer on the surface of the nanowires, which hinders the effective transport of charge carriers in optoelectronic devices. In this paper, short-chain ligands, including dodecylamine/dodecanoic acid (C12), octylamine/octanoic acid (C8) and hexylamine/hexanoic acid (C6), are introduced to partially replace long-chain ligands (C18) to successfully prepare various CsPbBr3 nanowires via a solvothermal method. Microstructure characterization indicates that the four kinds of nanowires before/after surface ligand engineering, which are named as C18-CsPbBr3, C12/18-CsPbBr3, C8/18-CsPbBr3 and C6/18-CsPbBr3, all have high aspect ratio and purity. As compared with CsPbBr3 with long-chain terminated ligands, the C8/18-CsPbBr3 and C6/18-CsPbBr3 nanowires with shorter chain ligands exhibit superior photoluminescence (PL) performance and stability under adverse conditions such as ultraviolet irradiation and high temperature. The constructed photodetectors based on C8/18-CsPbBr3 and C6/18-CsPbBr3 nanowires have shown improved performances. This work provides a new idea for the preparation of CsPbBr3 nanowires with high optical properties, stability and charge transport, and the prepared CsPbBr3 nanowires have potential application prospects in optoelectronic devices.
Collapse
Affiliation(s)
- Mengmeng Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Duo Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yaobin Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| | - Chao Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yi Fang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhenya Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
121
|
Dutta SK, Bera S, Behera RK, Hudait B, Pradhan N. Cs-Lattice Extension and Expansion for Inducing Secondary Growth of CsPbBr 3 Perovskite Nanocrystals. ACS NANO 2021; 15:16183-16193. [PMID: 34636535 DOI: 10.1021/acsnano.1c05053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increase of the stability of perovskite nanocrystals with respect to exposure to polar media, layers growth, or shelling with different materials is in demand. While these are widely studied for metal chalcogenide nanocrystals, it has yet to be explored for perovskite nanocrystals. Even growth of a single monolayer on any facet or on the entire surface of these nanocrystals could not be established yet. To address this, herein, a secondary growth approach leading to creation of a secondary lattice with subsequent expansion on preformed CsPbBr3 perovskite nanocrystals is reported. As direct layer growth by adding precursors was not successful, Cs-lattice extension to preformed CsPbBr3 nanocrystals was performed by coupling CsBr to these nanocrystals. Opening both {110}/{002} and {200} facets of parent CsPbBr3 nanocrystals, CsBr was observed to be connected with lattice matching to the {200} facets. Further with Pb(II) incorporation, the Cs-sublattices of CsBr were expanded to CsPbBr3 and led to cube-couple nanocrystals. However, as cubes in these nanostructures were differently oriented, these showed lattice mismatch at their junctions. This lattice mismatch though restricted complete shelling but successfully favored the secondary growth on specific facets of parent CsPbBr3 nanocrystals. Details of this secondary growth via lattice extension and expansion are microscopically analyzed and reported. These results further suggest that lead halide perovskite nanocrystals can be epitaxially grown under proper reaction design and more complex as well as heterostructures of these materials can be fabricated to meet the current demands.
Collapse
Affiliation(s)
- Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Biswajit Hudait
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| |
Collapse
|
122
|
Wu T, Li X, Qi Y, Zhang Y, Han L. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. CHEMSUSCHEM 2021; 14:4354-4376. [PMID: 34424613 DOI: 10.1002/cssc.202101573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Indexed: 05/06/2023]
Abstract
Perovskite solar cells (PSCs) are a promising third-generation photovoltaic (PV) technology developed rapidly in recent years. Further improvement of their power conversion efficiency is focusing on reducing the non-radiative charge recombination induced by the defects in metal halide perovskites. So far, defect passivation by the organic small molecule has been considered as a promising approach for boosting the PSC performance owing to their large structure flexibility adapting to passivating variable kinds of defect states and perovskite compositions. Here, the recent progress of defect passivation toward efficient and stable PSCs was reviewed from the viewpoint of molecular structure design and device performance. To comprehensively reveal the structure-performance correlation of passivation molecules, it was separately discussed how the functional groups, organic frameworks, and side chains affect the corresponding PV parameters of PSCs. Finally, a guideline was provided for researchers to select more suitable passivation agents, and a perspective was given on future trends in development of passivation strategies.
Collapse
Affiliation(s)
- Tianhao Wu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, P. R. China
| | - Xing Li
- Institute of Microelectronics, Chinese Academy of Science, Beijing, 100029, P. R. China
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Yiqiang Zhang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Liyuan Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, P. R. China
- Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
123
|
Chaudhary B, Kshetri YK, Kim HS, Lee SW, Kim TH. Current status on synthesis, properties and applications of CsPbX 3(X = Cl, Br, I) perovskite quantum dots/nanocrystals. NANOTECHNOLOGY 2021; 32:502007. [PMID: 34500445 DOI: 10.1088/1361-6528/ac2537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.
Collapse
Affiliation(s)
- Bina Chaudhary
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Yuwaraj K Kshetri
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Hak-Soo Kim
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Soo Wohn Lee
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Tae-Ho Kim
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| |
Collapse
|
124
|
Gao Y, Luo C, Yan C, Li W, Liu C, Yang W. Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes. J Colloid Interface Sci 2021; 607:1796-1804. [PMID: 34600343 DOI: 10.1016/j.jcis.2021.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Mixed-halide blue perovskites CsPb(Br/Cl)3 are considered promising candidates for developing efficient deep-blue perovskite light-emitting diodes (PeLEDs), but their low photoluminescence quantum yield (PLQY), environmental instability, and poor device performance gravely inhibit their future development. Here, we employ a heteroatomic Cu2+ doping strategy combined with post-treatment Br- anion exchange to prepare high-performance deep-blue perovskites CsPb(Br/Cl)3. The Cu2+ doping strategy significantly decreases the intrinsic chlorine defects, ensuring that the inferior CsPbCl3 quantum dots are transformed into two-dimensional nanosheets with enhanced violet photoluminescence and increased exciton binding energy. Further, with the post-treatment Br- anion exchange, the as-prepared CsPb(Br/Cl)3 nanosheets with more radiation recombination and less ion migration present an enhanced PLQY of 94% and better humidity stability of 30 days. Based on the optimized CsPb(Br/Cl)3, we fabricated deep-blue PeLEDs with luminescence emission at 462 nm, a maximum luminance of 761 cd m-2, and a current density of 205 mA cm-2. This work puts forward a feasible synthesis strategy to prepare efficient and stable mixed-halide blue perovskite CsPb(Br/Cl)3 and related blue PeLEDs, which may promote the further application of mixed-halide perovskites in the blue light range.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chao Luo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, PR China
| | - Cheng Yan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wen Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chuanqi Liu
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
125
|
Kim GH, Lee J, Lee JY, Han J, Choi Y, Kang CJ, Kim KB, Lee W, Lim J, Cho SY. High-Resolution Colloidal Quantum Dot Film Photolithography via Atomic Layer Deposition of ZnO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43075-43084. [PMID: 34463100 DOI: 10.1021/acsami.1c11898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution patterning of quantum dot (QD) films is one of the preconditions for the practical use of QD-based emissive display platforms. Recently, inkjet printing and transfer printing have been actively developed; however, high-resolution patterning is still limited owing to nozzle-clogging issues and coffee ring effects during the inkjet printing and kinetic parameters such as pickup and peeling speed during the transfer process. Consequently, employing direct optical lithography would be highly beneficial owing to its well-established process in the semiconductor industry; however, exposing the photoresist (PR) on top of the QD film deteriorates the QD film underneath. This is because a majority of the solvents for PR easily dissolve the pre-existing QD films. In this study, we present a conventional optical lithography process to obtain solvent resistance by reacting the QD film surface with diethylzinc (DEZ) precursors using atomic layer deposition. It was confirmed that, by reacting the QD surface with DEZ and coating PR directly on top of the QD film, a typical photolithography process can be performed to generate a red/green/blue pixel of 3000 ppi or more. QD electroluminescence devices were fabricated with all primary colors of QDs; moreover, compared to reference QD-LED devices, the patterned QD-LED devices exhibited enhanced brightness and efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | | | | | | |
Collapse
|
126
|
Precise Control of Green to Blue Emission of Halide Perovskite Nanocrystals Using Terbium Chloride as Chlorine Source. NANOMATERIALS 2021; 11:nano11092390. [PMID: 34578706 PMCID: PMC8470515 DOI: 10.3390/nano11092390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room temperature, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission of CsPbClxBr3-x nanocrystals was easily controlled from green to blue by adjusting the amount of TbCl3, which realizes the continuous and accurate spectral regulation in the range of green to blue. This method provides a new scheme for fast anion exchange of all-inorganic perovskite nanocrystals in an open environment at room temperature.
Collapse
|
127
|
Dutt VGV, Akhil S, Mishra N. Enhancement of photoluminescence and the stability of CsPbX 3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation. NANOSCALE 2021; 13:14442-14449. [PMID: 34473818 DOI: 10.1039/d1nr03916d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cesium lead halide perovskite nanocrystals (CsPbX3 NCs) have been the flourishing area of research in the field of photovoltaic and optoelectronic applications because of their excellent optical and electronic properties. However, they suffer from low stability and deterioration of photoluminescence (PL) properties post-synthesis. In this work, we demonstrate that incorporating an additional ligand can further enhance the optical properties and stability of NCs. Here, we introduced phthalimide as a new surface passivation ligand into the oleic acid/oleylamine system in situ to get near-unity photoluminescence quantum yield (PLQY) of CsPbBr3 and CsPbI3 perovskite NCs. Phthalimide passivation dramatically improves the stability of CsPbCl3, CsPbBr3, and CsPbI3 NCs under ambient light and UV light. The PL intensity was recorded for one year, which showed a dramatic improvement for CsPbBr3 NCs. Nearly 11% of PL can be retained even after one year with phthalimide passivation. CsPbCl3 NCs exhibit 3 times higher PL with phthalimide and retain 12% PL intensity even after two months, while PL of as-synthesized NCs completely diminishes. Under continuous UV light illumination, the PL intensity of phthalimide passivated NCs is well preserved, while the as-synthesized NCs exhibit negligible PL emission in 2 days. About 40% and 25% of initial PL is preserved for CsPbBr3 and CsPbCl3 NCs in the presence of phthalimide. CsPbI3 NCs with phthalimide exhibit PL even after 2 days, while PL for as-synthesized NCs rapidly declined in the first 10 h. The presence of phthalimide in CsPbI3 NCs could maintain stability even after a week, while the as-synthesized NCs underwent a transition to the non-luminescent phase within 4 days. Furthermore, blue, green, yellow, and red-emitting diodes using CsPbCl1.5Br1.5, CsPbBr3, CsPbBr1.5I1.5, CsPbI3 NCs, respectively, are fabricated by drop-casting NCs onto blue LED lights, which show great potential in the field of display and lighting technologies.
Collapse
Affiliation(s)
- V G Vasavi Dutt
- Department of Chemistry, SRM University-AP, Amaravati, Neerukonda, Guntur(Dt), Andhra Pradesh, 522240, India.
| | - Syed Akhil
- Department of Chemistry, SRM University-AP, Amaravati, Neerukonda, Guntur(Dt), Andhra Pradesh, 522240, India.
| | - Nimai Mishra
- Department of Chemistry, SRM University-AP, Amaravati, Neerukonda, Guntur(Dt), Andhra Pradesh, 522240, India.
| |
Collapse
|
128
|
Wen Z, Xie F, Choy WCH. Stability of electroluminescent perovskite quantum dots light‐emitting diode. NANO SELECT 2021. [DOI: 10.1002/nano.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhuoqi Wen
- Academy for Engineering and Technology Fudan University Shanghai China
| | - Fengxian Xie
- Academy for Engineering and Technology Fudan University Shanghai China
- Institute for Electric Light Sources, School of Information Science and Technology Fudan University Shanghai China
| | - Wallace. C. H. Choy
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| |
Collapse
|
129
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
130
|
Cao Y, Malola S, Matus MF, Chen T, Yao Q, Shi R, Häkkinen H, Xie J. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
131
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 444] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
132
|
Chen J, Zhou Y, Fu Y, Pan J, Mohammed OF, Bakr OM. Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem Rev 2021; 121:12112-12180. [PMID: 34251192 DOI: 10.1021/acs.chemrev.1c00181] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Zhou
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Omar F Mohammed
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
133
|
Yu H, Wang H, Zhang T, Yi C, Zheng G, Yin C, Karlsson M, Qin J, Wang J, Liu XK, Gao F. Color-Stable Blue Light-Emitting Diodes Enabled by Effective Passivation of Mixed Halide Perovskites. J Phys Chem Lett 2021; 12:6041-6047. [PMID: 34165316 PMCID: PMC8273884 DOI: 10.1021/acs.jpclett.1c01547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
Bandgap tuning through mixing halide anions is one of the most attractive features for metal halide perovskites. However, mixed halide perovskites usually suffer from phase segregation under electrical biases. Herein, we obtain high-performance and color-stable blue perovskite LEDs (PeLEDs) based on mixed bromide/chloride three-dimensional (3D) structures. We demonstrate that the color instability of CsPb(Br1-xClx)3 PeLEDs results from surface defects at perovskite grain boundaries. By effective defect passivation, we achieve color-stable blue electroluminescence from CsPb(Br1-xClx)3 PeLEDs, with maximum external quantum efficiencies of up to 4.5% and high luminance of up to 5351 cd m-2 in the sky-blue region (489 nm). Our work provides new insights into the color instability issue of mixed halide perovskites and can spur new development of high-performance and color-stable blue PeLEDs.
Collapse
Affiliation(s)
- Hongling Yu
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Heyong Wang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Tiankai Zhang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Chang Yi
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech
University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guanhaojie Zheng
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Chunyang Yin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Max Karlsson
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jiajun Qin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jianpu Wang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech
University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Ke Liu
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Feng Gao
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| |
Collapse
|
134
|
Sanjayan CG, Jyothi MS, Sakar M, Balakrishna RG. Multidentate ligand approach for conjugation of perovskite quantum dots to biomolecules. J Colloid Interface Sci 2021; 603:758-770. [PMID: 34229118 DOI: 10.1016/j.jcis.2021.06.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Building compatible surface on perovskite quantum dots (PQDs) for applications like sensing analytes in aqueous medium is highly challenging and if achieved by simple means can revolutionize disease diagnostics. The present work reports the surface engineering of CsPbBr3 QDs via "simple ligand exchange process" to achieve water-compatible QDs towards detection of biomolecules. The monodentate oleic acid ligand in CsPbBr3 QDs is exchanged with dicarboxylic acid containing (bidentate) ligands such as folic acid (FA), ethylenediamine tetra-acetic acid (EDTA), succinic acid (SA) and glutamic acid (GA) to develop an efficient water-compatible PQD-ligand system. optical and theoretical studies showed the existence of a stronger binding between the perovskite and succinic acid ligand as compared to oleic acid (OA) and all other ligands. Replacement of OA with SA and retention of crystal structure is validated using spectroscopic and microscopic tools. It is observed that SA ligands facilitate better electronic coupling with PQDs and show significant improvement in fluorescence and stability. Further N-Hydroxy succinimide (NHS), which is a well-known compound to activate carboxyl groups, is used to bind onto SA PQDs as multidentate ligand, to form water stable PQDs. SA PQDs react with NHS (in water) to form multidentate ligand passivated PQDs that show very high photoluminescence (PL) as compared to OA PQDs in toluene. This also results in the formation of an NHS ester that allows bioconjugation with PQDs. This simple probe in water is further utilized for sensing a highly hydrophilic bovine serum albumin (BSA) protein as a model target to demonstrate the potential and effectiveness of this process to create compatible QDs for the successful conjugation of biomolecules. Although the focus of this work is to demonstrate bioconjugation and not achieving higher sensitivity levels, the intrinsic sensing level of these compatible QDs towards BSA shows a detection limit of 51.47 nM, which is above par with other reports in literature.
Collapse
Affiliation(s)
- C G Sanjayan
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - M S Jyothi
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India; Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - M Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India.
| |
Collapse
|
135
|
Cho S, Yun SH. Poly(catecholamine) coated CsPbBr 3 perovskite microlasers: lasing in water and biofunctionalization. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101902. [PMID: 34539305 PMCID: PMC8447242 DOI: 10.1002/adfm.202101902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 05/13/2023]
Abstract
Lead halide perovskite (LHP) is a promising material for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, we describe a novel method of synthesizing LHP microlasers in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microlasers in situ. We synthesize cesium lead bromine perovskite (CsPbBr3) microcrystals capped with organic poly-norepinephrine (pNE) layers. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the material lifetime of CsPbBr3 in water by 2,000-folds, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr3 microcrystals is sustained in water over 1 hour and observed in live cells. The functionalization method may enable new applications of LHP laser particles in water-rich environments.
Collapse
Affiliation(s)
- Sangyeon Cho
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
136
|
Grisorio R, Conelli D, Fanizza E, Striccoli M, Altamura D, Giannini C, Allegretta I, Terzano R, Irimia-Vladu M, Margiotta N, Suranna GP. Size-tunable and stable cesium lead-bromide perovskite nanocubes with near-unity photoluminescence quantum yield. NANOSCALE ADVANCES 2021; 3:3918-3928. [PMID: 36133008 PMCID: PMC9418815 DOI: 10.1039/d1na00142f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 05/05/2023]
Abstract
Stable cesium lead bromide perovskite nanocrystals (NCs) showing a near-unity photoluminescence quantum yield (PLQY), narrow emission profile, and tunable fluorescence peak in the green region can be considered the ideal class of nanomaterials for optoelectronic applications. However, a general route for ensuring the desired features of the perovskite NCs is still missing. In this paper, we propose a synthetic protocol for obtaining near-unity PLQY perovskite nanocubes, ensuring their size control and, consequently, a narrow and intense emission through the modification of the reaction temperature and the suitable combination ratio of the perovskite constituting elements. The peculiarity of this protocol is represented by the dissolution of the lead precursor (PbBr2) as a consequence of the exclusive complexation with the bromide anions released by the in situ SN2 reaction between oleylamine (the only surfactant introduced in the reaction mixture) and 1-bromohexane. The obtained CsPbBr3 nanocubes exhibit variable size (ranging from 6.7 ± 0.7 nm to 15.2 ± 1.2 nm), PL maxima between 505 and 517 nm, and near-unity PLQY with a narrow emission profile (fwhm of 17-19 nm). Additionally, the NCs synthesized with this approach preserve their high PLQYs even after 90 days of storage under ambient conditions, thus displaying a remarkable optical stability. Through the rationalization of the obtained results, the proposed synthetic protocol provides a new ground for the direct preparation of differently structured perovskite NCs without resorting to any additional post-synthetic treatment for improving their emission efficiency and stability.
Collapse
Affiliation(s)
- Roberto Grisorio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4 70125 Bari Italy
| | - Daniele Conelli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4 70125 Bari Italy
| | - Elisabetta Fanizza
- Dipartimento di Chimica, Università degli Studi di Bari, ", A. Moro, " Via Orabona 4 70126 Bari Italy
- CNR, Istituto per i Processi Chimico Fisici UOS Bari, Via Orabona 4 70126 Bari Italy
| | - Marinella Striccoli
- CNR, Istituto per i Processi Chimico Fisici UOS Bari, Via Orabona 4 70126 Bari Italy
| | - Davide Altamura
- CNR, Istituto di Cristallografia via Amendola 122/O Bari 70126 Italy
| | - Cinzia Giannini
- CNR, Istituto di Cristallografia via Amendola 122/O Bari 70126 Italy
| | - Ignazio Allegretta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro" Via G. Amendola 165/A 70126 Bari Italy
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro" Via G. Amendola 165/A 70126 Bari Italy
| | - Mihai Irimia-Vladu
- Institute of Physical Chemistry, Linz Institute of Organic Solar Cells, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari, ", A. Moro, " Via Orabona 4 70126 Bari Italy
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4 70125 Bari Italy
- CNR NANOTEC, Istituto di Nanotecnologia Via Monteroni 73100 Lecce Italy
| |
Collapse
|
137
|
Hills‐Kimball K, Yang H, Cai T, Wang J, Chen O. Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100214. [PMID: 34194945 PMCID: PMC8224438 DOI: 10.1002/advs.202100214] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Indexed: 05/09/2023]
Abstract
Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.
Collapse
Affiliation(s)
| | - Hanjun Yang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Tong Cai
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Junyu Wang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Ou Chen
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| |
Collapse
|
138
|
Yoo YT, Heo DY, Bae SR, Park J, Lee TW, Jang HW, Ahn SH, Kim SY. Tailoring the Structure of Low-Dimensional Halide Perovskite through a Room Temperature Solution Process: Role of Ligands. SMALL METHODS 2021; 5:e2100054. [PMID: 34927919 DOI: 10.1002/smtd.202100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/27/2021] [Indexed: 06/14/2023]
Abstract
In this study, halide perovskite nanocrystals are synthesized by controlling the ligand length and amount, and investigated the effects on the change in the ligand length and amount on the shape, size, crystal structure, and optical properties of the perovskite nanocrystals. The results reveal the tendency and respective effects of amine and acid ligands on perovskite nanocrystals. The amine ligands bind directly to the perovskite nanocrystals. Consequently, the amine ligands with longer chains interfere with the aggregation of the initially formed nanocrystals, thus limiting the size of the halide perovskite nanocrystals. Similar to the amine ligands, the acid ligands directly bond with the perovskite nanocrystals; however, they are also indirectly distributed around the nanocrystals, thus affecting their structure and dispersion. Consequently, the acid ligands affect the assembly of the initially formed nanocrystals, which determine the shape and crystal structure of the nanocrystals. It is believed that the report will provide useful insight on the synthesis of halide perovskites for application in optoelectronic devices.
Collapse
Affiliation(s)
- Young-Taek Yoo
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Do Yeon Heo
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sa-Rang Bae
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
139
|
Li Y, Qian J, Zhao D, Song R. Preparation of perovskite CsPb(Br x I 1-x ) 3 quantum dots at room temperature. RSC Adv 2021; 11:18432-18439. [PMID: 35480956 PMCID: PMC9033440 DOI: 10.1039/d1ra02772g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Here, we propose a method for preparing red perovskite CsPb(BrxI1−x)3 quantum dots (QDs) at room temperature. The PL emission peak of the QDs is close to 650 nm, and the full width at half maximum reaches 61 nm. The red CsPb(BrxI1−x)3 QDs with higher water stability are obtained successfully at room temperature by adjusting the proportion of halogen elements and incorporating polystyrene. At the same time, the red QDs are combined with a blue light-emitting diode to prepare a white light-emitting device (WLED). Compared with the WLED based on the Ce-doped Yttrium Aluminum Garnet (YAG:Ce) phosphor alone, the new WLED based on QDs exhibits a reduced correlated color temperature of 2976 K, while achieving a lumen efficiency of 55.3 lm W−1, which provides a feasible solution for future research on light-emitting diodes (LEDs). Here, we propose a method for preparing red perovskite CsPb(BrxI1−x)3 quantum dots (QDs) at room temperature and successfully applied to WLEDs.![]()
Collapse
Affiliation(s)
- Ying Li
- School of Printing and Packaging, Wuhan University 129 Luoyu St. Hongshan Wuhan China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University 129 Luoyu St. Hongshan Wuhan China .,Lab of Green Platemaking and Standardization for Flexographic Printing, Shanghai Publishing and Printing College Shanghai 200093 China
| | - Di Zhao
- School of Printing and Packaging, Wuhan University 129 Luoyu St. Hongshan Wuhan China
| | - Rong Song
- School of Printing and Packaging, Wuhan University 129 Luoyu St. Hongshan Wuhan China
| |
Collapse
|
140
|
Yue Y, Liu S, Qi B, Su Z, Li G, Wang C, Zhu D. Tunable Dual-Color Emission Perovskites via Post-Synthetic Modification Strategy for Near-Unity Photoluminescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21645-21652. [PMID: 33929184 DOI: 10.1021/acsami.1c03768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lead halide perovskites (LHPs) with excellent performance have become promising materials for optoelectrical devices. However, as for the dual-color emission LHPs (DELHPs), the low photoluminescence quantum yield (PLQY) hinders their applications. Herein, a simple low-cost room-temperature post-synthetic modification strategy is used to achieve a near-unity PLQY of DELHPs. It is proven that ZnBr2 plays an important role as an inorganic ligand in reducing surface defects to induce a 95.4% increase in the radiative decay rate and a 99.5% decrease in the nonradiative decay rate in the treated DELHPs compared with the pristine DELHPs. The performance of the blue emission from the surface lattice is greatly improved via the modification of ZnBr2. DELHPs with different ratios of blue and green emissions are obtained by changing the specific surface area and ZnBr2 concentration. The distribution and mechanism of Zn2+ are discussed using the research model based on these DELHPs. The first example of the single-layer dual-color perovskite electroluminescence device is realized from DELHPs. This work provides a new perspective for improving the performance of DELHPs, which will greatly accelerate the development of emission materials of LHPs.
Collapse
Affiliation(s)
- Yifei Yue
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Shengnan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Bin Qi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Zhongmin Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Guangfu Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Chenxu Wang
- Public Technical Service Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
141
|
Li H, Lin H, Ouyang D, Yao C, Li C, Sun J, Song Y, Wang Y, Yan Y, Wang Y, Dong Q, Choy WCH. Efficient and Stable Red Perovskite Light-Emitting Diodes with Operational Stability >300 h. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008820. [PMID: 33687773 DOI: 10.1002/adma.202008820] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The long-term operational stability of perovskite light-emitting diodes (PeLEDs), especially red PeLEDs with only several hours typically, has always faced great challenges. Stable β-CsPbI3 nanocrystals (NCs) are demonstrated for highly efficient and stable red-emitting PeLEDs through incorporation of poly(maleic anhydride-alt-1-octadecene) (PMA) in synthesizing the NCs. The PMA can chemically interact with PbI2 in the precursors via the coupling effect between O groups in PMA and Pb2+ to favor crystallization of stable β-CsPbI3 NCs. Meanwhile, the cross-linked PMA significantly reduces the PbCs anti-site defect on the surface of the β-CsPbI3 NCs. Benefiting from the improved crystal phase quality, the photoluminescence quantum yield for β-CsPbI3 NCs films remarkably increases from 34% to 89%. The corresponding red-emitting PeLEDs achieves a high external quantum efficiency of 17.8% and superior operational stability with the lifetime, the time to half the initial electroluminescence intensity (T50 ) reaching 317 h at a constant current density of 30 mA cm-2 .
Collapse
Affiliation(s)
- Hanming Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hong Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Dan Ouyang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Canglang Yao
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen, 518055, China
| | - Yilong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA
| | - Yong Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen, 518055, China
| |
Collapse
|
142
|
Sitapure N, Epps RW, Abolhasani M, Sang-Il Kwon J. CFD-Based Computational Studies of Quantum Dot Size Control in Slug Flow Crystallizers: Handling Slug-to-Slug Variation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niranjan Sitapure
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Texas A&M Energy Insitute, 1617 Research Pkwy, College Station, Texas 77843, United States
| | - Robert W. Epps
- Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina 27606, United States
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina 27606, United States
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Texas A&M Energy Insitute, 1617 Research Pkwy, College Station, Texas 77843, United States
| |
Collapse
|
143
|
Zeng Q, Du Y, Jiang J, Yu Q, Li Y. Revealing the Aging Effect of Metal-Oleate Precursors on the Preparation of Highly Luminescent CsPbBr 3 Nanoplatelets. J Phys Chem Lett 2021; 12:2668-2675. [PMID: 33689369 DOI: 10.1021/acs.jpclett.1c00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the ultrafast crystallization process in the triple-source ligand-assisted reprecipitation (TSLARP) technique the [LyPbBrx] octahedra is easily distorted, resulting in anisotropic two-dimensional nanoplatelets (NPLs) with low photoluminescence quantum yield (PLQY) and poor stability. Unexpectedly, we obtain CsPbBr3 NPLs with PLQY approaching unity and high stability using the TSLARP technique through aging the metal-oleate precursors. We find that the significant enhancement of the PLQY is related to the change of solution chemistry of the Pb-oleate precursor in the aging process. While hybrid CsPbBr3@Cs4PbBr6 NPLs with low PLQY (28%) are formed with fresh Pb-oleate precursor, phase-pure CsPbBr3 NPLs with PLQY of 97.4% are obtained with the aged Pb-oleate precursor. A model that takes into account the transformation of the Pb-oleate in toluene from isolated molecules into clusters after aging is proposed to explain the phenomenon. Our finding highlights the importance of understanding the solution chemistry for the synthesis of the highly luminescent NPLs and provides a new way to break the "blue-wall" in perovskite light-emitting devices.
Collapse
Affiliation(s)
- Qiugui Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiying Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiexuan Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
144
|
Kazes M, Udayabhaskararao T, Dey S, Oron D. Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out. Acc Chem Res 2021; 54:1409-1418. [PMID: 33570394 PMCID: PMC8023572 DOI: 10.1021/acs.accounts.0c00712] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The rediscovery
of the halide perovskite class of compounds and,
in particular, the organic and inorganic lead halide perovskite (LHP)
materials and lead-free derivatives has reached remarkable landmarks
in numerous applications. First among these is the field of photovoltaics,
which is at the core of today’s environmental sustainability
efforts. Indeed, these efforts have born fruit, reaching to date a
remarkable power conversion efficiency of 25.2% for a double-cation
Cs, FA lead halide thin film device. Other applications include light
and particle detectors as well as lighting. However, chemical and
thermal degradation issues prevent perovskite-based devices and particularly
photovoltaic modules from reaching the market. The soft ionic nature
of LHPs makes these materials susceptible to delicate changes in the
chemical environment. Therefore, control over their interface properties
plays a critical role in maintaining their stability. Here we focus
on LHP nanocrystals, where surface termination by ligands determines
not only the stability of the material but also the crystallographic
phase and crystal habit. A surface analysis of nanocrystal interfaces
revealed the involvement of Brønsted type acid–base equilibrium
in the modification of the ligand moieties present, which in turn
can invoke dissolution and recrystallization into the more favorable
phase in terms of minimization of the surface energy. A large library
of surface ligands has already been developed showing both good chemical
stability and good electronic surface passivation, resulting in near-unity
emission quantum yields for some materials, particularly CsPbBr3. However, most of those ligands have a large organic tail
hampering charge carrier transport and extraction in nanocrystal-based
solid films. The unique perovskite structure that allows ligand
substitution
in the surface A (cation) sites and the soft ionic nature is expected
to allow the accommodation of large dipoles across the perovskite
crystal. This was shown to facilitate electron transfer across a molecular
linked single-particle junction, creating a large built-in field across
the junction nanodomains. This strategy could be useful for implementing
LHP NCs in a p–n junction photovoltaic configuration as well
as for a variety of electronic devices. A better understanding of
the surface propeties of LHP nanocrystals will also enable better
control of their growth on surfaces and in confined volumes, such
as those afforded by metal–organic frameworks, zeolites, or
chemically patterened surfaces such as anodic alumina, which have
already been shown to significantly alter the properties of in-situ-grown
LHP materials.
Collapse
Affiliation(s)
- Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thumu Udayabhaskararao
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Swayandipta Dey
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
145
|
Zhou Y, Yu Y, Zhang Y, Liu X, Yang H, Liang X, Xia W, Xiang W. Highly Photoluminescent CsPbBr 3/CsPb 2Br 5 NCs@TEOS Nanocomposite in Light-Emitting Diodes. Inorg Chem 2021; 60:3814-3822. [PMID: 33570916 DOI: 10.1021/acs.inorgchem.0c03573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-inorganic halide perovskite (CsPb2Br5) nanocrystals (NCs) have received widespread attention owing to their unique photoelectric properties. This work reports a novel strategy to control the phase transition from CsPbBr3 to CsPb2Br5 and investigates the effects of different treatment times and treatment temperatures on perovskite NCs formation. By controlling the volume of tetraethoxysilane (TEOS) added, the formation of different phases of perovskite powder can be well controlled. In addition, a white light-emitting diode (WLED) device is designed by coupling the CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite and CaAlSiN3:Eu2+ commercial phosphor with a 460 nm InGaN blue chip, exhibiting a high luminous efficiency of 57.65 lm/W, color rendering index (CRI) of 91, and a low CCT of 5334 K. The CIE chromaticity coordinates are (0.3363, 0.3419). This work provides a new strategy for the synthesis of CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite, which can be applied to the field of WLEDs and display devices.
Collapse
Affiliation(s)
- Yufeng Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanxia Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaqian Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaodong Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Haisheng Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
146
|
Liu Z, Yang H, Wang J, Yuan Y, Hills-Kimball K, Cai T, Wang P, Tang A, Chen O. Synthesis of Lead-Free Cs 2AgBiX 6 (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO 2 Photocatalytic Reduction. NANO LETTERS 2021; 21:1620-1627. [PMID: 33570415 DOI: 10.1021/acs.nanolett.0c04148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Morphology control represents an important strategy for the development of functional nanomaterials and has yet to be achieved in the case of promising lead-free double perovskite materials so far. In this work, high-quality Cs2AgBiX6 (X = Cl, Br, I) two-dimensional nanoplatelets were synthesized through a newly developed synthetic procedure. By analyzing the optical, morphological, and structural evolutions of the samples during synthesis, we elucidated that the growth mechanism of lead-free double perovskite nanoplatelets followed a lateral growth process from mono-octahedral-layer (half-unit-cell in thickness) cluster-based nanosheets to multilayer (three to four unit cells in thickness) nanoplatelets. Furthermore, we demonstrated that Cs2AgBiBr6 nanoplatelets possess a better performance in photocatalytic CO2 reduction compared with their nanocube counterpart. Our work demonstrates the first example with two-dimensional morphology of this important class of lead-free perovskite materials, shedding light on the synthetic manipulation and the application integration of such promising materials.
Collapse
Affiliation(s)
- Zhenyang Liu
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
- Key Laboratory of Luminescence and Optical Information Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Hanjun Yang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Junyu Wang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Yucheng Yuan
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Katie Hills-Kimball
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Tong Cai
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Ping Wang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Ou Chen
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
147
|
Lyu B, Guo X, Gao D, Kou M, Yu Y, Ma J, Chen S, Wang H, Zhang Y, Bao X. Highly-stable tin-based perovskite nanocrystals produced by passivation and coating of gelatin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123967. [PMID: 33265008 DOI: 10.1016/j.jhazmat.2020.123967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Lead-halide perovskite nanocrystals (NCs) are limited in commercial applications due to their high lead content. Developing lead-free perovskite NCs becomes a new choice. Among them, the tin-halide perovskite NCs exhibit the excellent photoelectric conversion efficiency, but has worse stability. Herein we describe an effective approach to the preparation of highly-stable all-inorganic tin-based perovskite NCs by using gelatin via interfacial passivation and coating, which leads to the retention of 77.46% of photoluminescence intensity even after the dispersion of the NCs in water for 3 d. The results show that gelatin form a "rich ligand" state on NC surface, such as amino-Sn, carboxylate-Sn and halogen-ammonium hydrogen-bonding interactions. The amino-Sn coordination would be replaced by carboxylate-Sn coordination when NCs are dispersed in polar-media. Meanwhile, gelatin is imparted excellent anti-mildew properties by NCs, which ensures long-lasting effect to NCs. This will promote the stability and sustainable development of the perovskite device.
Collapse
Affiliation(s)
- Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Xu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Mengnan Kou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Yajin Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 96064, USA
| | - Hao Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Ying Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Xin Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| |
Collapse
|
148
|
Zou Y, Cai L, Song T, Sun B. Recent Progress on Patterning Strategies for Perovskite Light‐Emitting Diodes toward a Full‐Color Display Prototype. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yatao Zou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Lei Cai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Tao Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
149
|
Smock SR, Chen Y, Rossini AJ, Brutchey RL. The Surface Chemistry and Structure of Colloidal Lead Halide Perovskite Nanocrystals. Acc Chem Res 2021; 54:707-718. [PMID: 33449626 DOI: 10.1021/acs.accounts.0c00741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ConspectusSince the initial discovery of colloidal lead halide perovskite nanocrystals, there has been significant interest placed on these semiconductors because of their remarkable optoelectronic properties, including very high photoluminescence quantum yields, narrow size- and composition-tunable emission over a wide color gamut, defect tolerance, and suppressed blinking. These material attributes have made them attractive components for next-generation solar cells, light emitting diodes, low-threshold lasers, single photon emitters, and X-ray scintillators. While a great deal of research has gone into the various applications of colloidal lead halide perovskite nanocrystals, comparatively little work has focused on the fundamental surface chemistry of these materials. While the surface chemistry of colloidal semiconductor nanocrystals is generally affected by their particle morphology, surface stoichiometry, and organic ligands that contribute to the first coordination sphere of their surface atoms, these attributes are markedly different in lead halide perovskite nanocrystals because of their ionicity.In this Account, emerging work on the surface chemistry of lead halide perovskite nanocrystals is highlighted, with a particular focus placed on the most-studied composition of CsPbBr3. We begin with an in-depth exploration of the native surface chemistry of as-prepared, 0-D cuboidal CsPbBr3 nanocrystals, including an atomistic description of their surface termini, vacancies, and ionic bonding with ligands. We then proceed to discuss various post-synthetic surface treatments that have been developed to increase the photoluminescence quantum yields and stability of CsPbBr3 nanocrystals, including the use of tetraalkylammonium bromides, metal bromides, zwitterions, and phosphonic acids, and how these various ligands are known to bind to the nanocrystal surface. To underscore the effect of post-synthetic surface treatments on the application of these materials, we focus on lead halide perovskite nanocrystal-based light emitting diodes, and the positive effect of various surface treatments on external quantum efficiencies. We also discuss the current state-of-the-art in the surface chemistry of 1-D nanowires and 2-D nanoplatelets of CsPbBr3, which are more quantum confined than the corresponding cuboidal nanocrystals but also generally possess a higher defect density because of their increased surface area-to-volume ratios.
Collapse
Affiliation(s)
- Sara R. Smock
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yunhua Chen
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron J. Rossini
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
150
|
Abstract
ConspectusThe optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.
Collapse
|