101
|
Dall'Osto L, Cazzaniga S, Havaux M, Bassi R. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. MOLECULAR PLANT 2010; 3:576-93. [PMID: 20100799 DOI: 10.1093/mp/ssp117] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
When light absorbed by plants exceeds the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly de-epoxidized to zeaxanthin in the so-called xanthophyll cycle. Zeaxanthin plays a key role in the protection of photosynthetic organisms against excess light, by promoting rapidly reversible (qE) and long-term (qI) quenching of excited chlorophylls, and preventing lipid oxidation. The photoprotective role of zeaxanthin, either free or bound to light-harvesting complexes (Lhcs), has been investigated by using mutants lacking Chl b (ch1) and/or specific xanthophyll species (npq, lut2). The ch1 mutation causes (1) the absence of Lhcb proteins; (2) strong reduction of the feedback de-excitation (qE); and (3) accumulation of xanthophylls as free pigments into thylakoids. Ch1 mutants showed extreme sensitivity to photo-oxidative stress in high light, due to higher singlet oxygen (¹O₂) release. The double mutant ch1npq1 was more sensitive to photo-oxidation than ch1, showing that zeaxanthin does protect lipids even when free in the membrane. Nevertheless, lack of zeaxanthin had a much stronger impact on the level of lipid peroxidation in Lhcs-containing plants (WT vs npq1) with respect to Lhc-less plants (ch1 vs ch1npq1), implying that its protective effect is enhanced by interaction with antenna proteins. It is proposed that the antioxidant capacity of zeaxanthin is empowered in the presence of PSII-LHCs-Zea complexes, while its effect on enhancement of qE only provides a minor contribution. Comparison of the sensitivity of WT vs npq1 plants to exogenous ¹O₂ suggests that besides the scavenging of ¹O₂, at least one additional mechanism is involved in chloroplast photoprotection.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | | | | |
Collapse
|
102
|
Hasjim PL, Lendzian F, Ponomarenko N, Weber S, Norris JR. ENDOR Study of Charge Migration in Photosynthetic Arrays of Rhodobacter sphaeroides. Chemphyschem 2010; 11:1258-64. [DOI: 10.1002/cphc.200900896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
103
|
Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. Chemphyschem 2010; 11:1289-96. [DOI: 10.1002/cphc.200900852] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
104
|
|
105
|
Cardol P, De Paepe R, Franck F, Forti G, Finazzi G. The onset of NPQ and Deltamu(H)+ upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:177-88. [PMID: 19836343 DOI: 10.1016/j.bbabio.2009.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 11/30/2022]
Abstract
The relationship between the development of photoprotective mechanisms (non-photochemical quenching, NPQ), the generation of the electrochemical proton gradient in the chloroplast and the capacity to assimilate CO(2) was studied in tobacco dark-adapted leaves at the onset of illumination with low light. These conditions induce the generation of a transient NPQ, which relaxes in the light in parallel with the activation of the Calvin cycle. Wild-type plants were compared with a CMSII mitochondrial mutant, which lacks the respiratory complex I and shows a delayed activation of photosynthesis. In the mutant, a slower onset of photosynthesis was mirrored by a decreased capacity to develop NPQ. This correlates with a reduced efficiency to reroute electrons at the PSI reducing side towards cyclic electron flow around PSI and/or other alternative acceptor pools, and with a smaller ability to generate a proton motive force in the light. Altogether, these data illustrate the tight relationship existing between the capacity to evacuate excess electrons accumulated in the intersystem carriers and the capacity to dissipate excess photons during a dark to light transition. These data also underline the essential role of respiration in modulating the photoprotective response in dark-adapted leaves, by poising the cellular redox state.
Collapse
Affiliation(s)
- Pierre Cardol
- Laboratoire de Génétique des Microorganismes, Département des Sciences la Vie, 27, Bld du rectorat, Université de Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
106
|
Park S, Jung G, Hwang YS, Jin E. Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. PLANTA 2010; 231:349-360. [PMID: 19924439 DOI: 10.1007/s00425-009-1044-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Large-scale RNA profiling revealed that high irradiance differentially regulated 577 out of 1,439 non-redundant genes of the Antarctic marine diatom Chaetoceros neogracile, represented on a custom cDNA chip, during 6 h of treatment. Among genes that were up- or down-regulated more than twofold within 30 min of treatment (310/1,439), about half displayed an acclimatory response during 6 h under high light. Expression of the remaining non-acclimatory genes also rapidly returned to initial levels within 30 min following a shift to low irradiance. High light altered expression of most of the photosynthesis genes (48/70), in contrast to genes in other functional categories. In addition, opposite response patterns were provoked in genes encoding fucoxanthin chlorophyll a/c binding protein (FCP), the main component of the diatom light-harvesting complex; high irradiance caused a decrease in expression of most FCP genes, but drove the rapid and specific up-regulation of ten others. C. neogracile responded very promptly to a change in light intensity by rapidly adjusting the transcript levels of FCP genes up-regulated by high light, and these dynamic adjustments coincided well with diatoxanthin (Dtx) levels formed by the xanthophyll cycle under the same conditions. The observation that the non-photochemical quenching (NPQ) capacity of this polar diatom was highly dependent on Dtx, which could bind to FCP and trigger NPQ, suggests that the up-regulated FCP gene products may participate in a photoprotective process as Dtx-binding proteins.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
107
|
Heber U, Bilger W, Türk R, Lange OL. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. THE NEW PHYTOLOGIST 2010; 185:459-70. [PMID: 19863730 DOI: 10.1111/j.1469-8137.2009.03064.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
*The photobionts of lichens have previously been shown to reversibly inactivate their photosystem II (PSII) upon desiccation, presumably as a photoprotective mechanism. The mechanism and the consequences of this process have been investigated in the green algal lichen Lobaria pulmonaria. *Lichen thalli were collected from a shaded and a sun-exposed site. The activation of PSII was followed by chlorophyll fluorescence measurements. *Inactivation of PSII, as indicated by the total loss of variable fluorescence, was accompanied by a strong decrease of basal fluorescence (F(0)). Sun-grown thalli, as well as thalli exposed to low irradiance during drying, showed a larger reduction of F(0) than shade-grown thalli or thalli desiccated in the dark. Desiccation increased phototolerance, which was positively correlated to enhanced quenching of F(0). Quenching of F(0) could be reversed by heating, and could be inhibited by glutaraldehyde but not by the uncoupler nigericin. *Activation of energy dissipation, apparent as F(0) quenching, is proposed to be based on an alteration in the conformation of a pigment protein complex. This permits thermal energy dissipation and gives considerable flexibility to photoprotection. Zeaxanthin formation apparently did not contribute to the enhancement of photoprotection by desiccation in the light. Light-induced absorbance changes indicated the involvement of chlorophyll and carotenoid cation radicals.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
108
|
Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:331-8. [PMID: 19962955 DOI: 10.1016/j.bbabio.2009.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns(-1) or 55.0 ns(-1) energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
109
|
Dreuw A, Harbach PHP, Mewes JM, Wormit M. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0680-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
110
|
Antal TK, Matorin DN, Ilyash LV, Volgusheva AA, Osipov V, Konyuhov IV, Krendeleva TE, Rubin AB. Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. PHOTOSYNTHESIS RESEARCH 2009; 102:67-76. [PMID: 19731073 DOI: 10.1007/s11120-009-9491-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/17/2009] [Indexed: 05/24/2023]
Abstract
High-resolution light-induced kinetics of chlorophyll fluorescence (OJIP transients) were recorded and analyzed in cultures of diatoms (Thalassiosira weissflogii, Chaetoceros mulleri) and dinoflagellates (Amphidinium carterae, Prorocentrum minimum). Fluorescence transients showed the rapid exponential initial rise from the point O indicating low connectivity between PS II units and high absorption cross-section of PS II antenna. Dark-adapted dinoflagellates revealed capability to maintain the PS I-mediated re-oxidation of the PQ pool at the exposure to strong actinic light that may lead to the underestimation of F(M) value. In OJIP transients recorded in phytoplanktonic algae the fluorescence yield at the point O exceeded F(O) level because Q(A) has been already partly reduced at 50 micros after the illumination onset. PEA was also employed to study the recovery of photosynthetic reactions in T. weissflogii during incubation of nitrogen starved cells in N-replete medium. N limitation caused the impairment of electron transport between Q(A) and PQs, accumulation of closed PS II centers, and the reduced ability to generate transmembrane DeltapH upon illumination, almost fully restored during the recovery period. The recovered cells showed much higher values of NPQ than control ones suggesting maximization of photoprotection mechanisms in the population with a 'stress history.'
Collapse
Affiliation(s)
- T K Antal
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kim EH, Li XP, Razeghifard R, Anderson JM, Niyogi KK, Pogson BJ, Chow WS. The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:973-84. [DOI: 10.1016/j.bbabio.2009.04.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
112
|
Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. THE PLANT CELL 2009; 21:2036-44. [PMID: 19638474 PMCID: PMC2729612 DOI: 10.1105/tpc.109.068007] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 05/18/2023]
Abstract
Plants adjust their photosynthetic activity to changing light conditions. A central regulation of photosynthesis depends on the xanthophyll cycle, in which the carotenoid violaxanthin is converted into zeaxanthin in strong light, thus activating the dissipation of the excess absorbed energy as heat and the scavenging of reactive oxygen species. Violaxanthin deepoxidase (VDE), the enzyme responsible for zeaxanthin synthesis, is activated by the acidification of the thylakoid lumen when photosynthetic electron transport exceeds the capacity of assimilatory reactions: at neutral pH, VDE is a soluble and inactive enzyme, whereas at acidic pH, it attaches to the thylakoid membrane where it binds its violaxanthin substrate. VDE also uses ascorbate as a cosubstrate with a pH-dependent Km that may reflect a preference for ascorbic acid. We determined the structures of the central lipocalin domain of VDE (VDEcd) at acidic and neutral pH. At neutral pH, VDEcd is monomeric with its active site occluded within a lipocalin barrel. Upon acidification, the barrel opens up and the enzyme appears as a dimer. A channel linking the two active sites of the dimer can harbor the entire carotenoid substrate and thus may permit the parallel deepoxidation of the two violaxanthin beta-ionone rings, making VDE an elegant example of the adaptation of an asymmetric enzyme to its symmetric substrate.
Collapse
Affiliation(s)
- Pascal Arnoux
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environementale et de Biotechnologie, Laboratoire de Bioénergétique Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | |
Collapse
|
113
|
Nowicka B, Strzalka W, Strzalka K. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1045-56. [PMID: 19278749 DOI: 10.1016/j.jplph.2008.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 12/05/2008] [Accepted: 12/19/2008] [Indexed: 05/03/2023]
Abstract
Zeaxanthin epoxidase (ZE, E.C. 1.14.13.90), an enzyme belonging to the lipocalin superfamily, catalyses the conversion of zeaxanthin to antheraxanthin and violaxanthin. These reactions are part of the xanthophyll biosynthetic pathway and the xanthophyll cycle. The role of carotenoids in the dissipation of excessive light energy has been widely studied using mutants with a disabled carotenoid biosynthetic pathway. In this paper, the transgenic line MaZEP7 with partially disabled ZE activity is described and compared with wild-type plants and npq2 mutant lacking active ZE. We examined the presence and the abundance of aba1 transcripts, measured pigment composition, xanthophyll cycle functioning and chlorophyll fluorescence in all three lines. The MaZEP7 line contains additional copies of the aba1 gene introduced by agroinfiltration, but no enhanced aba1 transcript level was observed. In addition, ZE activity in MaZEP7 was impaired, resulting in an altered xanthophyll profile. In dark-adapted plants, violaxanthin and neoxanthin levels were lower than in wild-type plants, whereas antheraxanthin and zeaxanthin levels were considerably higher. The presence of lutein epoxide was also observed. Violaxanthin levels changed only minimally during light exposition, whereas antheraxanthin was converted to zeaxanthin and there was no epoxidation during the course of the experiment indicating disturbed xanthophyll cycle functioning. The amounts of carotenoids and chlorophylls on a dry weight basis and chl a/chl b ratio were similar in all lines. The presence of epoxidated pigments in MaZEP7 plants indicates that epoxidation occurs, but it is likely very slow. Chlorophyll fluorescence measurements showed that the dependence of electron transport rates on light intensity for the MaZEP7 line resembled the npq2 mutant. Kinetic measurements showed that the MaZEP7 line exhibited very rapid induction and a high steady-state value of non-photochemical quenching.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | |
Collapse
|
114
|
Johnson MP, Ruban AV. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 2009; 284:23592-601. [PMID: 19567871 DOI: 10.1074/jbc.m109.013557] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.
Collapse
Affiliation(s)
- Matthew P Johnson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | | |
Collapse
|
115
|
Focsan AL, Molnár P, Deli J, Kispert L. Structure and properties of 9'-cis neoxanthin carotenoid radicals by electron paramagnetic resonance measurements and density functional theory calculations: present in LHC II? J Phys Chem B 2009; 113:6087-96. [PMID: 19344105 DOI: 10.1021/jp810604s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The radical intermediates formed upon catalytic or photooxidation of the carotenoid 9'-cis neoxanthin inside MCM-41 molecular sieves were detected by pulsed Mims and Davies electron nuclear double resonance (ENDOR) spectroscopies and characterized by density functional theory (DFT) calculations. Mims ENDOR spectra (20 K) were simulated using the hyperfine coupling constants predicted by DFT, which showed that a mixture of carotenoid radical cations (Car(+)) and neutral radicals (#Car) is formed. The DFT relative energies of the neutral radicals formed by proton loss from the C5, C5', C9, C9', C13, and C13'-methyl groups of Car(+) showed that #Car(9') is energetically most favorable, while #Car(9), #Car(13), #Car(13'), #Car(5'), and #Car(5) are less favorable for formation by 2.6, 5.0, 5.1, 22.5, and 25.6 kcal/mol. No evidence for formation of #Car(5') and #Car(5) was observed in the EPR spectra, consistent with DFT calculations. The epoxy group at the prime end and the allene bond at the unprime end prevent protons loss at the C5 and C5'-methyl groups by reducing the conjugation so crucial for the neutral radical stability. Previous CV measurements for allene-substituted carotenoids show that once the radical cations are formed, proton loss is rapid. These examined properties and the known crystal structure of the light harvesting complex II (LHC II) suggest the absence of the neutral radicals of 9'-cis neoxanthin available for quenching the excited states of Chl, consistent with its observed nonquenching properties.
Collapse
Affiliation(s)
- A Ligia Focsan
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, USA
| | | | | | | |
Collapse
|
116
|
A mechanism of energy dissipation in cyanobacteria. Biophys J 2009; 96:2261-7. [PMID: 19289052 DOI: 10.1016/j.bpj.2008.12.3905] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022] Open
Abstract
When grown under a variety of stress conditions, cyanobacteria express the isiA gene, which encodes the IsiA pigment-protein complex. Overexpression of the isiA gene under iron-depletion stress conditions leads to the formation of large IsiA aggregates, which display remarkably short fluorescence lifetimes and thus a strong capacity to dissipate energy. In this work we investigate the underlying molecular mechanism responsible for chlorophyll fluorescence quenching. Femtosecond transient absorption spectroscopy allowed us to follow the process of energy dissipation in real time. The light energy harvested by chlorophyll pigments migrated within the system and eventually reaches a quenching site where the energy is transferred to a carotenoid-excited state, which dissipates it by decaying to the ground state. We compare these findings with those obtained for the main light-harvesting complex in green plants (light-harvesting complex II) and artificial light-harvesting antennas, and conclude that all of these systems show the same mechanism of energy dissipation, i.e., one or more carotenoids act as energy dissipators by accepting energy via low-lying singlet-excited S(1) states and dissipating it as heat.
Collapse
|
117
|
Allahverdiyeva Y, Mamedov F, Holmström M, Nurmi M, Lundin B, Styring S, Spetea C, Aro EM. Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1230-7. [PMID: 19486880 DOI: 10.1016/j.bbabio.2009.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
Abstract
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2. The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Lemeille S, Willig A, Depège-Fargeix N, Delessert C, Bassi R, Rochaix JD. Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 2009; 7:e45. [PMID: 19260761 PMCID: PMC2650728 DOI: 10.1371/journal.pbio.1000045] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/12/2009] [Indexed: 11/18/2022] Open
Abstract
State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light–induced reduction of this bond may occur through a transthylakoid thiol–reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis. To grow optimally, photosynthetic organisms need to constantly adjust to changing light conditions. One of these adjustments, called state transitions, allows light energy to be redistributed between the two photosynthetic reaction center complexes in a cell's chloroplasts. These complexes act in concert with other components of the photosynthetic machinery to turn light energy into cellular energy. A key component in the regulation of state transitions is the chloroplast protein Stt7 (also known as STN7), which can modify other proteins by adding a phosphate group. When light levels change, the oxidation level of a pool of another chloroplast component, plastoquinone, changes, which in turn activates Stt7, inducing it to phosphorylate specific proteins of the light-harvesting complex of one reaction center. As a result, a portion of this light-harvesting complex is transferred from one photosynthetic reaction center to the other, thereby optimizing photosynthetic efficiency. Here, we have addressed the configuration of Stt7 within the thylakoid membrane of the chloroplast and the molecular mechanisms underlying its activation. Our data reveal that the level of Stt7 protein changes drastically under specific environmental conditions, that the protein does not need to be present in a one-to-one ratio with its targets for activity, and that it associates directly with a number of components of the photosynthetic machinery. The protein-modifying domain of Stt7 is exposed to the outer side of the thylakoid membrane, whereas the domain critical for regulation of its activity lies on the inner side of the thylakoid membrane. These results shed light on the molecular mechanisms that allow photosynthetic organisms to adjust to fluctuations in light levels. The Stt7/STN7 chloroplast protein is involved in the phosphorylation and remodeling of the light-harvesting apparatus of photosynthetic organisms and plays a key role in the acclimation of the photosynthetic machinery following changes in light levels.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Molecular Biology University of Geneva, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
| | - Adrian Willig
- Department of Molecular Biology University of Geneva, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
| | - Nathalie Depège-Fargeix
- Department of Molecular Biology University of Geneva, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
| | - Christian Delessert
- Department of Molecular Biology University of Geneva, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
| | - Roberto Bassi
- University of Verona, Faculty of Sciences, Verona, Italy
| | - Jean-David Rochaix
- Department of Molecular Biology University of Geneva, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
119
|
Triantaphylidès C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. TRENDS IN PLANT SCIENCE 2009; 14:219-28. [PMID: 19303348 DOI: 10.1016/j.tplants.2009.01.008] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 05/18/2023]
Abstract
Singlet oxygen ((1)O(2)) is a singular reactive oxygen species (ROS) that is produced constitutively in plant leaves in light via chlorophylls that act as photosensitizers. This (1)O(2) production is spatially resolved within thylakoid membranes and is enhanced under light stress conditions. (1)O(2) can also be produced by phytotoxins during plant-pathogen interactions. (1)O(2) is highly reactive, can be toxic to cells and can be involved in the signaling of programmed cell death or acclimation processes. Here, we summarize current knowledge on (1)O(2) management in plants and on the biological effects of this peculiar ROS. Compared with other ROS, (1)O(2) has received relatively little attention, but recent developments indicate that it has a crucial role in the responses of plants to light.
Collapse
Affiliation(s)
- Christian Triantaphylidès
- CEA, IBEB, SBVME, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France
| | | |
Collapse
|
120
|
Amarie S, Wilk L, Barros T, Kühlbrandt W, Dreuw A, Wachtveitl J. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:747-52. [PMID: 19248759 DOI: 10.1016/j.bbabio.2009.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 11/17/2022]
Abstract
Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis by which plants protect themselves against excess excitation energy and which is thus of crucial importance for plant survival and fitness. Recently, carotenoid radical cation (Car(*+)) formation has been discovered to be a key step in the feedback deexcitation quenching component (qE) of NPQ, whose molecular mechanism and location remains elusive. A recent model for qE suggests that the replacement of violaxanthin (Vio) by zeaxanthin (Zea) in photosynthetic pigment binding pockets can in principle result in qE via the so-called "gear-shift" or electron transfer quenching mechanisms. We performed pump-probe measurements on individual antenna complexes of photosystem II (CP24, CP26 and CP29) upon excitation of the chlorophylls (Chl) into their first excited Q(y) state at 660 nm when either Vio or Zea was bound to those complexes. The Chl lifetime was then probed by measuring the decay kinetics of the Chl excited state absorption (ESA) at 900 nm. The charge-transfer quenching mechanism, which is characterized by a spectral signature of the transiently formed Zea radical cation (Zea(*+)) in the near-IR, has also been addressed, both in solution and in light-harvesting complexes of photosystem II (LHC-II). Applying resonant two-photon two-color ionization (R2P2CI) spectroscopy we show here the formation of beta-Car(*+) in solution, which occurs on a femtosecond time-scale by direct electron transfer to the solvent. The beta-Car(*+) maxima strongly depend on the solvent polarity. Moreover, our two-color two-photon spectroscopy on CP29 reveals the spectral position of Zea(*+) in the near-IR region at 980 nm.
Collapse
Affiliation(s)
- Sergiu Amarie
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:738-46. [PMID: 19366605 DOI: 10.1016/j.bbabio.2009.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/20/2022]
Abstract
Light harvesting complexes have been identified in all chlorophyll-based photosynthetic organisms. Their major function is the absorption of light and its transport to the reaction centers, however, they are also involved in excess energy quenching, the so-called non-photochemical quenching (NPQ). In particular, electron transfer and the resulting formation of carotenoid radical cations have recently been discovered to play an important role during NPQ in green plants. Here, the results of our theoretical investigations of carotenoid radical cation formation in the major light harvesting complex LHC-II of green plants are reported. The carotenoids violaxanthin, zeaxanthin and lutein are considered as potential quenchers. In agreement with experimental results, it is shown that zeaxanthin cannot quench isolated LHC-II complexes. Furthermore, subtle structural differences in the two lutein binding pockets lead to substantial differences in the excited state properties of the two luteins. In addition, the formation mechanism of carotenoid radical cations in light harvesting complexes LH2 and LH1 of purple bacteria is studied. Here, the energetic position of the S(1) state of the involved carotenoids neurosporene, spheroidene, spheroidenone and spirilloxanthin seems to determine the occurrence of radical cations in these LHCs upon photo-excitation. An elaborate pump-deplete-probe experiment is suggested to challenge the proposed mechanism.
Collapse
|
122
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
123
|
Kim J, Smith JJ, Tian L, DellaPenna D. The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. ACTA ACUST UNITED AC 2009; 50:463-79. [DOI: 10.1093/pcp/pcp005] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
124
|
Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. PHYSIOLOGIA PLANTARUM 2008; 134:508-21. [PMID: 18785901 DOI: 10.1111/j.1399-3054.2008.01159.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sulfur-deficient plants generate a lower yield and have a reduced nutritional value. The process of sulfur acquisition and assimilation play an integral role in plant metabolism, and response to sulfur deficiency involves a large number of plant constituents. Rice (Oryza sativa) is the second most consumed cereal grain, and the effects of sulfur deprivation in rice were analyzed by measuring changes in photosynthesis, carbohydrate metabolism, and antioxidants. The photosynthetic apparatus was severely affected under sulfur deficiency. The Chl content was reduced by 49% because of a general reduction of PSII and PSI and the associated light-harvesting antenna. The PSII efficiency was 31% lower at growth light, and the ability of PSI to photoreduce NADP+ was decreased by 61%. The Rubisco content was also significantly reduced in the sulfur-deprived plants. The imbalances between PSII and PSI, and between photosynthesis and carbon fixation led to a general over-reduction of the photosynthetic electron carriers (higher 1-q(P)). Chromatographic analysis showed that the level of monosaccharides was lower and starch content higher in the sulfur-deprived plants. In contrast, no changes in metabolite levels were found in the tricarboxylic acid or Calvin cycle. The level of the thiol-containing antioxidant, GSH, was 70% lower and the redox state was significantly more oxidized. These changes in GSH status led to an upregulation of the cytosolic isoforms of GSH reductase and monodehydroascorbate reductase. In addition, alternative antioxidants like flavonoids and anthocyanins were increased in the sulfur-deprived plants.
Collapse
Affiliation(s)
- Christina Lunde
- VKR Research Centre "Pro-Active Plants", Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
125
|
Maayan I, Shaya F, Ratner K, Mani Y, Lavee S, Avidan B, Shahak Y, Ostersetzer-Biran O. Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels. PHYSIOLOGIA PLANTARUM 2008; 134:547-58. [PMID: 18636989 DOI: 10.1111/j.1399-3054.2008.01150.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Olive leaves are known to mature slowly, reaching their maximum photosynthetic activity only after full leaf expansion. Poor assimilation rates, typical to young olive leaves, were previously associated with low stomata conductance. Yet, very little is known about chloroplast biogenesis throughout olive leaf development. Here, the photosynthetic activity and plastids development throughout leaf maturation is characterized by biochemical and ultrastructural analyses. Although demonstrated only low photosynthetic activity, the plastids found in young leaves accumulated both photosynthetic pigments and proteins required for photophosphorylation and carbon fixation. However, Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase), which catalyzes the first major step of carbon fixation and one of the most abundant proteins in plants, could not be detected in the young leaves and only slowly accumulated throughout development. In fact, Rubisco levels seemed tightly correlated with the observed photosynthetic activities. Unlike Rubisco, numerous proteins accumulated in the young olive leaves. These included the early light induced proteins, which may be required to reduce the risk of photodamage, because of light absorption by photosynthetic pigments. Also, high levels of ribosomal L11 subunit, transcription factor elF-5A, Histones H2B and H4 were observed in the apical leaves, and in particular a plastidic-like aldolase, which accounted for approximately 30% of the total proteins. These proteins may upregulate in their levels to accommodate the high demand for metabolic energy in the young developing plant tissue, further demonstrating the complex sink-to-source relationship between young and photosynthetically active mature leaves.
Collapse
Affiliation(s)
- Inbar Maayan
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Kotabová E, Kana R, Kyseláková H, Lípová L, Novák O, Ilík P. A pronounced light-induced zeaxanthin formation accompanied by an unusually slight increase in non-photochemical quenching: a study with barley leaves treated with methyl viologen at moderate light. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1563-1571. [PMID: 18423934 DOI: 10.1016/j.jplph.2008.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/23/2007] [Accepted: 01/02/2008] [Indexed: 05/26/2023]
Abstract
Light-induced deepoxidation of violaxanthin to antheraxanthin and zeaxanthin in plants is associated with the induction of pronounced xanthophyll-dependent non-photochemical quenching (NPQ). To date, a misbalance between a high amount of zeaxanthin in thylakoid membranes and low NPQ has been explained by an absence of lumen acidification (e.g. when NPQ is measured in the dark after high light stress). In this study, we report that this misbalance can also be observed under moderate light. We found this result (deepoxidation state, DEPS, above 55% and NPQ approximately 0.9) in barley leaves treated with 10 microM methyl viologen (MV) under white light (100 micromol photonsm(-2)s(-1), photosynthetically active radiation (PAR), growth irradiance). The addition of MV at this moderate light did not accelerate electron transport in thylakoid membranes, and induced only slight oxidative stress (no lipid peroxidation, almost unchanged maximum yield of photosystem II photochemistry, a decrease in activity of ascorbate peroxidase, and an increase in that of glutathion reductase). We suggest that, in leaves treated under the conditions used here, the lumen acidification induced by light-limited electron transport in thylakoid membranes was high enough to activate violaxanthin deepoxidase, but not sufficiently high to form the expected number of zeaxanthin-dependent quenching centers in photosystem II antennae.
Collapse
Affiliation(s)
- Eva Kotabová
- Laboratory of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
127
|
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. PHOTOSYNTHESIS RESEARCH 2008; 98:551-64. [PMID: 18780159 DOI: 10.1007/s11120-008-9349-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/03/2008] [Indexed: 05/19/2023]
Abstract
High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- CEA, Institut de Biologie et Technologies de Saclay, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
128
|
Ilioaia C, Johnson MP, Horton P, Ruban AV. Induction of efficient energy dissipation in the isolated light-harvesting complex of Photosystem II in the absence of protein aggregation. J Biol Chem 2008; 283:29505-12. [PMID: 18728016 DOI: 10.1074/jbc.m802438200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by chlorophyll fluorescence quenching, in the isolated major light-harvesting complex (LHCII) incorporated into a solid gel system. Removal of detergent caused strong fluorescence quenching, which was totally reversible. Singlet-singlet annihilation and gel electrophoresis experiments suggested that the quenched complexes were in the trimeric not aggregated state. Both the formation and recovery of this quenching state were inhibited by a cross-linker, implying involvement of conformational changes. Absorption and CD measurements performed on the samples in the quenched state revealed specific alterations in the spectral bands assigned to the red forms of chlorophyll a, neoxanthin, and lutein 1 molecules. The majority of these alterations were similar to those observed during LHCII aggregation. This suggests that not the aggregation process as such but rather an intrinsic conformational transition in the complex is responsible for establishment of quenching. 77 K fluorescence measurements showed red-shifted chlorophyll a fluorescence in the 690-705 nm region, previously observed in aggregated LHCII. The fact that all spectral changes associated with the dissipative mode observed in the gel were different from those of the partially denatured complex strongly argues against the involvement of protein denaturation in the observed quenching. The implications of these findings for proposed mechanisms of energy dissipation in the Photosystem II antenna are discussed.
Collapse
Affiliation(s)
- Cristian Ilioaia
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
129
|
Martínez-Junza V, Szczepaniak M, Braslavsky SE, Sander J, Nowaczyk M, Rögner M, Holzwarth AR. A photoprotection mechanism involving the D(2) branch in photosystem II cores with closed reaction centers. Photochem Photobiol Sci 2008; 7:1337-43. [PMID: 18958320 DOI: 10.1039/b809884k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosecond transient absorption spectroscopy has been used to study reaction centre (RC) chlorophyll triplet quenching by carotenoid in intact photosystem II cores from T. elongatus with closed RCs. We found a triplet beta-carotene ((3)Car) signal (absorption difference maximum at 530 nm) that is sensitized by the RC chlorophyll (Chl) triplet with a formation time of ca. 190 ns, has a decay time of 7 micros and is formed with a quantum yield between 10 and 20%. The (3)Car signal is assigned to the beta-carotene on the D(2) branch of the RC. We thus propose a new photoprotection mechanism operative in closed RCs where-as a consequence of the negative charge on the quinone Q(A)-the triplet chlorophyll ((3)Chl) is formed by the radical pair (RP) mechanism on the normally inactive D(2) branch where it can be subsequently quenched by the D(2) beta-carotene. We suggest that the D(2) branch becomes active when the RCs are closed under high light fluence conditions. Under these conditions the D(2) branch plays a photoprotective role. This interpretation allows combining many seemingly inconsistent observations in the literature and reveals the so far missing RC triplet quenching mechanism in photosystem II. The newly proposed mechanism also explains the reason why this RC triplet quenching is not observed in isolated D(1)-D(2)-cyt b(559) RCs. If Q(A) is either not present at all (as in the isolated RC) or is not charged (as in open RCs or with doubly reduced Q(A)) then the RC (3)Chl is formed on the D(1) branch. The D(1) branch (3)Chl can not be quenched due to the large distance to the beta-carotene. This interpretation is actually in line with the well-known (3)RC quenching mechanism in bacterial RCs, where also the carotenoid in the (analogous to the D(2) branch) B-branch of the RC becomes the quencher.
Collapse
|
130
|
Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One 2008; 3:e2896. [PMID: 18682837 PMCID: PMC2483416 DOI: 10.1371/journal.pone.0002896] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/07/2008] [Indexed: 01/09/2023] Open
Abstract
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.
Collapse
|
131
|
Eisenstadt D, Ohad I, Keren N, Kaplan A. Changes in the photosynthetic reaction centre II in the diatomPhaeodactylum tricornutumresult in non-photochemical fluorescence quenching. Environ Microbiol 2008; 10:1997-2007. [DOI: 10.1111/j.1462-2920.2008.01616.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
132
|
Sfichi-Duke L, Ioannidis NE, Kotzabasis K. Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: a comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. PLANTA 2008; 228:341-53. [PMID: 18443817 DOI: 10.1007/s00425-008-0741-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/12/2008] [Indexed: 05/07/2023]
Abstract
The functional and biochemical aspects of the photosynthetic apparatus in response to UV-B radiation were examined in unicellular oxygenic algae Scenedesmus obliquus. The wild type (Wt) and a chlorophyll b-less mutant (Wt-lhc) were used as a specific tool for the understanding of antenna role. Photosynthesis was monitored during and after UV-B stress by time resolved fluorescence spectroscopy and polarography. Carotenoids, such as neoxanthin, loroxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, alpha- and beta-carotene, cellular and thylakoid-associated putrescine, spermidine, spermine and subcomplexes of light-harvesting complex (LHCII) of photosystem II (PSII) were investigated to assess their possible involvement in response to UV-B. Oxygen evolution depression by UV-B was higher in the Wt-lhc mutant than in the Wt. Photosynthesis recovery occurred in the Wt, but not in the mutant. The dissipation of excess excitation energy during UV-B stress was accompanied by changes in the thylakoid-associated polyamines which were much higher than changes in xanthophylls. We conclude that, at least in the unicellular green alga S. obliquus, mutants lacking chlorophyll b have significant lower capacity for recovery after UV-B stress. In addition, the comparison of xanthophylls and thylakoid-associated polyamines reveals that the latter are more responsive to UV-B stress and in a reversible manner.
Collapse
Affiliation(s)
- Liliana Sfichi-Duke
- Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete 71409, Greece
| | | | | |
Collapse
|
133
|
Ritchie RJ. Fitting light saturation curves measured using modulated fluorometry. PHOTOSYNTHESIS RESEARCH 2008; 96:201-15. [PMID: 18415696 DOI: 10.1007/s11120-008-9300-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 03/28/2008] [Indexed: 05/08/2023]
Abstract
A blue diode PAM (Pulse Amplitude Modulation) fluorometer was used to measure rapid Photosynthesis (P) versus Irradiance (E) curves (P vs. E curves) in Synechococcus (classical cyanobacteria), Prochlorothrix (prochlorophyta), Chlorella (chlorophyta), Rhodomonas (cryptophyta), Phaeodactylum (bacillariophyta) Acaryochloris (Chl d/a cyanobacteria) and Subterranean Clover (Trifolium subterraneum, Papilionaceae, Angiospermae). Effective quantum yield (Phi(PSII)) versus irradiance curves could be described by a simple exponential decay function (Phi(PSII) = Phi(PSII, maxe(-kE)) although Log/Log transformation was sometimes found to be necessary to obtain the best fits. Photosynthesis was measured as relative Electron Transport Rate (rETR) standardised on a chlorophyll basis. P versus E curves were fitted to the waiting-in-line function (an equation of the form P = P(max) x k x E x e(-kE)) allowing half-saturating and optimal irradiances (E(optimum)) to be estimated. The second differential of the equation shows that at twice optimal light intensities, there is a point of inflection in the P versus E curve. Photosynthesis is inhibited 26.4% at this point of inflection. The waiting-in-line model was found to be a very good descriptor of photosynthetic light saturation curves and superior to hyperbolic functions with an asymptotic saturation point (Michaelis-Menten, exponential saturation and hyperbolic tangent). The exponential constants (k) of the Phi(PSII) versus E and P versus E curves should be equal because rETR is directly proportional to Phi(PSII) x E. The conventionally calculated Non-Photochemical Quenching (NPQ) in Synechococcus was not significantly different to zero but NPQ versus E curves for the other algae could be fitted to an exponential saturation model. The kinetics of NPQ does not appear to be related to the kinetics of Phi(PSII) or rETR.
Collapse
Affiliation(s)
- Raymond J Ritchie
- School of Biological Sciences A-08, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
134
|
Dietzel L, Bräutigam K, Pfannschmidt T. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 2008; 275:1080-8. [PMID: 18318835 DOI: 10.1111/j.1742-4658.2008.06264.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.
Collapse
Affiliation(s)
- Lars Dietzel
- Junior Research Group, Department for Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Germany
| | | | | |
Collapse
|
135
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
136
|
Esteban R, Jiménez MS, Morales D, Jiménez ET, Hormaetxe K, Becerril JM, Osmond B, García-Plazaola JI. Short- and long-term modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana Mill.). PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:288-297. [PMID: 18426476 DOI: 10.1111/j.1438-8677.2008.00036.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Short- and long-term responses of the violaxanthin (V) and lutein epoxide (Lx) cycles were studied in two species of Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana L.). The Lx content exceeded the V content in shade leaves of both species. Both Lx and V were de-epoxidised on illumination, but only V was fully restored by epoxidation in low light. Violaxanthin was preferentially de-epoxidised in low light in L. nobilis. This suggests that Lx accumulates with leaf ageing, partly because its conversion to lutein is limited in shade. After exposure to strong light, shade leaves of avocado readjusted the total pools of alpha- and beta-xanthophyll cycles by de novo synthesis of antheraxanthin, zeaxanthin and lutein. This occurred in parallel with a sustained depression of F(v)/F(m). In Persea indica, a closely related but low Lx species, F(v)/F(m) recovered faster after a similar light treatment, suggesting the involvement of the Lx cycle in sustained energy dissipation. Furthermore, the seasonal correlation between non-reversible Lx and V photoconversions and pre-dawn F(v)/F(m) in sun leaves of sweet bay supported the conclusion that the Lx cycle is involved in a slowly reversible downregulation of photosynthesis analogous to the V cycle.
Collapse
Affiliation(s)
- R Esteban
- Department of Plant Biology and Ecology, UPV/EHU, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Stroch M, Kuldová K, Kalina J, Spunda V. Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:612-22. [PMID: 17761355 DOI: 10.1016/j.jplph.2007.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/26/2007] [Accepted: 03/02/2007] [Indexed: 05/17/2023]
Abstract
The response of Norway spruce saplings (Picea abies [L.] Karst.) was monitored continuously during short-term exposure (10 days) to high irradiance (HI; 1000micromol m(-2)s(-1)). Compared with plants acclimated to low irradiance (100micromol m(-2)s(-1)), plants after HI exposure were characterized by a significantly reduced CO(2) assimilation rate throughout the light response curve. Pigment contents varied only slightly during HI exposure, but a rapid and strong response was observed in xanthophyll cycle activity, particularly within the first 3 days of the HI treatment. Both violaxanthin convertibility under HI and the amount of zeaxanthin pool sustained in darkness increased markedly under HI conditions. These changes were accompanied by an enhanced non-radiative dissipation of absorbed light energy (NRD) and the acceleration of induction of both NRD and de-epoxidation of the xanthophyll cycle pigments. We found a strong negative linear correlation between the amount of sustained de-epoxidized xanthophylls and the photosystem II (PSII) photochemical efficiency (F(V)/F(M)), indicating photoprotective down-regulation of the PSII function. Recovery of F(V)/F(M) at the end of the HI treatment revealed that Norway spruce was able to cope with a 10-fold elevated irradiance due particularly to an efficient NRD within the PSII antenna that was associated with enhanced violaxanthin convertibility and a light-induced accumulation of zeaxanthin that persisted in darkness.
Collapse
Affiliation(s)
- Michal Stroch
- Department of Physics, Faculty of Science, Ostrava University, Ostrava, Czech Republic
| | | | | | | |
Collapse
|
138
|
Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J Biol Chem 2008; 283:8434-45. [PMID: 18070876 PMCID: PMC2417184 DOI: 10.1074/jbc.m708291200] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/06/2007] [Indexed: 11/06/2022] Open
Abstract
The photosystem II subunit PsbS is essential for excess energy dissipation (qE); however, both lutein and zeaxanthin are needed for its full activation. Based on previous work, two models can be proposed in which PsbS is either 1) the gene product where the quenching activity is located or 2) a proton-sensing trigger that activates the quencher molecules. The first hypothesis requires xanthophyll binding to two PsbS-binding sites, each activated by the protonation of a dicyclohexylcarbodiimide-binding lumen-exposed glutamic acid residue. To assess the existence and properties of these xanthophyll-binding sites, PsbS point mutants on each of the two Glu residues PsbS E122Q and PsbS E226Q were crossed with the npq1/npq4 and lut2/npq4 mutants lacking zeaxanthin and lutein, respectively. Double mutants E122Q/npq1 and E226Q/npq1 had no qE, whereas E122Q/lut2 and E226Q/lut2 showed a strong qE reduction with respect to both lut2 and single glutamate mutants. These findings exclude a specific interaction between lutein or zeaxanthin and a dicyclohexylcarbodiimide-binding site and suggest that the dependence of nonphotochemical quenching on xanthophyll composition is not due to pigment binding to PsbS. To verify, in vitro, the capacity of xanthophylls to bind PsbS, we have produced recombinant PsbS refolded with purified pigments and shown that Raman signals, previously attributed to PsbS-zeaxanthin interactions, are in fact due to xanthophyll aggregation. We conclude that the xanthophyll dependence of qE is not due to PsbS but to other pigment-binding proteins, probably of the Lhcb type.
Collapse
Affiliation(s)
- Giulia Bonente
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, Verona, Italy
| | | | | | | | | |
Collapse
|
139
|
Müh F, Renger T, Zouni A. Crystal structure of cyanobacterial photosystem II at 3.0 A resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:238-64. [PMID: 18313317 DOI: 10.1016/j.plaphy.2008.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Indexed: 05/04/2023]
Abstract
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the water splitting reaction during oxygenic photosynthesis. In the first part of this review, we describe the current state of the crystal structure at 3.0 A resolution of cyanobacterial PSII from Thermosynechococcus elongatus [B. Loll et al., Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044] with emphasis on the core antenna subunits CP43 and CP47 and the small membrane-intrinsic subunits. The second part describes first the general theory of optical spectra and excitation energy transfer and how the parameters of the theory can be obtained from the structural data. Next, structure-function relationships are discussed that were identified from stationary and time-resolved experiments and simulations of optical spectra and energy transfer processes.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
140
|
Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR. Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna. J Biol Chem 2008; 283:3550-3558. [DOI: 10.1074/jbc.m705645200] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
141
|
Focsan AL, Bowman MK, Konovalova TA, Molnár P, Deli J, Dixon DA, Kispert LD. Pulsed EPR and DFT Characterization of Radicals Produced by Photo-Oxidation of Zeaxanthin and Violaxanthin on Silica−Alumina. J Phys Chem B 2008; 112:1806-19. [DOI: 10.1021/jp0765650] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- A. Ligia Focsan
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - Michael K. Bowman
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - Tatyana A. Konovalova
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - Péter Molnár
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - Jozsef Deli
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - David A. Dixon
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| | - Lowell D. Kispert
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Medical Chemistry, University of Pècs, H-7601, Pècs, Hungary
| |
Collapse
|
142
|
Johnson MP, Davison PA, Ruban AV, Horton P. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching inArabidopsis thaliana. FEBS Lett 2007; 582:262-6. [DOI: 10.1016/j.febslet.2007.12.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
143
|
Mozzo M, Dall'Osto L, Hienerwadel R, Bassi R, Croce R. Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J Biol Chem 2007; 283:6184-92. [PMID: 18079125 DOI: 10.1074/jbc.m708961200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O(2) to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O(2). As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.
Collapse
Affiliation(s)
- Milena Mozzo
- Department of Biophysical Chemistry, Groningen Bimolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
144
|
Ioannidis NE, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:1372-82. [PMID: 17980696 DOI: 10.1016/j.bbabio.2007.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 02/02/2023]
Abstract
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 microM increase F(V) as efficiently as 100 microM of spermidine or 1000 microM of putrescine or 1000 microM of Mg(2+). It is also demonstrated that the increase in F(V) derives mainly from the contribution of PSIIalpha centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.
Collapse
Affiliation(s)
- Nikolaos E Ioannidis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | | |
Collapse
|
145
|
Kiss AZ, Ruban AV, Horton P. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 2007; 283:3972-8. [PMID: 18055452 DOI: 10.1074/jbc.m707410200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PsbS subunit of photosystem II (PSII) plays a key role in nonphotochemical quenching (NPQ), the major photoprotective regulatory mechanism in higher plant thylakoid membranes, but its mechanism of action is unknown. Here we describe direct evidence that PsbS controls the organization of PSII and its light harvesting system (LHCII). The changes in chlorophyll fluorescence amplitude associated with the Mg(2+)-dependent restacking of thylakoid membranes were measured in thylakoids prepared from wild-type plants, a PsbS-deficient mutant and a PsbS overexpresser. The Mg(2+) requirement and sigmoidicity of the titration curves for the fluorescence rise were negatively correlated with the level of PsbS. Using a range of PsbS mutants, this effect of PsbS was shown not to depend upon its efficacy in controlling NPQ, but to be related only to protein concentration. Electron microscopy and fluorescence spectroscopy showed that this effect was because of enhancement of the Mg(2+)-dependent re-association of PSII and LHCII by PsbS, rather than an effect on stacking per se. In the presence of PsbS the LHCII.PSII complex was also more readily removed from thylakoid membranes by detergent, and the level of PsbS protein correlated with the amplitude of the psi-type CD signal originating from features of LHCII.PSII organization. It is proposed that PsbS regulates the interaction between LHCII and PSII in the grana membranes, explaining how it acts as a pH-dependent trigger of the conformational changes within the PSII light harvesting system that result in NPQ.
Collapse
Affiliation(s)
- Anett Z Kiss
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
146
|
Dreuw A, Wormit M. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching. J Inorg Biochem 2007; 102:458-65. [PMID: 18177943 DOI: 10.1016/j.jinorgbio.2007.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/20/2007] [Accepted: 09/30/2007] [Indexed: 11/25/2022]
Abstract
Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.
Collapse
Affiliation(s)
- Andreas Dreuw
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität, Max von Laue-Str. 7, 60438 Frankfurt a. Main, Germany.
| | | |
Collapse
|
147
|
Grennan AK, Ort DR. Cool temperatures interfere with D1 synthesis in tomato by causing ribosomal pausing. PHOTOSYNTHESIS RESEARCH 2007; 94:375-85. [PMID: 17479355 DOI: 10.1007/s11120-007-9169-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 04/09/2007] [Indexed: 05/08/2023]
Abstract
Photodamage occurs when leaves are exposed to light in excess of what can be used for photosynthesis and in excess of the capacity of ancillary photoprotective as well as repair mechanisms. An important site of photodamage is the chloroplast encoded D1 protein, a component of the photosystem II (PSII) reaction center. Even under optimal growth irradiance, D1 is photodamaged necessitating rapid turnover to prevent the accumulation of photodamaged PSII reaction centers and consequent inhibition of photosynthesis. However, this on-going process of D1 turnover and replacement was impeded in the chilling-sensitive tomato (Solanum lycopersicum) plants when exposed to high-growth light at cool temperature. The decrease in D1 turnover and replacement was found not to be due to changes in the steady-state level of the psbA message. While the recruitment of ribosomes to psbA transcript, initiation of D1 translation, and the association of polysomes with the thylakoid membrane occurred normally, chilling temperatures caused ribosomal pausing during D1 peptide elongation in tomato. The pause locations were non-randomly located on the D1 transcript. The interference with translation caused by ribosomal pausing allowed photodamaged PSII centers to accumulate leading to the consequent inhibition of photosynthesis.
Collapse
Affiliation(s)
- Aleel K Grennan
- Department of Plant Biology, University of Illinois, 1206 W. Gregory Dr., 1407 IGB, Urbana, IL 61801, USA
| | | |
Collapse
|
148
|
Lambrev PH, Tsonev T, Velikova V, Georgieva K, Lambreva MD, Yordanov I, Kovács L, Garab G. Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. PHOTOSYNTHESIS RESEARCH 2007; 94:321-32. [PMID: 17786581 DOI: 10.1007/s11120-007-9216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/19/2007] [Indexed: 05/08/2023]
Abstract
The kinetics of non-photochemical quenching (NPQ) of chlorophyll fluorescence was studied in pea leaves at different temperatures between 5 and 25 degrees C and during rapid jumps of the leaf temperature. At 5 degrees C, NPQ relaxed very slowly in the dark and was sustained for up to 30 min. This was independent of the temperature at which quenching was induced. Upon raising the temperature to 25 degrees C, the quenched state relaxed within 1 min, characteristic for qE, the energy-dependent component of NPQ. Measurements of the membrane permeability (delta A515) in dark-adapted and preilluminated leaves and NPQ in the presence of dithiothreitol strongly suggest that the effect of low temperature on NPQ was not because of limitation by the lumenal pH or the de-epoxidation state of the xanthophylls. These data are consistent with the notion that the transition from the quenched to the unquenched state and vice versa involves a structural reorganization in the photosynthetic apparatus. An eight-state reaction scheme for NPQ is proposed, extending the model of Horton and co-workers (FEBS Lett 579:4201-4206, 2005), and a hypothesis is put forward concerning the nature of conformational changes associated with qE.
Collapse
Affiliation(s)
- Petar H Lambrev
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6726, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Karapetyan NV. Non-photochemical quenching of fluorescence in cyanobacteria. BIOCHEMISTRY (MOSCOW) 2007; 72:1127-35. [DOI: 10.1134/s0006297907100100] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
150
|
Takizawa K, Cruz JA, Kanazawa A, Kramer DM. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1233-44. [PMID: 17765199 DOI: 10.1016/j.bbabio.2007.07.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/26/2007] [Accepted: 07/03/2007] [Indexed: 11/27/2022]
Abstract
Endogenous probes of light-induced transthylakoid proton motive force (pmf), membrane potential (Deltapsi) and DeltapH were used in vivo to assess in Arabidopsis the lumen pH responses of regulatory components of photosynthesis. The accumulation of zeaxanthin and protonation of PsbS were found to have similar pK(a) values, but quite distinct Hill coefficients, a feature allowing high antenna efficiency at low pmf and fine adjustment at higher pmf. The onset of "energy-dependent' exciton quenching (q(E)) occurred at higher lumen pH than slowing of plastoquinol oxidation at the cytochrome b(6)f complex, presumably to prevent buildup of reduced electron carriers that can lead to photodamage. Quantitative comparison of intrinsic probes with the electrochromic shift signal in situ allowed quantitative estimates of pmf and lumen pH. Within a degree of uncertainly of approximately 0.5 pH units, the lumen pH was estimated to range from approximately 7.5 (under weak light at ambient CO(2)) to approximately 5.7 (under 50 ppm CO(2) and saturating light), consistent with a 'moderate pH' model, allowing antenna regulation but preventing acid-induced photodamage. The apparent pK(a) values for accumulation of zeaxanthin and PsbS protonation were found to be approximately 6.8, with Hill coefficients of about 4 and 1 respectively. The apparent shift between in vitro violaxanthin deepoxidase protonation and zeaxanthin accumulation in vivo is explained by steady-state competition between zeaxanthin formation and its subsequent epoxidation by zeaxanthin epoxidase. In contrast to tobacco, Arabidopsis showed substantial variations in the fraction of pmf (0.1-0.7) stored as Deltapsi, allowing a more sensitive qE response, possible as an adaptation to life at lower light levels.
Collapse
Affiliation(s)
- Kenji Takizawa
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|