101
|
Heitkemper T, Naß L, Sindlinger CP. Ein Boratafulven. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Heitkemper
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Leonard Naß
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Christian P. Sindlinger
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| |
Collapse
|
102
|
Grünwald A, Anjana SS, Munz D. Terminal Imido Complexes of the Groups 9–11: Electronic Structure and Developments in the Last Decade. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Annette Grünwald
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - S. S. Anjana
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
103
|
Cui ZH, Liu YQ, Wang MH. Linear Group 13 E≡E Triple Bonds in E 2 Li 6 2. Chemphyschem 2021; 22:1996-2003. [PMID: 34396650 DOI: 10.1002/cphc.202100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
The triply bonded heavier main-group compounds have a textbook trans-bent geometry, in contrast to a familiar linear form found for the lightest analogues. Strikingly, the unexpected linear group 13 E≡E triple bonds were herein found in the D4h -symmetry E2 Li6 2+ clusters, and they possess a large barrier (>18.0 kcal/mol) towards the dissociation of Li+ . The perfectly surrounded Li4 motifs and two linear coordinated Li atoms strongly suppress the increasing nonbonded electron density of heavier E atoms, making two degenerate π bonds and one multi-center σ bond in linear heavier main-group triple bonds. The surrounding Li6 motifs not only creates an effective electronic structure to form a linear E≡E triple bond, but the resulting electrostatic interactions account for the highly stable global E2 Li6 2+ clusters.
Collapse
Affiliation(s)
- Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| | - Meng-Hui Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| |
Collapse
|
104
|
Banerjee I, Panda TK. Recent advances in the carbon-phosphorus (C-P) bond formation from unsaturated compounds by s- and p-block metals. Org Biomol Chem 2021; 19:6571-6587. [PMID: 34231617 DOI: 10.1039/d1ob01019k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers around the globe have witnessed several breakthroughs in s- and p-block metal chemistry. Over the past few years, several applications in catalysis associated with these main group metals have been established, and owing to their abundance and low cost and they have proved to be essential alternatives to transition metal catalysts. In this review, we present a detailed discussion on the catalytic addition of P-H bonds from various phosphine reagents to multiple bonds of unsaturated substrates for the synthesis of organophosphorus compounds with C-P bonds promoted by various s- and p-block metal catalysts, as published in the last decade.
Collapse
Affiliation(s)
- Indrani Banerjee
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India. and School of Basic and Applied Sciences, Raffles University, Neemrana - 301705, Alwar, Rajasthan, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India.
| |
Collapse
|
105
|
Chen C, Daniliuc CG, Kehr G, Erker G. Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by
N
‐Heterocyclic Carbene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
106
|
Maza RJ, Fernández E, Carbó JJ. Mapping the Electronic Structure and the Reactivity Trends for Stabilized α-Boryl Carbanions. Chemistry 2021; 27:12352-12361. [PMID: 34156127 PMCID: PMC8457114 DOI: 10.1002/chem.202101464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/12/2022]
Abstract
The chemistry of stabilized α-boryl carbanions shows remarkable diversity, and can enable many different synthetic routes towards efficient C-C bond formation. The electron-deficient, trivalent boron center stabilizes the carbanion facilitating its generation and tuning its reactivity. Here, the electronic structure and the reactivity trends of a large dataset of α-boryl carbanions are described. DFT-derived parameters were used to capture their electronic and steric properties, computational reactivity towards model substrates, and crystallographic analysis within the Cambridge Structural Dataset. This study maps the reactivity space by systematically varying the nature of the boryl moiety, the substituents of the carbanionic center, the number of α-boryl motifs, and the metal counterion. In general, the free carbanionic intermediates are described as borata-alkene species with C-B π interactions polarized towards the carbon. Furthermore, it was possible to classify the α-boryl alkylidene metal precursors into three classes directly related to their reactivity: 1) nucleophilic borata-alkene salts with alkali and alkaline earth metals, 2) nucleophilic η2 -(C-B) borata-alkene complexes with early transition metals, Cu and Ag, and 3) α-boryl alkyl complexes with late transition metals. This trend map aids selection of the appropriate reactive synthon depending on the reactivity sought.
Collapse
Affiliation(s)
- Ricardo J Maza
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| | - Elena Fernández
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| | - Jorge J Carbó
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| |
Collapse
|
107
|
Zabalov MV, Syroeshkin MA, Mankaev BN, Timofeev SV, Egorov MP, Karlov SS. Search for tetrylene structures that can exhibit catalytic activity: a quantum chemical approach. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3186-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
108
|
Keuter J, Hepp A, Daniliuc CG, Feldt M, Lips F. Cycloadditions with a Stable Charge-Separated Cyclobutadiene-Type Amido-Substituted Silicon Ring Compound. Angew Chem Int Ed Engl 2021; 60:21761-21766. [PMID: 34255419 PMCID: PMC8518912 DOI: 10.1002/anie.202104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Reductive debromination of {N(SiMe3)2}SiBr3 with Rieke magnesium results in the formation of the five‐vertex silicon cluster with one bromine substituent Si5{N(SiMe3)2}5Br, 1, and the cyclobutadiene analogue 2 in a 1:1 ratio. The latter features a planar four‐membered silicon ring with a charge‐separated electronic situation. Two silicon atoms in 2 are trigonal planar and the other two trigonal pyramidal. In cycloadditions with ethylene, diethylacetylene, 1,5‐cyclooctadiene, and 2,3‐dimethyl‐1,3‐butadiene cyclic unsaturated ring compounds (3–6) were formed at room temperature in quantitative reactions. Two of the products (3 and 6) show photochemical isomerization with LED light (λ=405 nm) to afford saturated ring compounds 4 e and 6′.
Collapse
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische and Analytische Chemie, Corrensstrasse 28-30, 48149, Münster, Germany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische and Analytische Chemie, Corrensstrasse 28-30, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstrasse 36, 48149, Münster, Germany
| | - Milica Feldt
- Westfälische Wilhelms-Universität Münster, Organisch Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstrasse 36, 48149, Münster, Germany
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische and Analytische Chemie, Corrensstrasse 28-30, 48149, Münster, Germany
| |
Collapse
|
109
|
Sun J, Verplancke H, Schweizer JI, Diefenbach M, Würtele C, Otte M, Tkach I, Herwig C, Limberg C, Demeshko S, Holthausen MC, Schneider S. Stabilizing P≡P: P22–, P2⋅–, and P20 as bridging ligands. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
110
|
Messelberger J, Pinter P, Heinemann FW, Munz D. A lead(II) toluene complex. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
111
|
Holzner R, Porzelt A, Karaca US, Kiefer F, Frisch P, Wendel D, Holthausen MC, Inoue S. Imino(silyl)disilenes: application in versatile bond activation, reversible oxidation and thermal isomerization. Dalton Trans 2021; 50:8785-8793. [PMID: 34085690 DOI: 10.1039/d1dt01629f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel disilenes of type ABSi[double bond, length as m-dash]SiAB bearing N-heterocyclic imino (A = NItBu) and trialkylsilyl (B = SitBu31, B = SitBu2Me 2) groups are reported. The reduced steric demand in 2 results in a highly stable, nonetheless flexible system, wherefore (E/Z) isomerization is observed from room temperature up to 90 °C. The proposed isomerization mechanism proceeds via monomeric silylenes in line with experimental results. Despite enhanced stability, disilene 2 retains high reactivity in the activation of small molecules, including H2. The rare example of a disilene radical cation 7 is isolated and shows reversible redox behavior. White phosphorous (P4) selectively reacts with 2 to give the unique cage-compound 8. Selective thermal rearrangement of 2 at higher temperatures yields the A2Si[double bond, length as m-dash]SiB2-type disilene 9 (A = NItBu, B = SitBu2Me), which bears characteristics of a zwitterionic and a dative central Si-Si bond. The proposed mechanism proceeds via an initial NHI migration followed by silyl migration.
Collapse
Affiliation(s)
- Richard Holzner
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Amelie Porzelt
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Uhut S Karaca
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Fiona Kiefer
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Philipp Frisch
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Daniel Wendel
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Max C Holthausen
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| |
Collapse
|
112
|
Dodonov VA, Kushnerova OA, Baranov EV, Novikov AS, Fedushkin IL. Activation and modification of carbon dioxide by redox-active low-valent gallium species. Dalton Trans 2021; 50:8899-8906. [PMID: 34105584 DOI: 10.1039/d1dt01199e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of carbon dioxide by metallylene [(dpp-bian)GaNa(DME)2] (dpp-bian = 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene) under mild conditions is described. Furthermore, the reaction of the activation complex [(dpp-bian)Ga(CO2)2Ga(dpp-bian)][Na(DME)2]2 (2) with diphenylketene, cyclohexyl isocyanate, and phenyl isocyanate leads to the elimination of carbon monoxide and the formation of derivatives of oxocarboxylic acid [(dpp-bian)GaOC(O)C(Ph)2C(CPh2)O][Na(DME)2] (6) and carbamate derivatives [(dpp-bian)GaN(Cy)C(O)N(Cy)C(O)O]2[Na(DME)2]2 (7) and [(dpp-bian)GaN(Ph)C(O)O]2[Na(DME)2]2 (8), respectively. Complexes have been characterized by NMR, IR spectroscopy, elemental analysis, and X-ray diffraction analysis. Their electronic structures have been examined by DFT calculations. The possible mechanism of the modification reaction is proposed and supported by the investigation of 13CO2-enriched samples and DFT calculations.
Collapse
Affiliation(s)
- Vladimir A Dodonov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Olga A Kushnerova
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Evgeny V Baranov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia.
| | - Igor L Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| |
Collapse
|
113
|
The Different Story of π Bonds. Molecules 2021; 26:molecules26133805. [PMID: 34206583 PMCID: PMC8270318 DOI: 10.3390/molecules26133805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
We revisit “classical” issues in multiply bonded systems between main groups elements, namely the structural distortions that may occur at the multiple bonds and that lead, e.g., to trans-bent and bond-length alternated structures. The focus is on the role that orbital hybridization and electron correlation play in this context, here analyzed with the help of simple models for σ- and π-bonds, numerically exact solutions of Hubbard Hamiltonians and first principles (density functional theory) investigations of an extended set of systems.
Collapse
|
114
|
Bevern D, Pröhl FE, Görls H, Krieck S, Westerhausen M. Versatile Access to Very Short P═P Double Bonds in Mixed-Valent 1λ 5-Diphosphenes via 1,3-Silyl Migration. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damian Bevern
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Felix E. Pröhl
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| |
Collapse
|
115
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
116
|
Shen S, Jing X, Zhang X, Li X, Zeng Y. The competition and cooperativity of hydrogen/halogen bond and π-hole bond involving the heteronuclear ethylene analogues. J Comput Chem 2021; 42:908-916. [PMID: 33729600 DOI: 10.1002/jcc.26513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 11/08/2022]
Abstract
The noncovalent interactions involving heteronuclear ethylene analogues H2 CEH2 (E = Si, Ge and Sn) have been studied by the Møller-Plesset perturbation theory to investigate the competition and cooperativity between the hydrogen/halogen bond and π-hole bond. H2 CEH2 has a dual role of being a Lewis base and acid with the region of π-electron accumulation above the carbon atom and the region of π-electron depletion (π-hole) above the E atom to participate in the NCX···CE (X = H and Cl) hydrogen/halogen bond and CE···NCY (Y = H, Cl, Li and Na) π-hole bond, respectively. When HCN/ClCN interacts with H2 CEH2 by two sites, the strength of hydrogen bond/halogen bond is stronger than that of π-hole bond. The π-hole bond becomes obviously stronger when the metal substituent of YCN (Y = Li and Na) interacting with H2 CEH2 , showing the character of partial covalent, its strength is much greater than that of hydrogen/halogen bond. In the ternary complexes, both hydrogen/halogen bond and π-hole bond are simultaneously strengthened compared to those in the binary complexes, especially in the systems containing alkali metal.
Collapse
Affiliation(s)
- Shaojie Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Xinyue Jing
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
117
|
Evans MJ, Burke FM, Chapple PM, Fulton JR. Synthesis and Reactivity of Acyclic Germanimines: Silyl Rearrangement and Cycloadditions. Inorg Chem 2021; 60:8293-8303. [PMID: 33988988 DOI: 10.1021/acs.inorgchem.1c00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of aromatic germanimines [(HMDS)2Ge═NAr] (Ar = Ph, Mes, Dipp; Mes = 2,4,6-Me3C6H2, Dipp = 2,6-iPr2C6H3) and an investigation into their associated reactivity. [(HMDS)2Ge═NPh] decomposes above -30 °C, while [(HMDS)2Ge═NDipp] engages in an intramolecular reaction at 60 °C. [(HMDS)2Ge═NMes] was shown to rearrange via a 1,3-silyl migration to give [(HMDS){(SiMe3)(Mes)N}Ge(NSiMe3)] in a 1:7 equilibrium mixture at room temperature. These latter germanimines react with unsaturated polar substrates such as CO2, ketones, and arylisocyanate via a [2 + 2] cycloaddition pathway.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - Finlay M Burke
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - Peter M Chapple
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| |
Collapse
|
118
|
Gao K, Zhao R, Sheng L. A theoretical study on novel neutral noble gas compound F 4XeOsF 4. Phys Chem Chem Phys 2021; 23:9585-9593. [PMID: 33885059 DOI: 10.1039/d0cp06450e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A noble gas compound containing a triple bond between xenon and transition metal Os (i.e. F4XeOsF4, isomer A) was predicted using quantum-chemical calculations. At the MP2 level of theory, the predicted Xe-Os bond length (2.407 Å) is between the standard double (2.51 Å) and triple (2.31 Å) bond lengths. Natural bond orbital analysis indicates that the Xe-Os triple bond consists of one σ-bond and two π-bonds, a conclusion also supported by atoms in molecules (AIM) quantum theory, the electron density distribution (EDD) and electron localization function (ELF) analysis. The two-body (XeF4 and OsF4) dissociation energy barrier of F4XeOsF4 is 15.6 kcal mol-1. The other three isomers of F4XeOsF4 were also investigated; isomer B contains a Xe-Os single bond and isomers C and D contain Xe-Os double bonds. The configurations of isomers A, B, C and D can be transformed into each other.
Collapse
Affiliation(s)
- Kunqi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | |
Collapse
|
119
|
Wang G, Walley JE, Dickie DA, Molino A, Wilson DJD, Gilliard RJ. s‐Block Multiple Bonds: Isolation of a Beryllium Imido Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guocang Wang
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Jacob E. Walley
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne Australia
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
120
|
Wang G, Walley JE, Dickie DA, Molino A, Wilson DJD, Gilliard RJ. s-Block Multiple Bonds: Isolation of a Beryllium Imido Complex. Angew Chem Int Ed Engl 2021; 60:9407-9411. [PMID: 33411396 DOI: 10.1002/anie.202016027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/07/2022]
Abstract
A common feature of d- and p-block elements is that they participate in multiple bonding. In contrast, the synthesis of compounds containing homo- or hetero-nuclear multiple bonds involving s-block elements is extremely rare. Herein, we report the synthesis, molecular structure, and computational analysis of a beryllium imido (Be=N) complex (2), which was prepared via oxidation of a molecular Be0 precursor (1) with trimethylsilyl azide Me3 SiN3 (TMS-N3 ). Notably, compound 2 features the shortest known Be=N bond (1.464 Å) to date. This represents the first compound with an s-block metal-nitrogen multiple bond. All compounds were characterized experimentally with multi-nuclear NMR spectroscopy (1 H, 13 C, 9 Be) and single-crystal X-ray diffraction studies. The bonding situation was analyzed with density functional theory (DFT) calculations, which supports the existence of π-bonding between beryllium and nitrogen.
Collapse
Affiliation(s)
- Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| |
Collapse
|
121
|
Abstract
Main group carbonyl analogues (R2 E=O) derived from p-block elements (E=groups 13 to 15) have long been considered as elusive species. Previously, employment of chemical tricks such as acid- and base-stabilization protocols granted access to these transient species in their masked forms. However, electronic and steric effects inevitably perturb their chemical reactivity and distinguish them from classical carbonyl compounds. A new era was marked by the recent isolation of acid-base free main group carbonyl analogues, ranging from a lighter boracarbonyl to the heavier silacarbonyls, phosphacarbonyls and a germacarbonyl. Most importantly, their unperturbed nature elicits exciting new chemistry, spanning the vista from classical organic carbonyl-type reactions to transition metal-like oxide ion transfer chemistry. In this Review, we survey the strategies used for the isolation of such systems and document their emerging reactivity profiles, with a view to providing fundamental comparisons both with carbon and transition metal oxo species. This highlights the emerging opportunities for exciting "crossover" reactivity offered by these derivatives of the p-block elements.
Collapse
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
122
|
Colonna S, Flammini R, Ronci F. Silicene growth on Ag(110) and Ag(111) substrates reconsidered in light of Si-Ag reactivity. NANOTECHNOLOGY 2021; 32:152001. [PMID: 33412522 DOI: 10.1088/1361-6528/abd974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicene, the 2D silicon allotrope analogue of graphene, was theoretically predicted in 1994 as a metastable buckled honeycomb silicon monolayer. Similarly to its carbon counterpart it was predicted to present an electronic structure hosting Dirac cones. In the last decade a great deal of work has been done to synthesize silicene and exploit its properties. In this paper we will review our research group activity in the field, dealing in particular with silicon-substrate interaction upon silicon deposition, and discuss the still debated silicene formation starting from the chemistry of silicon unsaturated compounds.
Collapse
Affiliation(s)
- S Colonna
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - R Flammini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - F Ronci
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| |
Collapse
|
123
|
Kobayashi R, Ishida S, Iwamoto T. Synthesis of an NHC-Coordinated Dialkyldisilavinylidene and Its Oxidation Providing a Silicon Analog of an Acetolactone. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
124
|
Yang M, Su M. Mechanistic Insight into Chemical Reactions of Acyclic Diboryloxy Carbenes: the Activation Strain Model Study. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Chung Yang
- Department of Applied Chemistry National Chiayi University Chiayi 60004 Taiwan
| | - Ming‐Der Su
- Department of Applied Chemistry National Chiayi University Chiayi 60004 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
125
|
Abstract
As the first thermal stable molecule with a B≡B bond, the diboryne complex protected by N-heterocyclic carbene ligands (NHC-B≡B-NHC) has attracted much interest. Researchers point out that π-back-donation highly stabilizes the B≡B bond besides σ-donation, both of which are induced by NHC ligands. In this work, details of the π-back-donation are revisited by using DFT calculations. There are two delocalized π* orbitals in NHC, and the symmetry of one π* orbital is highly adaptive to the π orbitals in B≡B bond, whereas the other cannot be involved in the π-back-donation. In staggered configuration, two orthogonal π orbitals of B≡B interact with this π* orbital in each NHC ligand, respectively, to form π-back-donations in both sides. This interaction has proven to be more intensive than π-conjunction, resulting in the lower energy of the staggered isomer compared with the eclipsed one containing greater π-conjunction. Moreover, intensity of the π-back-donation can be enhanced by reducing the energy levels of the matched π* orbitals in ligands, which gives references for the design of stable diborynes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yingying Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Longjiu Cheng
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
126
|
Babashpour S, Atabaki H. Unravelling the Origin of the Linear Structures Distortions of the Acetylene Isoelectronic Compounds (Disilyne, Digermyne, and Distannyne). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
127
|
Honda S, Sugawara R, Ishida S, Iwamoto T. A Spiropentasiladiene Radical Cation: Spin and Positive Charge Delocalization across Two Perpendicular Si═Si Bonds and UV-vis-NIR Absorption in the IR-B Region. J Am Chem Soc 2021; 143:2649-2653. [PMID: 33565866 DOI: 10.1021/jacs.0c12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroconjugation, that is, through-space orbital interactions between two perpendicular π orbitals, is a key concept in the contemporary molecular design of spirocyclic π-electron systems. We synthesized spiropentasiladiene radical cation salt 1 as a dark-green solid via the one-electron oxidation of the stable spiropentasiladiene 2. Characterization of the molecular structure combined with theoretical studies indicated that the spin and positive charge are delocalized across the two perpendicular Si═Si double bonds of 1. Two π(Si═Si) orbitals are split into HOMO and SOMO with a small energy gap owing to the second-order Jahn-Teller distortion and steric repulsion between bulky alkyl groups upon one-electron oxidation. In the UV-vis-NIR spectrum, the longest-wavelength absorption band of 1 (λmax = 1972 nm) covers the IR-B region (1400-3000 nm; 0.89-0.41 eV) despite having the smallest possible spiroconjugation motif. The unprecedented absorption band in the IR region was assigned to the HOMO → SOMO transition that arises from the delocalized π-orbitals in the spirocyclic Si5 skeleton.
Collapse
Affiliation(s)
- Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ryutaro Sugawara
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
128
|
Strecker J, Pfeuffer B, Hinz A. Tetravalent Group 14 Derivatives of a Bulky Aminocarbazole. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jonas Strecker
- Karlsruher Institut für Technologie (KIT) Institut für Anorganische Chemie (AOC) Engesserstraße 15 76131 Karlsruhe
| | - Bastian Pfeuffer
- Karlsruher Institut für Technologie (KIT) Institut für Anorganische Chemie (AOC) Engesserstraße 15 76131 Karlsruhe
| | - Alexander Hinz
- Karlsruher Institut für Technologie (KIT) Institut für Anorganische Chemie (AOC) Engesserstraße 15 76131 Karlsruhe
| |
Collapse
|
129
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
130
|
Borthakur R, Chandrasekhar V. Boron-heteroelement (B–E; E = Al, C, Si, Ge, N, P, As, Bi, O, S, Se, Te) multiply bonded compounds: Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
131
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
132
|
Ahraminejad M, Ghiasi R, Mohtat B, Ahmadi R. Computational investigation of the substituent effect in the [2 + 4] Diels–Alder cycloaddition reactions of
HSi
≡Si(
para
‐C
6
H
4
X
) with benzene. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mina Ahraminejad
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | - Reza Ghiasi
- Department of Chemistry, East Tehran Branch Islamic Azad University Tehran Iran
| | - Bita Mohtat
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | - Roya Ahmadi
- Department of Chemistry, Faculty of Basic science, Yadegar‐Emam Branch Islamic Azad University Tehran Iran
| |
Collapse
|
133
|
Deng G, Pan S, Jin J, Wang G, Zhao L, Zhou M, Frenking G. Generation and Identification of the Linear OCBNO and OBNCO Molecules with 24 Valence Electrons. Chemistry 2021; 27:412-418. [PMID: 33104262 PMCID: PMC7839540 DOI: 10.1002/chem.202003886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 11/23/2022]
Abstract
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0 (2pσ )0 (2pπ )2 and the CO/NO- ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.
Collapse
Affiliation(s)
- Guohai Deng
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Sudip Pan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Jiaye Jin
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Lili Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Gernot Frenking
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| |
Collapse
|
134
|
Cui ZH, Liu YQ, Huang R, Wang MH, Yan B, Zhao L. Linear group 13 E[triple bond, length as m-dash]E triple bonds. Phys Chem Chem Phys 2021; 23:11611-11615. [PMID: 33988636 DOI: 10.1039/d1cp01035b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unexpected linear group 13 E[triple bond, length as m-dash]E triple bonds were herein uncovered with the D3h-symmetry E2M5+ (M = Li, Na, and K) clusters, where the linear M-E[triple bond, length as m-dash]E-M form is perfectly surrounded by M3 motifs. The increasing nonbonded electron density of the heavier main-group elements is the key issue for the trans-bent geometry, and yet it is strongly suppressed in E2M5+, creating two degenerate π bonds and one multi-center σ bond.
Collapse
Affiliation(s)
- Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China. and Beijing National Laboratory for Molecular Sciences, China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China.
| | - Runfeng Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Meng-Hui Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China.
| | - Bing Yan
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
135
|
Ho LP, Tamm M. Stabilization of a bismuth–bismuth double bond by anionic N-heterocyclic carbenes. Dalton Trans 2021; 50:1202-1205. [DOI: 10.1039/d1dt00140j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anionic N-heterocyclic carbenes have been employed for the isolation of the first dicarbene–dibismuth complex; the resulting dibismuthene features a trans-bent geometry with a Bi–Bi double bond and short intramolecular Bi–Cipso contacts.
Collapse
Affiliation(s)
- Luong Phong Ho
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
136
|
Evans MJ, Anker MD, McMullin CL, Rajabi NA, Coles MP. Double insertion of CO2 into an Al–Te multiple bond. Chem Commun (Camb) 2021; 57:2673-2676. [DOI: 10.1039/d0cc07448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two equivalents of CO2 react with a terminal Al–Te bond to form the tellurodicarbonate ligand.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | | | | | - Martyn P. Coles
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| |
Collapse
|
137
|
Liu YQ, Wang MH, Huang R, Zhao L, Cui ZH. EE triple bonds (E = Group 13) promoted by charge transfer from alkali metals. NEW J CHEM 2021. [DOI: 10.1039/d1nj03611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical bonding analysis shows that strong charge transfer arises from M4 (M = Li and Na) motifs to E2 (E = Group 13), further making an EE triple bond composed of two π bonds and one delocalized σ bond.
Collapse
Affiliation(s)
- Yu-qian Liu
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| | - Meng-hui Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| | - Runfeng Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Zhong-hua Cui
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
- Beijing National Laboratory for Molecular Sciences, China
| |
Collapse
|
138
|
Huang Y, Wu J, Qiu R, Xu F, Zhu J. Probing the tautomerization of disilenes and disilabenzenes with their isomeric silylenes: significant substituent, aromaticity and base effects. Dalton Trans 2020; 49:17341-17349. [PMID: 33206739 DOI: 10.1039/d0dt03527k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disilene has attracted considerable interest due to the trans-bending geometry which is significantly different from the planar alkene. However, the equilibrium between disilene and isomeric silylsilylene has not been fully understood. Here, we report a density functional theory (DFT) study on this equilibrium. Calculations reveal significant effects of substituent, aromaticity and base. Specifically, the parent disilene is thermodynamically more stable than the isomeric silylene. When the methoxy substituent is introduced, the corresponding silylene becomes thermodynamically more stable, which could be rationalized by the Bent's rule. Interestingly, disilabenzene becomes thermodynamically more stable than the isomeric silylene when the concept of aromaticity is taken into account. Finally, once the base is introduced, the silylene could become thermodynamically more stable than the isomeric disilabenzene. The kinetic effect of the tautomerization with several typical substituents (F, Me and OMe) has also been investigated. Some species with a bridged form have been found to have a higher thermodynamic stability over the nonbridged ones. All these findings could be particularly useful to develop the chemistry of disilenes and silylenes.
Collapse
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | | | | | | | | |
Collapse
|
139
|
Sarkar SK, Chaliha R, Siddiqui MM, Banerjee S, Münch A, Herbst‐Irmer R, Stalke D, Jemmis ED, Roesky HW. A Neutral Three‐Membered 2π Aromatic Disilaborirane and the Unique Conversion into a Four‐Membered BSi
2
N‐Ring. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Rinkumoni Chaliha
- Inorganic and Physical Chemistry Department Indian Institute of Science Bangalore 560012 India
| | - Mujahuddin M. Siddiqui
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Samya Banerjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Annika Münch
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560012 India
| | - Eluvathingal D. Jemmis
- Inorganic and Physical Chemistry Department Indian Institute of Science Bangalore 560012 India
| | - Herbert W. Roesky
- Institut für Anorganische Chemie Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
140
|
Amin Rezaei, Ghiasi R, Marjani A. Exploring the Substituent Еffect on the Structure and Еlectronic Рroperties of Si2(para-C6H4X)2 Мolecules. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420130208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Chen Y, Wang F. Intermolecular Interactions Involving Heavy Alkenes H 2Si=TH 2 (T = C, Si, Ge, Sn, Pb) with H 2O and HCl: Tetrel Bond and Hydrogen Bond. ACS OMEGA 2020; 5:30210-30225. [PMID: 33251455 PMCID: PMC7689927 DOI: 10.1021/acsomega.0c04682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The intermolecular interactions between the heavy alkenes H2Si=TH2 (T = C, Si, Ge, Sn, Pb) and H2O or HCl have been explored at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level. The various hydrogen bond (HB) and tetrel bond (TB) complexes can be located on the basis of molecular electrostatic potential maps of the isolated monomers. The competition between TB and HB interactions has been investigated through the relaxed potential energy surface scan. The results indicate that the HB complexes become more and more unstable relative to the TB complexes with the increase of the T atomic number, and cannot even retain as a minimum in some cases, for H2Si=TH2···H2O systems. In contrast, the HB complexes are generally more stable than TB complexes, and the TB complexes exhibit rather weak binding strength, for H2Si=TH2···HCl systems. The majority of the TB complexes formed between H2Si=TH2 and H2O possesses very strong binding strength with covalent characteristics. The noncovalent TB complexes can be divided into two types on the basis of the orbital interactions: π-hole complexes, with binding angles ranging from 91 to 111°, and hybrid σ/π-hole complexes, with binding angles ranging from 130 to 165°. The interplay between different molecular interactions has been explored, and an interesting result is that the covalent TB interaction is significantly abated and becomes noncovalent because of the competitive effect.
Collapse
|
142
|
Han Z, Röhner D, Samedov K, Gates DP. Isolable Phosphaalkenes Bearing 2,4,6-Trimethoxyphenyl and 2,6-Bis(trifluoromethyl)phenyl as P-Substituents. J Org Chem 2020; 85:14643-14652. [DOI: 10.1021/acs.joc.0c01514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zeyu Han
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - David Röhner
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Kerim Samedov
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Derek P. Gates
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|
143
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
144
|
Wilson DWN, Feld J, Goicoechea JM. A Phosphanyl-Phosphagallene that Functions as a Frustrated Lewis Pair. Angew Chem Int Ed Engl 2020; 59:20914-20918. [PMID: 32615007 PMCID: PMC7693089 DOI: 10.1002/anie.202008207] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/05/2022]
Abstract
Phosphagallenes (1 a/1 b) featuring double bonds between phosphorus and gallium were synthesized by reaction of (phosphanyl)phosphaketenes with the gallium carbenoid Ga(Nacnac) (Nacnac=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ). The stability of these species is dependent on the saturation of the phosphanyl moiety. 1 a, which bears an unsaturated phosphanyl ring, rearranges in solution to yield a spirocyclic compound (2) which contains a P=P bond. The saturated variant 1 b is stable even at elevated temperatures. 1 b behaves as a frustrated Lewis pair capable of activation of H2 and forms a 1:1 adduct with CO2 .
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Joey Feld
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
145
|
Wilson DWN, Feld J, Goicoechea JM. A Phosphanyl‐Phosphagallene that Functions as a Frustrated Lewis Pair. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Joey Feld
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
146
|
Li G, Huang C, Xie Y, Robinson GH, Schaefer HF. Unusual Structures of the Parent Molecules Diarsene, Distibene, and Dibismuthene: Toward Their Observation. Chemistry 2020; 26:14159-14166. [PMID: 32468596 DOI: 10.1002/chem.202002582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/11/2022]
Abstract
There is considerable interest, from both experimental and theoretical perspectives, in molecules incorporating multiple bonds between main group elements. Herein, we not only consider the parent molecules HE=EH (E=As, Sb, Bi), but also a number of their isomers. For each E2 H2 molecule, a number of different structures were optimized with four different DFT methods. Final structures were determined with the coupled cluster method CCSD(T) using large basis sets, namely cc-pVQZ-PP, incorporating relativistic psuedopotentials. All feasible dissociation pathways are examined. For all three E2 H2 molecules the trans isomer lies lowest in energy, with the cis isomer higher by 2.7 (As), 2.1 (Sb), and 1.8 (Bi) kcal mol-1 , respectively. However, both cis and trans structures should be observable, as large barriers (27.7, 20.5, and 17.7 kcal mol-1 ) separate them. For both the cis and trans structures, in the infrared the strong E-H stretching frequencies should also be observable. Only the cis structures have dipole moments (0.62, 0.01, and 0.83 debye, respectively), and their observation by microwave spectroscopy would be stunning. Also considered were the higher energy vinylidene-like, pyramidal, monobridged, and linear structures. We conclude that molecules such as HSb=SbH-Fe(CO)4 , HBi=BiH-Fe(CO)4 , and related systems, should be feasible synthetic targets.
Collapse
Affiliation(s)
- Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chunxiang Huang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yaoming Xie
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Gregory H Robinson
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Henry F Schaefer
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
147
|
Haider W, Huch V, Morgenstern B, Schäfer A. Donor-Stabilized Monocarba-Bridged Bis(cyclopentadienyl)alanes. ChemistryOpen 2020; 9:1095-1099. [PMID: 33163326 PMCID: PMC7607447 DOI: 10.1002/open.202000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Indexed: 11/12/2022] Open
Abstract
Five monocarba-bridged bis(cyclopentadienyl)aluminum halide NHC and thione complexes and one monocarba-bridged bis(cyclopentadienyl)phosphanylalane NHC complex are reported. The former were synthesized by transmetalation of a C[1]magnesocenophane with the corresponding aluminum(III) chloride and aluminum(III) bromide donor adducts. The phosphanylalane complex was obtained by a subsequent functionalization of the corresponding bromoalane with lithium diphenylphosphide. All complexes were characterized in solution by multinuclear NMR spectroscopy and in the solid state by single crystal X-ray diffraction. Bonding energies of the NHC and thione ligands to the aluminum centres were estimated by DFT calculations.
Collapse
Affiliation(s)
- Wasim Haider
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenSaarland (Federal Republic ofGermany
| | - Volker Huch
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenSaarland (Federal Republic ofGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenSaarland (Federal Republic ofGermany
| | - André Schäfer
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenSaarland (Federal Republic ofGermany
| |
Collapse
|
148
|
Yang Z, Doddipatla S, He C, Krasnoukhov VS, Azyazov VN, Mebel AM, Kaiser RI. Directed Gas Phase Formation of Silene (H 2 SiCH 2 ). Chemistry 2020; 26:13584-13589. [PMID: 32500564 DOI: 10.1002/chem.202002359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/10/2022]
Abstract
The silene molecule (H2 SiCH2 ; X1 A1 ) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4 ). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2 SiH3 ; X2 A') complex followed by hydrogen migration to the methylsilyl radical (SiH2 CH3 ; X2 A'). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2 SiCH2 ; X1 A1 ). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon-silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | | | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
149
|
Affiliation(s)
- Ying Kai Loh
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
150
|
Sarkar SK, Chaliha R, Siddiqui MM, Banerjee S, Münch A, Herbst-Irmer R, Stalke D, Jemmis ED, Roesky HW. A Neutral Three-Membered 2π Aromatic Disilaborirane and the Unique Conversion into a Four-Membered BSi 2 N-Ring. Angew Chem Int Ed Engl 2020; 59:23015-23019. [PMID: 32840959 PMCID: PMC7756765 DOI: 10.1002/anie.202009638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/15/2022]
Abstract
We report the design, synthesis, structure, bonding, and reaction of a neutral 2π aromatic three‐membered disilaborirane. The disilaborirane is synthesized by a facile one‐pot reductive dehalogenation of amidinato‐silylene chloride and dibromoarylborane with potassium graphite. Despite the tetravalent arrangement of atoms around silicon, the three‐membered silicon‐boron‐silicon ring is aromatic, as evidenced by NMR spectroscopy, nucleus independent chemical shift calculations, first‐principles electronic structure studies using density functional theory (DFT) and natural bond orbital (NBO) based bonding analysis. Trimethylsilylnitrene, generated in situ, inserts in the Si−Si bond of disilaborirane to obtain a four‐membered heterocycle 1‐aza‐2,3‐disila‐4‐boretidine derivative. Both the heterocycles are fully characterized by X‐ray crystallography.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Rinkumoni Chaliha
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, India
| | - Mujahuddin M Siddiqui
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Samya Banerjee
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Annika Münch
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, India
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|