101
|
Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems. Angew Chem Int Ed Engl 2019; 58:12355-12368. [PMID: 30990933 DOI: 10.1002/anie.201901879] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 02/06/2023]
Abstract
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point-of-care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting-edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point-of-care systems, such as rapid readout, simple biosensor fabrication method, ultra-high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point-of-care system, benefiting global healthcare.
Collapse
Affiliation(s)
- Yifan Dai
- Electronics Design Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Chung Chiun Liu
- Electronics Design Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
102
|
Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point‐of‐Care Systems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901879] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifan Dai
- Electronics Design CenterCase Western Reserve University Cleveland Ohio 44106 USA
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University Cleveland Ohio 44106 USA
| | - Chung Chiun Liu
- Electronics Design CenterCase Western Reserve University Cleveland Ohio 44106 USA
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University Cleveland Ohio 44106 USA
| |
Collapse
|
103
|
Cheng ZX, Ang WL, Bonanni A. Electroactive Nanocarbon Can Simultaneously Work as Platform and Signal Generator for Label‐Free Immunosensing. ChemElectroChem 2019. [DOI: 10.1002/celc.201900577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhao Xuan Cheng
- Division of Chemistry & Biological Chemistry School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371
| | - Wei Li Ang
- Division of Chemistry & Biological Chemistry School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371
| |
Collapse
|
104
|
Zhao C, Hong CY, Lin ZZ, Chen XM, Huang ZY. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions. Mikrochim Acta 2019; 186:322. [PMID: 31049692 DOI: 10.1007/s00604-019-3436-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
A specific and sensitive colorimetric aptasensor is described for the determination of Malachite Green (MG). It is exploiting the inhibition of the peroxidase-like activity of gold nanoparticles (AuNPs). The AuNPs act as enzyme mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to yield a dark blue solution. The catalytic activity is inhibited by hexadecyl trimethyl ammonium ion, specifically by cetyltrimethylammonium bromide (CTAB), which causes the aggregation of AuNPs. If a (negatively charged) RNA-aptamer against MG is added, it binds to the positively charged CTAB and prevents aggregation. This enhances the enzyme mimicking activity of the AuNPs and leads to the formation of a dark blue solution. However, in the presence of MG, the aptamer binds to MG, and leads to the aggregation of AuNPs again. The aggregated AuNPs possess a light blue color. A colorimetric method (best performed at 650 nm) was work out that can detect MG in a concentration range from 10 to 500 nmol L-1. The detection limit based on 3σ/k criterion is 1.8 nmol L-1. The assay is highly specific and accurate. Recoveries from spiked real samples (aquaculture water) ranged from 80% to 120%. Graphical abstract Based on the inhibition of cetyltrimethyal ammonium ion and the enhancement of RNA-aptamer, the differences of the peroxidase-like activities of AuNPs can be greatly enlarged with and without MG, by which a colorimetric aptasensor can be constructed for the detection of Malachite Green (MG).
Collapse
Affiliation(s)
- Chen Zhao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Cheng-Yi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zheng-Zhong Lin
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, Fujian Province, China
| | - Xiao-Mei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhi-Yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
105
|
DNA-MnO2 nanosheets as washing- and label-free platform for array-based differentiation of cell types. Anal Chim Acta 2019; 1056:1-6. [DOI: 10.1016/j.aca.2019.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
|
106
|
Li J, Kong C, Liu Q, Chen Z. Colorimetric ultrasensitive detection of DNA based on the intensity of gold nanoparticles with dark-field microscopy. Analyst 2019; 143:4051-4056. [PMID: 30059077 DOI: 10.1039/c8an00825f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present an ultrasensitive colorimetric nucleic acid assay based on the intensity of gold nanoparticles (Au NPs) using dark field microscopy. In the absence of target DNA, two hairpin-like DNA strands with protruding single-stranded DNA (ssDNA) can be absorbed onto the Au NP surface via non-covalent interactions between the exposed nitrogen bases of ssDNA and Au NPs, which inhibits Au NPs from aggregating in a high concentration of salt media, while in the presence of target DNA, two hairpin DNA strands hybridize with target DNA to form double-stranded DNA (dsDNA). After hybridization chain reaction (HCR) amplification, rigid dsDNA polymers are formed, which results in serious Au NP aggregation in the salt environment. By measuring the intensity change of yellow and red dots on a dark-field image, the concentration of target DNA can be accurately quantified with a limit of detection (LOD) of 66 fM.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | | | | | | |
Collapse
|
107
|
Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging Nanopores with Analyte Scope and Environment. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00092-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
108
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun (Camb) 2019; 55:2563-2592. [PMID: 30688320 DOI: 10.1039/c8cc08815b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constant progress in the identification of biomarkers at different molecular levels in samples of different natures, and the need to conduct routine analyses, even in limited-resource settings involving simple and short protocols, are examples of the growing current clinical demands not satisfied by conventional available techniques. In this context, the unique features offered by electrochemical biosensors, including affordability, real-time and reagentless monitoring, simple handling and portability, and versatility, make them especially interesting for adaptation to the increasingly challenging requirements of current clinical and point-of-care (POC) diagnostics. This has allowed the continuous development of strategies with improved performance in the clinical field that were unthinkable just a few years ago. After a brief introduction to the types and characteristics of clinically relevant biomarkers/samples, requirements for their analysis, and currently available methodologies, this review article provides a critical discussion of the most important developments and relevant applications involving electrochemical biosensors reported in the last five years in response to the demands of current diagnostic, prognostic, and therapeutic actions related to high prevalence and high mortality diseases and disorders. Special attention is paid to the rational design of surface chemistry and the use/modification of state-of-the-art nanomaterials to construct electrochemical bioscaffolds with antifouling properties that can be applied to the single or multiplex determination of biomarkers of accepted or emerging clinical relevance in particularly complex clinical samples, such as undiluted liquid biopsies, whole cells, and paraffin-embedded tissues, which have scarcely been explored using conventional techniques or electrochemical biosensing. Key points guiding future development, challenges to be addressed to further push the limits of electrochemical biosensors towards new challenging applications, and their introduction to the market are also discussed.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | | |
Collapse
|
109
|
Colorimetric assay for ultrasensitive detection of Ag(I) ions based on the formation of gold nanoparticle oligomers. Anal Bioanal Chem 2019; 411:2439-2445. [DOI: 10.1007/s00216-019-01685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
110
|
Idili A, Gerson J, Parolo C, Kippin T, Plaxco KW. An electrochemical aptamer-based sensor for the rapid and convenient measurement of L-tryptophan. Anal Bioanal Chem 2019; 411:4629-4635. [PMID: 30796485 DOI: 10.1007/s00216-019-01645-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Abstract
The field of precision medicine-the possibility to accurately tailor pharmacological treatments to each specific patient-would be significantly advanced by the ability to rapidly, conveniently, and cost-effectively measure biomarkers directly at the point of care. Electrochemical aptamer-based (E-AB) sensors appear a promising approach to this end due to their low cost, ease of use, and good analytical performance in complex clinical samples. Thus motivated, we present here the development of an E-AB sensor for the measurement of the amino acid L-tryptophan, a diagnostic marker indicative of a number of metabolic and mental health disorders, in urine. The sensor employs a previously reported DNA aptamer able to recognize the complex formed between tryptophan and a rhodium-based receptor. We adopted the aptamer to the E-AB sensing platform by truncating it, causing it to undergo a binding-induced conformational change, modifying it with a redox-reporting methylene blue, and attaching it to an interrogating electrode. The resulting sensor is able to measure tryptophan concentrations in the micromolar range in minutes and readily discriminates between its target and other aromatic and non-aromatic amino acids. Using it, we demonstrate the measurement of clinically relevant tryptophan levels in synthetic urine in a process requiring only a single dilution step. The speed and convenience with which this is achieved suggest that the E-AB platform could significantly improve the ease and frequency with which metabolic diseases are monitored. Graphical Abstract.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tod Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA. .,Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
111
|
Angerani S, Winssinger N. Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology. Chemistry 2019; 25:6661-6672. [PMID: 30689234 DOI: 10.1002/chem.201806024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/24/2022]
Abstract
The development of bioorthogonal reactions have had a transformative impact in chemical biology and the quest to expand this toolbox continues. Herein we review recent applications of ruthenium-catalyzed photoredox reactions used in chemical biology.
Collapse
Affiliation(s)
- Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
112
|
Lu X, Zhou G, Lu Y, Li L. Stem–loop clutch probes for sequence-specific dsDNA analysis with improved single-mismatch selectivity. Chem Commun (Camb) 2019; 55:7514-7517. [DOI: 10.1039/c9cc03137e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A stem–loop clutch probe based strategy has been proposed to guide sequence-specific dsDNA analysis with enhanced single-base mismatch selectivity.
Collapse
Affiliation(s)
- Xing Lu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Guobao Zhou
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yixia Lu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Lei Li
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
113
|
Ma J, Chai W, Lu J, Tian T, Wu S, Yang Y, Yang J, Li C, Li G. Coating a DNA self-assembled monolayer with a metal organic framework-based exoskeleton for improved sensing performance. Analyst 2019; 144:3539-3545. [DOI: 10.1039/c9an00084d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The relatively poor stability of DNA self-assembled monolayers (SAMs) greatly limits their use in real applications. A new strategy is reported to protect the DNA SAMs by using a metal organic framework (MOF)-based exoskeleton.
Collapse
Affiliation(s)
- Jiehua Ma
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Wenxin Chai
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Jianyang Lu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Tian Tian
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Yucai Yang
- Department of Oncology
- the Second Affiliated Hospital of Anhui Medical University
- Hefei
- P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- P. R. China
| |
Collapse
|
114
|
Yang Y, Huang Y, Li C. A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Anal Chim Acta 2018; 1055:90-97. [PMID: 30782375 DOI: 10.1016/j.aca.2018.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Here we report an electrochemical DNA (E-DNA) sensor to detect a variety of analytes by using a novel interfacial probe that rationally integrates triplex-forming oligonucleotide (TFO) into a tetrahedral DNA nanostructure (TDN). In the presence of analyte, the blocked TFO is released and subsequently binds the edge of TDN to form a triplex DNA structure, which confines the redox reporter to be in close proximity to the underlying electrode and enhances the electrochemical signal. Thanks to the unique design and property of the probe, the proposed sensor could efficiently suppress the background signal (from 0.69 μA to 0.092 μA) and thus enhance the signal-to-noise ratio, resulting in improved sensing performance. Furthermore, the sensor displays new merits such as rapid response (∼35 min), one-step operation, easy regeneration (buffer change) and good generality (changing recognition element) compared with traditional TDN-based E-DNA sensor using enzyme displays signal transducer. In addition, to demonstrate real-world applicability of this new sensor, we have successfully detected different analytes (e.g., DNA, protein, and metal ion) in the complex media (e.g., serum, blood, and lake water), implying its considerable potential for precise bioanalysis in the future.
Collapse
Affiliation(s)
- Yucai Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
115
|
Watkins HM, Ricci F, Plaxco KW. Experimental Measurement of Surface Charge Effects on the Stability of a Surface-Bound Biopolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14993-14999. [PMID: 29972737 PMCID: PMC6501783 DOI: 10.1021/acs.langmuir.8b01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantitative experimental studies of the thermodynamics with which biopolymers interact with specific surfaces remain quite limited. In response, here we describe experimental and theoretical studies of the change in folding free energy that occurs when a simple biopolymer, a DNA stem-loop, is site-specifically attached to a range of chemically distinct surfaces generated via self-assembled monolayer formation on a gold electrode. Not surprisingly, the extent to which surface attachment alters the biopolymer's folding free energy depends strongly on the charge of the surface, with increasingly negatively charged surfaces leading to increased destabilization. A simple model that considers only the excluded volume and electrostatic repulsion generated by the surface and models the ionic environment above the surface as a continuum quantitatively recovers the observed free energy change associated with attachment to weakly charged negative surfaces. For more strongly charged negative surfaces a model taking into account the discrete size of the involved ions is required. Our studies thus highlight the important role that electrostatics can play in the physics of surface-biomolecule interactions.
Collapse
Affiliation(s)
- Herschel M. Watkins
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
- Corresponding Authors:.,
| | - Kevin W. Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Corresponding Authors:.,
| |
Collapse
|
116
|
Arroyo-Currás N, Ortega G, Copp DA, Ploense KL, Plaxco ZA, Kippin TE, Hespanha JP, Plaxco KW. High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing. ACS Pharmacol Transl Sci 2018; 1:110-118. [PMID: 32219207 PMCID: PMC7088981 DOI: 10.1021/acsptsci.8b00033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/30/2022]
Abstract
By, in effect, rendering pharmacokinetics an experimentally adjustable parameter, the ability to perform feedback-controlled dosing informed by high-frequency in vivo drug measurements would prove a powerful tool for both pharmacological research and clinical practice. Efforts to this end, however, have historically been thwarted by an inability to measure in vivo drug levels in real time and with sufficient convenience and temporal resolution. In response, we describe a closed-loop, feedback-controlled delivery system that uses drug level measurements provided by an in vivo electrochemical aptamer-based (E-AB) sensor to adjust dosing rates every 7 s. The resulting system supports the maintenance of either constant or predefined time-varying plasma drug concentration profiles in live rats over many hours. For researchers, the resultant high-precision control over drug plasma concentrations provides an unprecedented opportunity to (1) map the relationships between pharmacokinetics and clinical outcomes, (2) eliminate inter- and intrasubject metabolic variation as a confounding experimental variable, (3) accurately simulate human pharmacokinetics in animal models, and (4) measure minute-to-minute changes in a drug's pharmacokinetic behavior in response to changing health status, diet, drug-drug interactions, or other intrinsic and external factors. In the clinic, feedback-controlled drug delivery would improve our ability to accurately maintain therapeutic drug levels in the face of large, often unpredictable intra- and interpatient metabolic variation. This, in turn, would improve the efficacy and safety of therapeutic intervention, particularly for the most gravely ill patients, for whom metabolic variability is highest and the margin for therapeutic error is smallest.
Collapse
Affiliation(s)
- Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States,E-mail: . Tel.: (410) 955-3569
| | - Gabriel Ortega
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,CIC
bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160, Derio, Spain
| | - David A. Copp
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kyle L. Ploense
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Zoe A. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - João P. Hespanha
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,E-mail: . Tel.: (805) 893-5558
| |
Collapse
|
117
|
Li H, Somerson J, Xia F, Plaxco KW. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Anal Chem 2018; 90:10641-10645. [PMID: 30141321 PMCID: PMC6555152 DOI: 10.1021/acs.analchem.8b01993] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability to monitor specific molecules in real-time directly in a flowing sample stream and in a manner that does not adulterate that stream could greatly augment quality control in, for example, food processing and pharmaceutical manufacturing. Because they are continuous, reagentless, and able to work directly in complex samples, electrochemical DNA-based (E-DNA) sensors, a modular and, thus, general sensing platform, are promising candidates to fill this role. In support, we describe here an E-DNA sensor supporting the continuous, real-time measurement of melamine in flowing milk. Using target-driven DNA triplex formation to generate an electrochemical output, the sensor responds to rising and falling melamine concentration in seconds without contaminating the product stream. The continuous, autonomous, real-time operation of sensors such as this could provide unprecedented safety, convenience, and cost-effectiveness relative to the batch processes historically employed in molecular quality control.
Collapse
Affiliation(s)
- Hui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jacob Somerson
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
118
|
Zhang Z, Dong L, Zhu Q. Rational engineering of synergically stabilized aptamer-cDNA duplex probes for strand displacement based electrochemical sensors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
119
|
A dual-amplification system for colorimetric DNA detection based on the assembly of biomolecules. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
120
|
Quantitative measurements of protein-surface interaction thermodynamics. Proc Natl Acad Sci U S A 2018; 115:8352-8357. [PMID: 30061388 DOI: 10.1073/pnas.1800287115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Whereas proteins generally remain stable upon interaction with biological surfaces, they frequently unfold on and adhere to artificial surfaces. Understanding the physicochemical origins of this discrepancy would facilitate development of protein-based sensors and other technologies that require surfaces that do not compromise protein structure and function. To date, however, only a small number of such artificial surfaces have been reported, and the physics of why these surfaces support functional biomolecules while others do not has not been established. Thus motivated, we have developed an electrochemical approach to determining the folding free energy of proteins site-specifically attached to chemically well-defined, macroscopic surfaces. Comparison with the folding free energies seen in bulk solution then provides a quantitative measure of the extent to which surface interactions alter protein stability. As proof-of-principle, we have characterized the FynSH3 domain site-specifically attached to a hydroxyl-coated surface. Upon guanidinium chloride denaturation, the protein unfolds in a reversible, two-state manner with a free energy within 2 kJ/mol of the value seen in bulk solution. Assuming that excluded volume effects stabilize surface-attached proteins, this observation suggests there are countervening destabilizing interactions with the surface that, under these conditions, are similar in magnitude. Our technique constitutes an unprecedented experimental tool with which to answer long-standing questions regarding the molecular-scale origins of protein-surface interactions and to facilitate rational optimization of surface biocompatibility.
Collapse
|
121
|
Ferapontova EE. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:197-218. [PMID: 29894229 DOI: 10.1146/annurev-anchem-061417-125811] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
122
|
Silva SM, Hoque S, Gonçales VR, Gooding JJ. The Impact of the Position of the Redox Label on Charge Transfer and Hybridization Efficiency at DNA Interfaces. ELECTROANAL 2018. [DOI: 10.1002/elan.201800197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saimon Moraes Silva
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - Sharmin Hoque
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| | - J. Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; The University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
123
|
Chen C, Zhang Y, Zhang Z, He R, Chen Y. Fluorescent Determination of Glucose Using Silicon Nanodots. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1456547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chaohui Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Zhengtao Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Rongxiang He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Yong Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
- Département de Chimie, Ecole Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
124
|
Liu Y, Kumar S, Taylor RE. Mix-and-match nanobiosensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1518. [PMID: 29633568 DOI: 10.1002/wnan.1518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/23/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Abstract
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
125
|
Guyon H, Mavré F, Catala M, Turcaud S, Brachet F, Limoges B, Tisné C, Micouin L. Use of a redox probe for an electrochemical RNA-ligand binding assay in microliter droplets. Chem Commun (Camb) 2018; 53:1140-1143. [PMID: 28054050 DOI: 10.1039/c6cc07785d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we report an affordable, sensitive, fast and user-friendly electroanalytical method for monitoring the binding between unlabeled RNA and small compounds in microliter-size droplets using a redox-probe and disposable miniaturized screen-printed electrochemical cells.
Collapse
Affiliation(s)
- Hélène Guyon
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France. and Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - François Mavré
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - Marjorie Catala
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Serge Turcaud
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France.
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Benoît Limoges
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
126
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
127
|
Daniel J, Fetter L, Jett S, Rowland TJ, Bonham AJ. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins. Methods Mol Biol 2018; 1600:9-23. [PMID: 28478553 DOI: 10.1007/978-1-4939-6958-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.
Collapse
Affiliation(s)
- Jessica Daniel
- Department of Chemistry, Metropolitan State University of Denver, 890 Auraria Parkway, Denver, CO, 80220, USA
| | - Lisa Fetter
- Department of Chemistry, Metropolitan State University of Denver, 890 Auraria Parkway, Denver, CO, 80220, USA
| | - Susan Jett
- Department of Chemistry, Metropolitan State University of Denver, 890 Auraria Parkway, Denver, CO, 80220, USA
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver Anschutz Medical Campus, 12700 E 19th Ave, Aurora, 80045, CO, USA
| | - Andrew J Bonham
- Department of Chemistry, Metropolitan State University of Denver, 890 Auraria Parkway, Denver, CO, 80220, USA.
| |
Collapse
|
128
|
Park S, Jeong JE, Le VS, Seo J, Yu B, Kim DY, Kwon SH, Jon S, Woo HY, Yang H. Enhanced Electron Transfer Mediated by Conjugated Polyelectrolyte and Its Application to Washing-Free DNA Detection. J Am Chem Soc 2018; 140:2409-2412. [DOI: 10.1021/jacs.7b12382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Seonhwa Park
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ji-Eun Jeong
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Van Sang Le
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeongwook Seo
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Byeongjun Yu
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Da-Young Kim
- School
of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Se-Hun Kwon
- School
of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Sangyong Jon
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Han Young Woo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Haesik Yang
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
129
|
Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications. J Nucleic Acids 2018; 2018:5307106. [PMID: 29666699 PMCID: PMC5831849 DOI: 10.1155/2018/5307106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023] Open
Abstract
Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited.
Collapse
|
130
|
Li C, Hu X, Lu J, Mao X, Xiang Y, Shu Y, Li G. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem Sci 2018; 9:979-984. [PMID: 29629164 PMCID: PMC5874986 DOI: 10.1039/c7sc04663d] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022] Open
Abstract
Here we report a robust and sensitive DNA nanostructure-based electrochemical (E-nanoDNA) sensor that utilizes tetrahedral DNA nanostructures (TDNs) as an interfacial probe to detect biomolecules in a single-step procedure. In this study, we have firstly demonstrated that the use of TDNs can significantly suppress electrochemical background signals compared to traditional linear DNA probes upon introduction of base mismatches in the edges of TDNs. After further optimization of the two functional strands in the TDNs, quantitative, one-step detection of DNA can be achieved in the picomolar range in less than 10 min, and directly in complex media. Moreover, the baseline drift of this biosensor can be greatly decreased even after several hours in flowing whole blood in vitro, which suggests that the sensor holds potential to be employed in live animals. Furthermore, through replacing functional strands with aptamers or other DNA elements, this E-nanoDNA sensor can be easily used to probe various analytes, broadening the application range of the proposed sensor.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86-25-83593596
| | - Xiaolu Hu
- State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86-25-83593596
| | - Jianyang Lu
- State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86-25-83593596
| | - Xiaoxia Mao
- Laboratory of Biosensing Technology , School of Life Sciences , Shanghai University , Shanghai , 200444 , China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86-25-83593596
| | - Yongqian Shu
- Department of Oncology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , P. R. China .
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology , Collaborative Innovation Center of Chemistry for Life Sciences , Department of Biochemistry , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86-25-83593596
- Laboratory of Biosensing Technology , School of Life Sciences , Shanghai University , Shanghai , 200444 , China
| |
Collapse
|
131
|
Rossetti M, Porchetta A. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Anal Chim Acta 2018; 1012:30-41. [PMID: 29475471 DOI: 10.1016/j.aca.2017.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/10/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
132
|
Wei B, Zhang J, Ou X, Lou X, Xia F, Vallée-Bélisle A. Engineering Biosensors with Dual Programmable Dynamic Ranges. Anal Chem 2018; 90:1506-1510. [PMID: 29300471 DOI: 10.1021/acs.analchem.7b04852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although extensively used in all fields of chemistry, molecular recognition still suffers from a significant limitation: host-guest binding displays a fixed, hyperbolic dose-response curve, which limits its usefulness in many applications. Here we take advantage of the high programmability of DNA chemistry and propose a universal strategy to engineer biorecognition-based sensors with dual programmable dynamic ranges. Using DNA aptamers as our model recognition element and electrochemistry as our readout signal, we first designed a dual signaling "signal-on" and "signal-off" adenosine triphosphate (ATP) sensor composed of a ferrocene-labeled ATP aptamer in complex to a complementary, electrode-bound, methylene-blue labeled DNA. Using this simple "dimeric" sensor, we show that we can easily (1) tune the dynamic range of this dual-signaling sensor through base mutations on the electrode-bound DNA, (2) extend the dynamic range of this sensor by 2 orders of magnitude by using a combination of electrode-bound strands with varying affinity for the aptamers, (3) create an ultrasensitive dual signaling sensor by employing a sequestration strategy in which a nonsignaling, high affinity "depletant" DNA aptamer is added to the sensor surface, and (4) engineer a sensor that simultaneously provides extended and ultrasensitive readouts. These strategies, applicable to a wide range of biosensors and chemical systems, should broaden the application of molecular recognition in various fields of chemistry.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Juntao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaowen Ou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaoding Lou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Fan Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Alexis Vallée-Bélisle
- Laboratory Biosensors & Nanomachines, Département de Chimie, Université de Montréal , Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
133
|
Porchetta A, Ippodrino R, Marini B, Caruso A, Caccuri F, Ricci F. Programmable Nucleic Acid Nanoswitches for the Rapid, Single-Step Detection of Antibodies in Bodily Fluids. J Am Chem Soc 2018; 140:947-953. [PMID: 29313682 DOI: 10.1021/jacs.7b09347] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibody detection plays a pivotal role in the diagnosis of pathogens and monitoring the success of vaccine immunization. However, current serology techniques require multiple, time-consuming washing and incubation steps, which limit their applicability in point-of-care (POC) diagnostics and high-throughput assays. We developed here a nucleic acid nanoswitch platform able to instantaneously measure immunoglobulins of type G and E (IgG and IgE) levels directly in blood serum and other bodily fluids. The system couples the advantages of target-binding induced colocalization and nucleic acid conformational-change nanoswitches. Due to the modular nature of the recognition platform, the method can potentially be applied to the detection of any antibody for which an antigen can be conjugated to a nucleic acid strand. In this work we show the sensitive, fast and cost-effective detection of four different antibodies and demonstrate the possible use of this approach for the monitoring of antibody levels in HIV+ patients immunized with AT20 therapeutic vaccine.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Department of Chemistry, University of Rome , Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l. , Area Science Park, 34149 Trieste, Italy
| | - Bruna Marini
- Ulisse BioMed S.r.l. , Area Science Park, 34149 Trieste, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia Medical School , Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia Medical School , Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome , Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
134
|
Zhang Z, Tao C, Yin J, Wang Y, Li Y. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Biosens Bioelectron 2017; 103:39-44. [PMID: 29278811 DOI: 10.1016/j.bios.2017.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
Abstract
Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors.
Collapse
Affiliation(s)
- Ziping Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Cancan Tao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jungang Yin
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Yunhui Wang
- School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China
| | - Yanshen Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
135
|
Zhu Z, Zhou Y, Xu X, Wu R, Jin Y, Li B. Adaption of a Solid-State Nanopore to Homogeneous DNA Organization Verification and Label-Free Molecular Analysis without Covalent Modification. Anal Chem 2017; 90:814-820. [PMID: 29172452 DOI: 10.1021/acs.analchem.7b03442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances have shown increasing designs of nucleic acid organizations via controlling the thermodynamics and kinetics of oligonucleotides. Nevertheless, deeper understanding and further applications of these DNA nanotechnologies are majorly hampered by the lack of effective analytical methodologies that are competent enough to investigate them. To deliver a potential solution, here we developed an innovative exploration that employed the emerging nanopore technique to characterize DNA organization at the single-molecule level and in completely homogeneous condition without covalent modification. With the help of counting and profiling the translocation-induced current drop of a DNA assembly structure passing through a conical glass nanopore (CGN), we have directly verified the formation of the individual double-helix concatemer generated from our model, hybridization chain reaction (HCR). Due to the ultrasensitivity of the nanopore technology, those concatemers that were difficult to observe on a conventional electrophoresis image were brought to light. The translocation duration time also provided the approximate length and folding information for the concatemers. These advantages were proven also applicable to structures with more sophisticated folding behaviors. Eventually, when coupling with an upstream reaction, CGN was further turned to a universal detector that was capable of even detecting other nucleic acid organization behaviors as well as targets that were unable to generate huge products. All of these results are expected to promote deeper study and applications of the nanopore technique in the field of nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Zhentong Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ya Zhou
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaolong Xu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yongdong Jin
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
136
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
137
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
138
|
Colorimetric aggregation assay for silver(I) based on the use of aptamer modified gold nanoparticles and C-Ag(I)-C interaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2518-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Dwyer JR, Harb M. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. APPLIED SPECTROSCOPY 2017; 71:2051-2075. [PMID: 28714316 DOI: 10.1177/0003702817715496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Collapse
Affiliation(s)
- Jason R Dwyer
- 1 Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Maher Harb
- 2 Department of Physics and Materials, Science & Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
140
|
Li H, Dauphin-Ducharme P, Ortega G, Plaxco KW. Calibration-Free Electrochemical Biosensors Supporting Accurate Molecular Measurements Directly in Undiluted Whole Blood. J Am Chem Soc 2017; 139:11207-11213. [PMID: 28712286 DOI: 10.1021/jacs.7b05412] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The need to calibrate to correct for sensor-to-sensor fabrication variation and sensor drift has proven a significant hurdle in the widespread use of biosensors. To maintain clinically relevant (±20% for this application) accuracy, for example, commercial continuous glucose monitors require recalibration several times a day, decreasing convenience and increasing the chance of user errors. Here, however, we demonstrate a "dual-frequency" approach for achieving the calibration-free operation of electrochemical biosensors that generate an output by using square-wave voltammetry to monitor binding-induced changes in electron transfer kinetics. Specifically, we use the square-wave frequency dependence of their response to produce a ratiometric signal, the ratio of peak currents collected at responsive and non- (or low) responsive square-wave frequencies, which is largely insensitive to drift and sensor-to-sensor fabrication variations. Using electrochemical aptamer-based (E-AB) biosensors as our test bed, we demonstrate the accurate and precise operation of sensors against multiple drugs, achieving accuracy in the measurement of their targets of within better than 20% across dynamic ranges of up to 2 orders of magnitude without the need to calibrate each individual sensor.
Collapse
Affiliation(s)
- Hui Li
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, China.,Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States.,Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States.,Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States.,Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States.,CIC bioGUNE , Bizkaia Technology Park, Building 801 A, 48170 Derio, Spain
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States.,Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
141
|
Zhao Z, Chen S, Wang J, Su J, Xu J, Mathur S, Fan C, Song S. Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing. Biosens Bioelectron 2017; 94:605-608. [DOI: 10.1016/j.bios.2017.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
|
142
|
Karpik AE, Crulhas BP, Rodrigues CB, Castro GR, Pedrosa VA. Aptamer-based Biosensor Developed to Monitor MUC1 Released by Prostate Cancer Cells. ELECTROANAL 2017. [DOI: 10.1002/elan.201700318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Agnieszka E. Karpik
- Faculty of Mechanical Engineering; Institute of Materials Science and Engineering; Lodz Poland
| | - Bruno P. Crulhas
- Department of Chemistry and Biochemistry; Institute of Bioscience, UNESP; Botucatu, SP Brazil
| | - Carolina B. Rodrigues
- Department of Chemistry and Biochemistry; Institute of Bioscience, UNESP; Botucatu, SP Brazil
| | - Gustavo R. Castro
- Department of Chemistry and Biochemistry; Institute of Bioscience, UNESP; Botucatu, SP Brazil
| | - Valber A. Pedrosa
- Department of Chemistry and Biochemistry; Institute of Bioscience, UNESP; Botucatu, SP Brazil
| |
Collapse
|
143
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
144
|
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 2017; 45:2583-602. [PMID: 26954935 DOI: 10.1039/c5cs00645g] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The combination of nanostructures with biomolecules leading to the generation of functional nanosystems holds great promise for biotechnological and biomedical applications. As a naturally occurring biomacromolecule, DNA exhibits excellent biocompatibility and programmability. Also, scalable synthesis can be readily realized through automated instruments. Such unique properties, together with Watson-Crick base-pairing interactions, make DNA a particularly promising candidate to be used as a building block material for a wide variety of nanostructures. In the past few decades, various DNA nanostructures have been developed, including one-, two- and three-dimensional nanomaterials. Aptamers are single-stranded DNA or RNA molecules selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), with specific recognition abilities to their targets. Therefore, integrating aptamers into DNA nanostructures results in powerful tools for biosensing and bioimaging applications. Furthermore, owing to their high loading capability, aptamer-modified DNA nanostructures have also been altered to play the role of drug nanocarriers for in vivo applications and targeted cancer therapy. In this review, we summarize recent progress in the design of aptamers and related DNA molecule-integrated DNA nanostructures as well as their applications in biosensing, bioimaging and cancer therapy. To begin with, we first introduce the SELEX technology. Subsequently, the methodologies for the preparation of aptamer-integrated DNA nanostructures are presented. Then, we highlight their applications in biosensing and bioimaging for various targets, as well as targeted cancer therapy applications. Finally, we discuss several challenges and further opportunities in this emerging field.
Collapse
Affiliation(s)
- Hong-Min Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China. and Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Liuting Mo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
145
|
Ferrocene conjugated oligonucleotide for electrochemical detection of DNA base mismatch. Bioorg Med Chem Lett 2017; 27:3555-3557. [PMID: 28583799 DOI: 10.1016/j.bmcl.2017.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 01/25/2023]
Abstract
We describe the synthesis, binding, and electrochemical properties of ferrocene-conjugated oligonucleotides (Fc-oligos). The key step for the preparation of Fc-oligos contains the coupling of vinylferrocene to 5-iododeoxyuridine via Heck reaction. The Fc-conjugated deoxyuridine phosphoramidite was used in the Fc-oligonucleotide synthesis. We show that thiol-modified Fc-oligos deposited onto gold electrodes possess potential ability in electrochemical detection of DNA base mismatch.
Collapse
|
146
|
Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Biosens Bioelectron 2017; 91:817-823. [DOI: 10.1016/j.bios.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022]
|
147
|
Ventura SA, Heikenfeld J, Brooks T, Esfandiari L, Boyce S, Park Y, Kasting GB. Cortisol extraction through human skin by reverse iontophoresis. Bioelectrochemistry 2017; 114:54-60. [DOI: 10.1016/j.bioelechem.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
|
148
|
Li H, Dauphin-Ducharme P, Arroyo-Currás N, Tran CH, Vieira PA, Li S, Shin C, Somerson J, Kippin TE, Plaxco KW. A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors. Angew Chem Int Ed Engl 2017; 56:7492-7495. [PMID: 28371090 DOI: 10.1002/anie.201700748] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 12/11/2022]
Abstract
The real-time monitoring of specific analytes in situ in the living body would greatly advance our understanding of physiology and the development of personalized medicine. Because they are continuous (wash-free and reagentless) and are able to work in complex media (e.g., undiluted serum), electrochemical aptamer-based (E-AB) sensors are promising candidates to fill this role. E-AB sensors suffer, however, from often-severe baseline drift when deployed in undiluted whole blood either in vitro or in vivo. We demonstrate that cell-membrane-mimicking phosphatidylcholine (PC)-terminated monolayers improve the performance of E-AB sensors, reducing the baseline drift from around 70 % to just a few percent after several hours in flowing whole blood in vitro. With this improvement comes the ability to deploy E-AB sensors directly in situ in the veins of live animals, achieving micromolar precision over many hours without the use of physical barriers or active drift-correction algorithms.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - Claire H Tran
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Philip A Vieira
- Department of Psychology, California State University, Dominguez Hills, 1000 E. Victoria Ave., Carson, CA, 90747, USA
| | - Shaoguang Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Christina Shin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,The Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jacob Somerson
- Interdepartmental Program, Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,The Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
149
|
Li H, Dauphin‐Ducharme P, Arroyo‐Currás N, Tran CH, Vieira PA, Li S, Shin C, Somerson J, Kippin TE, Plaxco KW. A Biomimetic Phosphatidylcholine‐Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer‐Based Sensors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Li
- Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Philippe Dauphin‐Ducharme
- Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara CA 93106 USA
| | | | - Claire H. Tran
- Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Philip A. Vieira
- Department of Psychology California State University Dominguez Hills, 1000 E. Victoria Ave. Carson CA 90747 USA
| | - Shaoguang Li
- Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Christina Shin
- Department of Psychological and Brain Sciences University of California Santa Barbara Santa Barbara CA 93106 USA
- The Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Jacob Somerson
- Interdepartmental Program, Biomolecular Science and Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences University of California Santa Barbara Santa Barbara CA 93106 USA
- The Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara CA 93106 USA
- Center for Bioengineering University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
150
|
Milioni D, Tsortos A, Velez M, Gizeli E. Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles. Anal Chem 2017; 89:4198-4203. [DOI: 10.1021/acs.analchem.7b00206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dimitra Milioni
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Achilleas Tsortos
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Electra Gizeli
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Department
of Biology, University of Crete, Heraklion 71110, Greece
| |
Collapse
|