101
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
102
|
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci U S A 2015; 112:5455-60. [PMID: 25870276 DOI: 10.1073/pnas.1422576112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.
Collapse
|
103
|
Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:298-313. [PMID: 25517923 DOI: 10.1089/ten.teb.2014.0290] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling.
Collapse
Affiliation(s)
- Luis M Delgado
- 1Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Yves Bayon
- 2Covidien - Sofradim Production, Trévoux, France
| | - Abhay Pandit
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
104
|
Moriyama M, Metzger S, van der Vlies AJ, Uyama H, Ehrbar M, Hasegawa U. Inhibition of angiogenesis by antioxidant micelles. Adv Healthc Mater 2015; 4:569-75. [PMID: 25213436 DOI: 10.1002/adhm.201400249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Antioxidant micelles capable of scavenging reactive oxygen species (ROS) are prepared from poly(ethylene glycol)-b-poly(dopamine) block copolymers. The micelles inhibit tube formation of human umbilical vein endothelial cells (HUVECs) by scavenging endogenous ROS. Furthermore, the micelles inhibit angiogenesis in the chicken ex ovo chorioallantoic membrane assay. The results show that antioxidant micelles containing catechol moieties may be useful in anti-angiogenic therapy to treat various diseases such as cancer.
Collapse
Affiliation(s)
- Masaki Moriyama
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Stéphanie Metzger
- Department of Obstetrics; University, Hospital Zurich; Schmelzbergstrasse 12 8091 Zürich Switzerland
| | - André J. van der Vlies
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
- Frontier Research Center; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Martin Ehrbar
- Department of Obstetrics; University, Hospital Zurich; Schmelzbergstrasse 12 8091 Zürich Switzerland
| | - Urara Hasegawa
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
- Frontier Research Base for Global Young Researchers; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| |
Collapse
|
105
|
Tripathy N, Ahmad R, Ko HA, Khang G, Hahn YB. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. NANOSCALE 2015; 7:4088-4096. [PMID: 25660501 DOI: 10.1039/c4nr06979j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of stimuli-responsive nanocarriers is becoming important in chemotherapy. Liposomes, with an appropriate triggering mechanism, can efficiently deliver their encapsulated cargo in a controlled manner. We explored the use of acid-sensitive zinc oxide nanoparticles (ZNPs) as modulators of the responsive properties of liposomes. Nanocomplexes formed by the incorporation of ZNPs in liposomes (ZNP-liposomes) were designed to demonstrate the pH-responsive release of a drug (daunorubicin) without premature drug leakage and with the maintenance of the relevant therapeutic concentrations. The nanocomplexes were spherical in shape with a narrow size distribution and showed a high drug-encapsulating efficiency. Under acidic conditions, the ZNP-liposome nanocomplexes released the loaded drug more rapidly than bare liposomes. Using flow cytometry, confocal microscopy and an MTT assay, we demonstrated that these nanocomplexes were readily taken up by cancer cells, resulting in significantly enhanced cytotoxicity. On exposure to the acidic conditions inside cancer cells, the ZNPs rapidly decomposed, releasing the entrapped drug molecules from the ZNP-liposome nanocomplexes, producing widespread cytotoxic effects. The incorporated ZNPs were multimodal in that they not only resulted in a pH-responsive drug-delivery system, but they also had a synergistic chemo-photodynamic anticancer action. This design provides a significant step towards the development of multimodal liposome structures.
Collapse
Affiliation(s)
- Nirmalya Tripathy
- Department of BIN Fusion Technology and Polymer BIN Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
106
|
Cross-linked catechol-bearing poly(γ-glutamic acid) self-aggregates with antioxidant activity. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3516-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
107
|
Wu Y, Zhou D, Qi Y, Xie Z, Chen X, Jing X, Huang Y. Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra03423j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schematic illustration of DOX loading, endocytosis and intracellular microenvironment triggered release from PRDSP@DOX NPs.
Collapse
Affiliation(s)
- Yanjuan Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
108
|
Raffai G, Khang G, Vanhoutte PM. Vanillin and vanillin analogs relax porcine coronary and basilar arteries by inhibiting L-type Ca2+ channels. J Pharmacol Exp Ther 2014; 352:14-22. [PMID: 25344384 DOI: 10.1124/jpet.114.217935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vanillin (VA) and vanillyl alcohol (VAA), components of natural vanilla, and ethyl vanillin (EtVA; synthetic analog) are used as flavoring agents and/or as additives by the food, cosmetic, or pharmaceutic industries. VA, VAA, and EtVA possess antioxidant and anti-inflammatory properties, but their vascular effects have not been determined. Therefore, we compared in isolated porcine coronary and basilar arteries the changes in isometric tension caused by VA, VAA, and EtVA. VA and its analogs caused concentration-dependent relaxations of both preparations during contractions from U46619 (9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, a thromboxane A2 receptor agonist), and of coronary arteries contracted with KCl or endothelin-1. The order of potency was VAA < VA < EtVA. The relaxations were not inhibited by endothelium removal, by inhibitors of NO synthases (N(ω)-nitro-l-arginine methyl ester hydrochloride), cyclooxygenases (indomethacin), soluble guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ]), KCa (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole [TRAM-34], 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-metheno-7H-dibenzo[b,n][1,5,12,16]tetraazacyclotricosine-5,13-diium ditrifluoroacetate hydrate [UCL-1684], or iberiotoxin), by KATP (glibenclamide), by Kir (BaCl2), by transient receptor potential receptor vanilloid 3 (TRPV3) channels (ruthenium red), or by antioxidants (catalase, apocynin, tempol, N-acetylcysteine, tiron). VA and its analogs inhibited contractions induced by Ca(2+) reintroduction in coronary arteries, and by an opener of L-type Ca(2+)-channels (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate [Bay K8644]) in coronary and basilar arteries. They inhibited contractions of coronary rings induced by the protein kinase C activator phorbol 12,13-dibutyrate to the same extent as the removal of extracellular Ca(2+) or incubation with nifedipine. Thus, in porcine arteries, relaxation from VA (and its analogs) is due to inhibition of L-type Ca(2+) channels. Hence, these compounds could be used to relieve coronary or cerebral vasospasms due to exaggerated Ca(2+) influx, but therapeutic efficacy would require exposures that far exceed the current levels obtained by the use of vanillin additives.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Paul M Vanhoutte
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| |
Collapse
|
109
|
Furuya T, Miura M, Kino K. A Coenzyme-Independent Decarboxylase/Oxygenase Cascade for the Efficient Synthesis of Vanillin. Chembiochem 2014; 15:2248-54. [DOI: 10.1002/cbic.201402215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 11/07/2022]
|
110
|
Loading and release of fluorescent dye from layer-by-layer film-coated magnetic particles in response to hydrogen peroxide. J Colloid Interface Sci 2014; 432:92-7. [PMID: 25084230 DOI: 10.1016/j.jcis.2014.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022]
Abstract
Polymer-coated magnetic particles (MPs) were prepared to study the binding of fluorescence dye on the surface and its H2O2-induced release. For this goal, multilayer films were prepared by layer-by-layer deposition of shikimic acid-appended poly(allylamine hydrochloride) (SA-PAH) and poly(styrenesulfonate) (PSS) on the surface of MPs. 3-(Dansylamino)phenylboronic acid (DPBA) was loaded on the MPs through boronate ester bonding between SA-PAH and DPBA. DPBA was released from the MPs in response to H2O2 as a result of breakage of the boronate ester bond by an oxidative reaction with H2O2. DPBA release was dependent on the H2O2 concentration. For example, 65% and 93% of the DPBA was released from (SA-PAH/PSS)4SA-PAH film-coated MPs in 30min after the addition of 0.1 and 0.5mM H2O2, respectively. In addition, the multilayer film-coated MPs were further modified by using glucose oxidase (GOx) to develop glucose-induced release systems. GOx-modified MPs released DPBA in response to 0.1mM d-glucose as a result of H2O2 generation through a GOx-catalyzed oxidation reaction of d-glucose. The results suggest a potential use of the multilayer film-coated MPs in the development of H2O2- and/or glucose-sensitive drug delivery systems.
Collapse
|
111
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
112
|
Wang Z, Sun J, Jia X. Self-immolative nanoparticles triggered by hydrogen peroxide and pH. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhijian Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Jianbo Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xinru Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
113
|
d'Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Richard d'Arcy
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
- School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
114
|
Ko E, Jeong D, Kim J, Park S, Khang G, Lee D. Antioxidant polymeric prodrug microparticles as a therapeutic system for acute liver failure. Biomaterials 2014; 35:3895-902. [DOI: 10.1016/j.biomaterials.2014.01.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/19/2014] [Indexed: 12/24/2022]
|
115
|
Song CC, Du FS, Li ZC. Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2014; 2:3413-3426. [DOI: 10.1039/c3tb21725f] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article summarizes recent progress in the design and synthesis of various oxidation-responsive polymers and their application in biomedical fields.
Collapse
Affiliation(s)
- Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|