101
|
Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries. Med Hypotheses 2011; 76:391-4. [DOI: 10.1016/j.mehy.2010.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022]
|
102
|
Uskoković V. Prospects and Pits on the Path of Biomimetics: The case of tooth enamel. JOURNAL OF BIOMIMETICS, BIOMATERIALS, AND TISSUE ENGINEERING 2010; 8:45-78. [PMID: 26877723 PMCID: PMC4752007 DOI: 10.4028/www.scientific.net/jbbte.8.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discourse on challenges in understanding and imitating the process of amelogenesis in vitro on the molecular scale. In light of the analysis of imitation of the growth of dental enamel, it also impends on the prospects and potential drawbacks of the biomimetic approach in general. As the formation of enamel proceeds with the protein matrix guiding the crystal growth, while at the same time conducting its own degradation and removal, it is argued that three aspects of amelogenesis need to be induced in parallel: a) crystal growth; b) protein assembly; c) proteolytic degradation. A particular emphasis is therefore placed on ensuring conditions for proteolysis-coupled protein-guided crystallization to occur. Discussed are structural and functional properties of the protein species involved in amelogenesis, mainly amelogenin and enamelysin, the main protein and the protease of the developing enamel matrix, respectively. A model of enamel growth based on controlled delivery of constituent ions or crystalline or amorphous building blocks by means of amelogenin is proposed. The importance of high viscosity of the enamel matrix and a more intricate role that water may play in such a gelatinous medium are also touched upon. The tendency of amelogenin to self-assemble into fibrous and rod-shaped morphologies is considered as potentially important in explaining the formation of elongated apatite crystals. The idea that a preassembling protein matrix serves as a template for the uniaxial growth of apatite crystals in enamel is finally challenged with the one based on co-assembly of the protein and the mineral phases.
Collapse
Affiliation(s)
- Vuk Uskoković
- Division of Biomaterials and Bioengineering, University of California, San Francisco, USA,
| |
Collapse
|
103
|
Lakshminarayanan R, Bromley KM, Lei YP, Snead ML, Moradian-Oldak J. Perturbed amelogenin secondary structure leads to uncontrolled aggregation in amelogenesis imperfecta mutant proteins. J Biol Chem 2010; 285:40593-603. [PMID: 20929860 DOI: 10.1074/jbc.m110.131136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in amelogenin sequence result in defective enamel, and the diverse group of genetically altered conditions is collectively known as amelogenesis imperfecta (AI). Despite numerous studies, the detailed molecular mechanism of defective enamel formation is still unknown. In this study, we have examined the biophysical properties of a recombinant murine amelogenin (rM180) and two point mutations identified from human DNA sequences in two cases of AI (T21I and P41T). At pH 5.8 and 25 °C, wild type (WT) rM180 and mutant P41T existed as monomers, and mutant T21I formed lower order oligomers. CD, dynamic light scattering, and fluorescence studies indicated that rM180 and P41T can be classified as a premolten globule-like subclass protein at 25 °C. Thermal denaturation and refolding monitored by CD ellipticity at 224 nm indicated the presence of a strong hysteresis in mutants compared with WT. Variable temperature tryptophan fluorescence and dynamic light scattering studies showed that WT transformed to a partially folded conformation upon heating and remained stable. The partially folded conformation formed by P41T, however, readily converted into a heterogeneous population of aggregates. T21I existed in an oligomeric state at room temperature and, upon heating, rapidly formed large aggregates over a very narrow temperature range. Thermal denaturation and refolding studies indicated that the mutants are less stable and exhibit poor refolding ability compared with WT rM180. Our results suggest that alterations in self-assembly of amelogenin are a consequence of destabilization of the intrinsic disorder. Therefore, we propose that, like a number of other human diseases, AI appears to be due to the destabilization of the secondary structure as a result of amelogenin mutations.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
104
|
Ndao M, Keene E, Amos FF, Rewari G, Ponce CB, Estroff L, Evans JS. Intrinsically Disordered Mollusk Shell Prismatic Protein That Modulates Calcium Carbonate Crystal Growth. Biomacromolecules 2010; 11:2539-44. [DOI: 10.1021/bm100738r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Moise Ndao
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - Ellen Keene
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - Fairland F. Amos
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - Gita Rewari
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - Christopher B. Ponce
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - Lara Estroff
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10012, and Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
| |
Collapse
|
105
|
Zhang H, Tompkins K, Garrigues J, Snead ML, Gibson CW, Somerman MJ. Full length amelogenin binds to cell surface LAMP-1 on tooth root/periodontium associated cells. Arch Oral Biol 2010; 55:417-25. [PMID: 20382373 PMCID: PMC2886511 DOI: 10.1016/j.archoralbio.2010.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/30/2009] [Accepted: 03/12/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. DESIGN Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0-100 microg/ml) and time course (0-120 min) assays were performed to determine the optimal conditions for live cell surface binding using immunofluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. RESULTS Maximum surface binding was achieved with 50 microg/ml of rp(H)M180 for 120 min. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. CONCLUSIONS The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Shi J, Lua S, Tong JS, Song J. Elimination of the native structure and solubility of the hVAPB MSP domain by the Pro56Ser mutation that causes amyotrophic lateral sclerosis. Biochemistry 2010; 49:3887-97. [PMID: 20377183 DOI: 10.1021/bi902057a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Pro56Ser mutation in the human VAPB MSP domain causes a familial amyotrophic lateral sclerosis. Here we present the first structural investigation of both wild-type and Pro56Ser mutant MSP domains. The results reveal that the wild-type MSP domain is well-folded at neutral pH but can undergo acid-induced unfolding reversibly. It has a thermodynamic stability energy (DeltaG degrees (N-U)) of 7.40 kcal/mol and is also active in binding to a Nir2 peptide with a K(D) of 0.65 muM. Further determination of its crystal structure reveals that it adopts a seven-strand immunoglobulin-like beta sandwich in which Pro56 adopts the unusual cis-peptide bond conformation that appears to be critical in maintaining the characteristic S-shaped loop. Markedly, the Pro56Ser mutation renders the MSP domain insoluble in buffer. Nevertheless, as facilitated by our recent discovery that "insoluble proteins" can be solubilized in salt-free water, we have successfully characterized the residue-specific conformation of the Pro56Ser mutant by CD and heteronuclear NMR spectroscopy. The Pro56Ser mutant remains lacking of the native tight packing and secondary structures under various conditions and was further characterized as having a non-native helical conformation weakly populated at pH 3.5. Intriguingly, Pro12 located in another S-shaped loop also adopts the cis-peptide bond conformation, and its mutation to Ser is able to make the MSP domain highly insoluble and unfolded like the Pro56Ser mutant. Our study thus implies that the Pro56Ser mutation might lead to ALS by eliminating the native MSP structure, which consequently leads to aggregation and loss of functions under physiological conditions.
Collapse
Affiliation(s)
- Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
107
|
Deshpande AS, Fang PA, Simmer JP, Margolis HC, Beniash E. Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro. J Biol Chem 2010; 285:19277-87. [PMID: 20404336 DOI: 10.1074/jbc.m109.079939] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.
Collapse
Affiliation(s)
- Atul S Deshpande
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
108
|
Buchko GW, Tarasevich BJ, Roberts J, Snead ML, Shaw WJ. A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1768-74. [PMID: 20304108 DOI: 10.1016/j.bbapap.2010.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 11/27/2022]
Abstract
Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12 and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
109
|
Yang X, Wang L, Qin Y, Sun Z, Henneman ZJ, Moradian-Oldak J, Nancollas GH. How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. J Phys Chem B 2010; 114:2293-300. [PMID: 20104924 PMCID: PMC2848079 DOI: 10.1021/jp910219s] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenin (Amel) accelerates the nucleation of hydroxyapatite (HAP) in supersaturated solutions of calcium phosphate (Ca-P), shortening the induction time (delay period), under near-physiological conditions of pH, temperature, and ionic strength. Hierarchically organized Amel and amorphous calcium phosphate (ACP) nanorod microstructures are formed involving a coassembly of Amel-ACP particles at low supersaturations and low protein concentrations in a slow, well-controlled, constant composition (CC) crystallization system. At the earliest nucleation stages, the CC method allows the capture of prenucleation clusters and intermediate nanoclusers, spherical nanoparticles, and nanochains prior to enamel-like nanorod microstructure formations at later maturation stages. Amel-ACP nanoscaled building blocks are formed spontaneously by synergistic interactions between flexible Amel protein molecules and Ca-P prenucleation clusters, and these spherical nanoparticles evolve by orientated aggregation to form nanochains. Our results suggest that, in vivo, Amel may determine the structure of enamel by controlling prenucleation cluster aggregation at the earliest stages by forming stable Amel-ACP microstructures prior to subsequent crystal growth and mineral maturation.
Collapse
Affiliation(s)
- Xiudong Yang
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueling Qin
- Department of Physics, The State University of New York at Buffalo, Amherst, New York 14260
| | - Zhi Sun
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033
| | - Zachary J. Henneman
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033
| | - George H. Nancollas
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| |
Collapse
|
110
|
Shaveta G, Shi J, Chow VTK, Song J. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem Biophys Res Commun 2009; 391:1390-5. [PMID: 20026307 DOI: 10.1016/j.bbrc.2009.12.070] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Viperin is an interferon-inducible protein inhibiting many DNA and RNA viruses. It contains an N-terminal transmembrane helix, a highly conserved C-terminus and a middle region carrying a CX3CX2C motif, characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. So far no structural characterization has been reported and reconstitution of the [4Fe-4S] cluster in viperin all failed. Here, by dissecting the 361-residue human viperin into 12 fragments, followed by extensive CD and NMR characterization, Viperin (45-361) was identified to be soluble and structured in buffers. Most importantly, we have successfully reconstituted the [4Fe-4S] cluster in Viperin (45-361), thus providing the first experimental evidence confirming that viperin is indeed a radical SAM enzyme. Furthermore, the C-terminus Viperin (214-361) which is insoluble in buffers but again can be solubilized in salt-free water appears to be only partially folded. Our results thus imply that the radical SAM enzyme activity may play a key role in the broad antiviral actions of viperin.
Collapse
Affiliation(s)
- Goyal Shaveta
- Department of Biochemistry, Yong Loo Lin School of Medicine, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
111
|
Jin T, Ito Y, Luan X, Dangaria S, Walker C, Allen M, Kulkarni A, Gibson C, Braatz R, Liao X, Diekwisch TGH. Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction. PLoS Biol 2009; 7:e1000262. [PMID: 20027208 PMCID: PMC2787623 DOI: 10.1371/journal.pbio.1000262] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 11/11/2009] [Indexed: 11/18/2022] Open
Abstract
How does proline-repeat motif length in the proteins of teeth and bones relate to the evolution of vertebrates? Counterintuitively, longer repeat stretches are associated with smaller aggregated subunits within a supramolecular matrix, resulting in enhanced crystal length in mammalian versus amphibian tooth enamel. Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem repeat fragment assemblies and the evolution and the design of vertebrate mineralized tissue microstructures. Our findings reveal that in the greater context of chordate evolution, the biological control of apatite growth by polyproline-based matrix assemblies provides a molecular basis for the evolution of the vertebrate body plan. The microstructure of vertebrate bones and teeth is controlled by polyproline-rich protein matrices (such as amelogenin) that serve as a scaffold to control the assembly of biological apatites. In tooth enamel, amphibians have large amelogenin subunits and thin enamel while mammals have smaller amelogenin subunits in tandem with elongated crystals and complex prismatic organization. Using specific peptides and frog amelogenin overexpressed in mice, we confirmed the effect of the length of the elongated polyproline repeat on reduced matrix subunit dimensions and enhanced apatite crystal length. Three-dimensional structures solved by NMR (nuclear magnetic resonance) and surface modeling algorithms indicate that elongated polyproline repeat stretches in amelogenins affect the dimensions of the supramolecular matrix through an increase in polyproline II helices, resulting in a compaction of supramolecular subunit dimensions. We propose that the availability of readily shaped apatites and innovative mechanisms based on amelogenin-repeat motifsthat compartmentalize and shape biological minerals was essential for the rise of early vertebrates, enabling the manufacture of strong teeth and backbones that might have given vertebrates a decisive survival advantage in the competition for food and in the sophistication of locomotion.
Collapse
Affiliation(s)
- Tianquan Jin
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
| | - Yoshihiro Ito
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
| | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
| | - Smit Dangaria
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
| | - Cameron Walker
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
| | - Michael Allen
- University of Chicago, Chicago, Illinois, United States of America
| | - Ashok Kulkarni
- National Institutes of Health, Functional Genomics Unit, Bethesda, Maryland, United States of America
| | - Carolyn Gibson
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Braatz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| | - Xiubei Liao
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Thomas G. H. Diekwisch
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
112
|
Insights into protein aggregation by NMR characterization of insoluble SH3 mutants solubilized in salt-free water. PLoS One 2009; 4:e7805. [PMID: 19956763 PMCID: PMC2776303 DOI: 10.1371/journal.pone.0007805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/16/2009] [Indexed: 12/02/2022] Open
Abstract
Protein aggregation in vivo has been extensively associated with a large spectrum of human diseases. On the other hand, mechanistic insights into protein aggregation in vitro were incomplete due to the inability in solubilizing insoluble proteins for high-resolution biophysical investigations. However, a new avenue may be opened up by our recent discovery that previously-thought insoluble proteins can in fact be solubilized in salt-free water. Here we use this approach to study the NMR structural and dynamic properties of an insoluble SH3 mutant with a naturally-occurring insertion of Val22 at the tip of the diverging turn. The obtained results reveal: 1) regardless of whether the residue is Val, Ala, Asp or Arg, the insertion will render the first hNck2 SH3 domain to be insoluble in buffers. Nevertheless, all four mutants could be solubilized in salt-free water and appear to be largely unfolded as evident from their CD and NMR HSQC spectra. 2) Comparison of the chemical shift deviations reveals that while in V22-SH3 the second helical region is similarly populated as in the wild-type SH3 at pH 2.0, the first helical region is largely unformed. 3) In V22-SH3, many non-native medium-range NOEs manifest to define non-native helical conformations. In the meanwhile a small group of native-like long-range NOEs still persists, indicating the existence of a rudimentary native-like tertiary topology. 4) Although overall, V22-SH3 has significantly increased backbone motions on the ps-ns time scale, some regions still own restricted backbone motions as revealed by analyzing 15N relaxation data. Our study not only leads to the establishment of the first high-resolution structural and dynamic picture for an insoluble protein, but also shed more light on the molecular events for the nonhierarchical folding mechanism. Furthermore, a general mechanism is also proposed for in vivo protein aggregation triggered by the genetic mutation and posttranslational modification.
Collapse
|
113
|
Amos FF, Ndao M, Evans JS. Evidence of Mineralization Activity and Supramolecular Assembly by the N-Terminal Sequence of ACCBP, a Biomineralization Protein That Is Homologous to the Acetylcholine Binding Protein Family. Biomacromolecules 2009; 10:3298-305. [DOI: 10.1021/bm900893f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fairland F. Amos
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Moise Ndao
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
114
|
Kapłon TM, Michnik A, Drzazga Z, Richter K, Kochman M, Ożyhar A. The rod-shaped conformation of Starmaker. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1616-24. [DOI: 10.1016/j.bbapap.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
|
115
|
Lakshminarayanan R, Yoon I, Hegde BG, Daming F, Du C, Moradian-Oldak J. Analysis of secondary structure and self-assembly of amelogenin by variable temperature circular dichroism and isothermal titration calorimetry. Proteins 2009; 76:560-9. [PMID: 19274734 PMCID: PMC2748104 DOI: 10.1002/prot.22369] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amelogenin is a proline-rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self-assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary-secondary structure and self-assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full-length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered beta-structured assembly. Isothermal titration calorimetry dilution studies revealed that at all temperatures, self-assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (DeltaH(A)) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Il Yoon
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA 90095, USA
| | - Balachandra G. Hegde
- Department of Biochemistry and Molecular Biology, and the Zilka Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fan Daming
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Chang Du
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
116
|
Tamerler C, Sarikaya M. Genetically designed Peptide-based molecular materials. ACS NANO 2009; 3:1606-1615. [PMID: 21452861 DOI: 10.1021/nn900720g] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
With recent developments of nanoscale engineering in the physical and chemical sciences and advances in molecular biology, molecular biomimetics is combining genetic tools and evolutionary approaches with synthetic nanoscale constructs to create a new hybrid methodology: genetically designed peptide-based molecular materials. Following the fundamental principles of genome-based design, molecular recognition, and self-assembly in nature, we can now use recombinant DNA technologies to design single or multifunctional peptides and peptide-based molecular constructs that can interact with solids and synthetic systems. These solid-binding peptides have made significant impact as inorganic synthesizers, nanoparticle linkers, and molecular assemblers, or simply as molecular building blocks, in a wide range of fields from chemistry to materials science to medicine. As part of the programmatic theme, "Nanoscience: Challenges for the Future", the current developments, challenges, and future prospects of the field were presented during a symposium at the 237th ACS National Meeting held in March 2009. This Nano Focus article presents a synopsis of the work discussed there.
Collapse
Affiliation(s)
- Candan Tamerler
- Genetically Engineered Materials Science and Engineering, Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
117
|
Delak K, Collino S, Evans JS. Polyelectrolyte Domains and Intrinsic Disorder within the Prismatic Asprich Protein Family. Biochemistry 2009; 48:3669-77. [DOI: 10.1021/bi900113v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Katya Delak
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Sebastiano Collino
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|