101
|
Jiang Z, Zhang H. Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations. J Mol Graph Model 2019; 88:152-159. [PMID: 30703689 DOI: 10.1016/j.jmgm.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
Abstract
BAX protein plays a key role in mitochondrial membrane permeabilization and cytochrome c release upon apoptosis. The C-terminal transmembrane domain (TMD) of BAX is supposed to act a membrane anchor when BAX is activated leading to programmed cell death. Previous studies indicate that the C-terminal transmembrane domain of BAX mediates membrane disruption and pore formation, however, the mechanism of the membrane disruption and pore-forming capability of BAX C-terminal transmembrane domain still unclear. Here, we performed all-atom (AA) molecular dynamics simulations to study the membrane effect of TMD peptide. We also conducted coarse-grained (CG) molecular dynamics simulations to study the membrane curvature and the stabilization of ruptured membrane pores effect of TMD peptides. Our results indicated that TMD peptide decreases the local POPC lipids order. The membrane binding of TMD induced a positive membrane curvature, moreover, certain numbers of TMD could stabilize ruptured membrane pore in both CG and AA simulations. These results provide insight into the structure details of membrane pore formation by TMD peptides. The diameters of the pore are qualitatively in good agreement with available experimental data.
Collapse
Affiliation(s)
- Zhenyan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, 130000, China.
| |
Collapse
|
102
|
Irvine WA, Flanagan JU, Allison JR. Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP3 Cell Signaling System. Structure 2019; 27:371-380.e3. [DOI: 10.1016/j.str.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 10/18/2018] [Indexed: 10/27/2022]
|
103
|
Smith DJ, Klauda JB, Sodt AJ. Simulation Best Practices for Lipid Membranes [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2019; 1:5966. [PMID: 36204133 PMCID: PMC9534443 DOI: 10.33011/livecoms.1.1.5966] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, in vitro, and in vivo experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.
Collapse
Affiliation(s)
- David J. Smith
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering and Biophysics Program, University of Maryland, College Park, MD, USA
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
104
|
Qiao Q, Wei G, Yao D, Song Z. Formation of α-helical and β-sheet structures in membrane-bound human IAPP monomer and the resulting membrane deformation. Phys Chem Chem Phys 2019; 21:20239-20251. [DOI: 10.1039/c9cp03151k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Upon adsorption on membrane, human IAPP monomer takes conformational changes from coils to α-helices and β-sheets. The helices inserted and β on surface cause different types of membrane deformation, implying two distinct aggregation mechanisms.
Collapse
Affiliation(s)
- Qin Qiao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200438
| | - Demin Yao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Zhijian Song
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| |
Collapse
|
105
|
Päslack C, Smith JC, Heyden M, Schäfer LV. Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Phys Chem Chem Phys 2019; 21:10370-10376. [DOI: 10.1039/c9cp01431d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration water governs the cholesterol-induced changes in collective headgroup dynamics in lipid bilayers.
Collapse
Affiliation(s)
- Christopher Päslack
- Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- D-44780 Bochum
- Germany
| | - Jeremy C. Smith
- Center for Molecular Biophysics
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Biochemistry and Cellular and Molecular Biology
| | - Matthias Heyden
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Lars V. Schäfer
- Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
106
|
Huber RG, Carpenter TS, Dube N, Holdbrook DA, Ingólfsson HI, Irvine WA, Marzinek JK, Samsudin F, Allison JR, Khalid S, Bond PJ. Multiscale Modeling and Simulation Approaches to Lipid-Protein Interactions. Methods Mol Biol 2019; 2003:1-30. [PMID: 31218611 DOI: 10.1007/978-1-4939-9512-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and forming a barrier between these processes and the environment. Naturally, a large apparatus of biomolecules is responsible for construction, maintenance, transport, and degradation of these lipid barriers. Additional classes of biomolecules are tasked with transport of specific substances or transduction of signals from the environment across lipid membranes. In this article, we intend to describe a set of techniques that enable one to build accurate models of lipid systems and their associated proteins, and to simulate their dynamics over a variety of time and length scales. We discuss the methods and challenges that allow us to derive structural, mechanistic, and thermodynamic information from these models. We also show how these models have recently been applied in research to study some of the most complex lipid-protein systems to date, including bacterial and viral envelopes, neuronal membranes, and mammalian signaling systems.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Namita Dube
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Daniel A Holdbrook
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - William A Irvine
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Jane R Allison
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
107
|
Prince A, Tiwari A, Ror P, Sandhu P, Roy J, Jha S, Mallick B, Akhter Y, Saleem M. Attenuation of neuroblastoma cell growth by nisin is mediated by modulation of phase behavior and enhanced cell membrane fluidity. Phys Chem Chem Phys 2019; 21:1980-1987. [DOI: 10.1039/c8cp06378h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptide mediated fluidization of cancer membrane reduces cancer cell growth.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Anuj Tiwari
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Pankaj Ror
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Padmani Sandhu
- Department of Biosciences & Bioengineering
- Indian Institute of Technology
- Bombay
- India
| | - Jyoti Roy
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Suman Jha
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Bibekanand Mallick
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Yusuf Akhter
- Department of Biotechnology
- Babasaheb Bhimrao Ambedkar University (Central University)
- Lucknow
- India
| | - Mohammed Saleem
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
108
|
Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. SOFT MATTER 2018; 15:78-93. [PMID: 30520494 DOI: 10.1039/c8sm01937a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cholesterol is an essential component of all animal cell membranes and plays an important role in maintaining the membrane structure and physical-chemical properties necessary for correct cell functioning. The presence of cholesterol is believed to be responsible for domain formation (lipid rafts) due to different interactions of cholesterol with saturated and unsaturated lipids. In order to get detailed atomistic insight into the behaviour of cholesterol in bilayers composed of lipids with varying degrees of unsaturation, we have carried out a series of molecular dynamics simulations of saturated and polyunsaturated lipid bilayers with different contents of cholesterol, as well as well-tempered metadynamics simulations with a single cholesterol molecule in these bilayers. From these simulations we have determined distributions of cholesterol across the bilayer, its orientational properties, free energy profiles, and specific interactions of molecular groups able to form hydrogen bonds. Both molecular dynamics and metadynamics simulations showed that the most unsaturated bilayer with 22:6 fatty acid chains shows behaviour which is most different from other lipids. In this bilayer, cholesterol is relatively often found in a "flipped" configuration with the hydroxyl group oriented towards the membrane middle plane. This bilayer has also the highest (least negative) binding free energy among liquid phase bilayers, and the lowest reorientation barrier. Furthermore, cholesterol molecules in this bilayer are often found to form head-to-tail contacts which may lead to specific clustering behaviour. Overall, our simulations support ideas that there can be a subtle interconnection between the contents of highly unsaturated fatty acids and cholesterol, deficiency or excess of each of them is related to many human afflictions and diseases.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| |
Collapse
|
109
|
Seo S, Shinoda W. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. J Chem Theory Comput 2018; 15:762-774. [PMID: 30514078 DOI: 10.1021/acs.jctc.8b00987] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneity is essential for multicomponent lipid membranes. Especially, sterol-induced domain formation in membranes has recently attracted attention because of its biological importance. To investigate such membrane domains at the molecular level, coarse-grained molecular dynamics (CG-MD) simulations are a promising approach since they allow one to consider the temporal and spatial scales involved in domain formation. In this work, we present a new CG force field, named SPICA, which can accurately predict domain formation within various lipids in membranes. The SPICA force field was developed as an extension of a previous CG model, known as SDK (Shinoda-DeVane-Klein), in which membrane properties such as tension, elasticity, and structure are well reproduced. By examining domain formation in a series of ternary lipid bilayers, we observed a separation into liquid-ordered and liquid-disordered phases fully consistent with experimental observations. Importantly, it is shown that the SPICA force field can detect the different phase behavior that results from subtle differences in the lipid composition of the bilayer.
Collapse
Affiliation(s)
- Sangjae Seo
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
110
|
Klauda JB. Perspective: Computational modeling of accurate cellular membranes with molecular resolution. J Chem Phys 2018; 149:220901. [DOI: 10.1063/1.5055007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
111
|
Goossens K, De Winter H. Molecular Dynamics Simulations of Membrane Proteins: An Overview. J Chem Inf Model 2018; 58:2193-2202. [PMID: 30336018 DOI: 10.1021/acs.jcim.8b00639] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simulations of membrane proteins have been rising in popularity in the past decade. Advancements in technology and force fields made it possible to simulate behavior of membrane proteins. Membrane protein simulations can now be used as supporting evidence for experimental findings, for elucidating protein mechanisms, and validating protein crystal structures. Unrelated to experimental data, these simulations can also serve to investigate larger scale processes like protein sorting, protein-membrane interactions, and more. In this review, the history as well as the state-of-the-art methodologies in membrane protein simulations will be summarized. An emphasis will be put on how to set up the system and on the current models for the different components of the simulation system. An overview of the available tools for membrane protein simulation will be given, and current limitations and prospects will also be discussed.
Collapse
Affiliation(s)
- Kenneth Goossens
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Hans De Winter
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| |
Collapse
|
112
|
Stachowicz-Kuśnierz A, Cwiklik L, Korchowiec J, Rogalska E, Korchowiec B. The impact of lipid oxidation on the functioning of a lung surfactant model. Phys Chem Chem Phys 2018; 20:24968-24978. [PMID: 30239547 DOI: 10.1039/c8cp04496a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being responsible for sufficient pulmonary compliance and preventing alveolar collapse, lung surfactant (LS) also forms the first barrier for uptake of inhaled pathogens. As such it is susceptible to damage caused by various deleterious compounds present in air, e.g. oxidants capable of oxidizing unsaturated LS lipids. This study examines the consequences of oxidizing 20% of unsaturated lipids in an LS model: a mixed 1 : 1 DPPC : POPC monolayer. POxnoPC (1-palmitoyl-2-(9-oxo-nonanoyl)-sn-glycero-3-phosphocholine) is considered as the main oxidation product. Experimental surface pressure-area isotherms and polarization-modulation infrared reflection-absorption spectroscopy are employed to probe changes in the macroscopic properties of the unsaturated lipid monolayer induced by oxidation. Microscopic details of the influence of oxidation on the monolayer's phase behavior are elucidated by molecular dynamics simulations at varying lipid packing. We demonstrate that unsaturated lipid oxidation shifts the isotherm towards larger areas and advances monolayer collapse. This is caused by a reversal of the oxidized sn-2 chains of POxnoPC towards the subphase, driven by electrostatic interactions between the aldehyde, glycerin, and water. Increased lipid bulkiness, hindered transition to the LC phase, and transfer of oxidized chain terminals to the subphase have been identified as the most troublesome consequences of this process. They result in the reduction of monolayer stability and its capability to withstand high surface pressures. This may lead to uncontrolled and irreversible loss of lipids from the surface.
Collapse
Affiliation(s)
- A Stachowicz-Kuśnierz
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | | | | | | | | |
Collapse
|
113
|
Spinello A, Cusimano MG, Schillaci D, Inguglia L, Barone G, Arizza V. Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus. Mar Drugs 2018; 16:md16100366. [PMID: 30279359 PMCID: PMC6213101 DOI: 10.3390/md16100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022] Open
Abstract
With the aim to obtain new antimicrobials against important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, we focused on antimicrobial peptides (AMPs) from Echinoderms. An example of such peptides is Paracentrin 1 (SP1), a chemically synthesised peptide fragment of a sea urchin thymosin. In the present paper, we report on the biological activity of a Paracentrin 1 derivative obtained by recombination. The recombinant paracentrin RP1, in comparison to the synthetic SP1, is 22 amino acids longer and it was considerably more active against the planktonic forms of S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 at concentrations of 50 µg/mL. Moreover, it was able to inhibit biofilm formation of staphylococcal and P. aeruginosa strains at concentrations equal to 5.0 and 10.7 µg/mL, respectively. Molecular dynamics (MD) simulations allowed to rationalise the results of the experimental investigations, providing atomistic insights on the binding of RP1 toward models of mammalian and bacterial cell membranes. Overall, the results obtained point out that RP1 shows a remarkable preference for bacterial membranes, in excellent agreement with the antibacterial activity, highlighting the promising potential of using the tested peptide as a template for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Angelo Spinello
- CNR-IOM-DEMOCRITOS c/o International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| | - Maria Grazia Cusimano
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Domenico Schillaci
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Luigi Inguglia
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Vincenzo Arizza
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| |
Collapse
|
114
|
Li A, Schertzer JW, Yong X. Molecular dynamics modeling of Pseudomonas aeruginosa outer membranes. Phys Chem Chem Phys 2018; 20:23635-23648. [PMID: 30191217 DOI: 10.1039/c8cp04278k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa is a common Gram-negative bacterium and opportunistic human pathogen. The distinctive structure of its outer membrane (OM) and outer membrane vesicles (OMVs) plays a fundamental role in bacterial virulence, colonization ability, and antibiotic resistance. To provide critical insights into OM and OMV functionality, we conducted an all-atom molecular dynamics study of asymmetric membranes that are biologically relevant to P. aeruginosa. We hybridized a GLYCAM06-based lipopolysaccharides force field with the Stockholm lipids force field (Slipids) to model bilayer membranes with Lipid A molecules in one leaflet and physiologically relevant phospholipid molecules in the other, including 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG). In particular, a membrane with phospholipid composition representing the P. aeruginosa OM was constructed and modeled by mixing the physiologically dominant components. The detailed structure of membranes was characterized by area per lipid, transmembrane mass and charge densities, radial distribution function (RDF), deuterium order parameter (SCD) of acyl chains, and inclination angles of phosphates and disaccharide in Lipid A. The membrane fluidity in equilibrium and the hydration of functional groups were probed and characterized quantitatively. The consistent properties of the Lipid A leaflets in different membranes demonstrate its compatibility with various phospholipids present in the P. aeruginosa OM. The more ordered acyl chains of Lipid A compared to the cytoplasmic cell membrane contribute to the low permeability of bacterial outer membrane. The findings of this computational investigation of P. aeruginosa OM will further the understanding of microbial pathogenesis and enable future study of OMV biogenesis.
Collapse
Affiliation(s)
- Ao Li
- Department of Mechanical Engineering, Binghamton University, The State University of New York, Binghamton, New York 13902, USA.
| | | | | |
Collapse
|
115
|
Cholesterol promotes Cytolysin A activity by stabilizing the intermediates during pore formation. Proc Natl Acad Sci U S A 2018; 115:E7323-E7330. [PMID: 30012608 DOI: 10.1073/pnas.1721228115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. Cytolysin A (ClyA) from Escherichia coli is a prototypical α-helical toxin that contributes to cytolytic phenotype of several pathogenic strains. It is produced as a monomer and, upon membrane exposure, undergoes conformational changes and finally oligomerizes to form a dodecameric pore, thereby causing ion imbalance and finally cell death. However, our current understanding of this assembly process is limited to studies in detergents, which do not capture the physicochemical properties of biological membranes. Here, using single-molecule imaging and molecular dynamics simulations, we study the ClyA assembly pathway on phospholipid bilayers. We report that cholesterol stimulates pore formation, not by enhancing initial ClyA binding to the membrane but by selectively stabilizing a protomer-like conformation. This was mediated by specific interactions by cholesterol-interacting residues in the N-terminal helix. Additionally, cholesterol stabilized the oligomeric structure using bridging interactions in the protomer-protomer interfaces, thereby resulting in enhanced ClyA oligomerization. This dual stabilization of distinct intermediates by cholesterol suggests a possible molecular mechanism by which ClyA achieves selective membrane rupture of eukaryotic cell membranes. Topological similarity to eukaryotic membrane proteins suggests evolution of a bacterial α-toxin to adopt eukaryotic motifs for its activation. Broad mechanistic correspondence between pore-forming toxins hints at a wider prevalence of similar protein membrane insertion mechanisms.
Collapse
|
116
|
Schneemilch M, Quirke N. Free energy of adhesion of lipid bilayers on silica surfaces. J Chem Phys 2018; 148:194704. [DOI: 10.1063/1.5028557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Schneemilch
- Department of Chemistry, Imperial College London, London SW7 2AY, United Kingdom
| | - N. Quirke
- Department of Chemistry, Imperial College London, London SW7 2AY, United Kingdom
| |
Collapse
|
117
|
Viennet T, Wördehoff MM, Uluca B, Poojari C, Shaykhalishahi H, Willbold D, Strodel B, Heise H, Buell AK, Hoyer W, Etzkorn M. Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation. Commun Biol 2018; 1:44. [PMID: 30271927 PMCID: PMC6123806 DOI: 10.1038/s42003-018-0049-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/24/2023] Open
Abstract
The protein α-Synuclein (αS) is linked to Parkinson’s disease through its abnormal aggregation, which is thought to involve cytosolic and membrane-bound forms of αS. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phospholipid bilayer nanodiscs. Using a combination of NMR-spectroscopic, biophysical, and computational methods, we structurally and kinetically characterize αS interaction with different membrane discs in a quantitative and site-resolved way. We obtain global and residue-specific αS membrane affinities, and determine modulations of αS membrane binding due to αS acetylation, membrane plasticity, lipid charge density, and accessible membrane surface area, as well as the consequences of the different binding modes for αS amyloid fibril formation. Our results establish a structural and kinetic link between the observed dissimilar binding modes and either aggregation-inhibiting properties, largely unperturbed aggregation, or accelerated aggregation due to membrane-assisted fibril nucleation. Thibault Viennet and colleagues gain structural insight into amyloid fibril formation from their innovative use of lipid bilayer nanodiscs. This study connects α-Synuclein membrane binding modes to its aggregation properties, furthering our understanding of the cause of neurodegerative diseases.
Collapse
Affiliation(s)
- Thibault Viennet
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Michael M Wördehoff
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Boran Uluca
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Chetan Poojari
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.,Department of Physics, Tampere University of Technology, Korkeakoulunkatu 10, 33720, Tampere, Finland.,Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, 00560, Helsinki, Finland
| | - Hamed Shaykhalishahi
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Birgit Strodel
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Henrike Heise
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Alexander K Buell
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany. .,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.
| |
Collapse
|
118
|
Guardado-Calvo P, Atkovska K, Jeffers SA, Grau N, Backovic M, Pérez-Vargas J, de Boer SM, Tortorici MA, Pehau-Arnaudet G, Lepault J, England P, Rottier PJ, Bosch BJ, Hub JS, Rey FA. A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science 2018; 358:663-667. [PMID: 29097548 DOI: 10.1126/science.aal2712] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
The Rift Valley fever virus (RVFV) is transmitted by infected mosquitoes, causing severe disease in humans and livestock across Africa. We determined the x-ray structure of the RVFV class II fusion protein Gc in its postfusion form and in complex with a glycerophospholipid (GPL) bound in a conserved cavity next to the fusion loop. Site-directed mutagenesis and molecular dynamics simulations further revealed a built-in motif allowing en bloc insertion of the fusion loop into membranes, making few nonpolar side-chain interactions with the aliphatic moiety and multiple polar interactions with lipid head groups upon membrane restructuring. The GPL head-group recognition pocket is conserved in the fusion proteins of other arthropod-borne viruses, such as Zika and chikungunya viruses, which have recently caused major epidemics worldwide.
Collapse
Affiliation(s)
- P Guardado-Calvo
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France. .,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - K Atkovska
- Institute for Microbiology and Genetics, University of Goettingen, Justus-von-Liebig weg 11, 37077 Göttingen, Germany
| | - S A Jeffers
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - N Grau
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - M Backovic
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - J Pérez-Vargas
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - S M de Boer
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M A Tortorici
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - G Pehau-Arnaudet
- UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - J Lepault
- Institut de Biologie Intégrative de la Cellule, CNRS (UMR 9198), Gif-sur-Yvette, France
| | - P England
- UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,Proteopole, Plateforme de Biophysique des Macromolécules et de leurs Interactions (PFBMI), Institut Pasteur, 25-28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | - P J Rottier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - B J Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J S Hub
- Institute for Microbiology and Genetics, University of Goettingen, Justus-von-Liebig weg 11, 37077 Göttingen, Germany.
| | - F A Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France. .,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
119
|
Lopez M, Denver J, Evangelista SE, Armetta A, Di Domizio G, Lee S. Effects of Acyl Chain Unsaturation on Activation Energy of Water Permeability across Droplet Bilayers of Homologous Monoglycerides: Role of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2147-2157. [PMID: 29323917 DOI: 10.1021/acs.langmuir.7b03590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol is an important component of total lipid in mammalian cellular membranes; hence, the knowledge of its association with lipid bilayer membranes will be essential to understanding membrane structure and function. A droplet interface bilayer (DIB) provides a convenient and reliable platform through which values for permeability coefficient and activation energy of water transport across the membrane can be extracted. In this study, we investigated the effect of acyl chain structure in amphiphilic monoglycerides on the permeability of water across DIB membranes composed of cholesterol and these monoglycerides, where the acyl chain length, number of double bonds, and the position of double bond are varied systematically along the acyl chains. To elucidate the role of cholesterol in these membranes, we investigated its influence on water permeability and associated activation energies at two different cholesterol concentrations. Our systematic studies show dramatic sensitivity and selectivity of specific interaction of cholesterol with the monoglyceride bilayer having structural variations in acyl chain compositions. Our findings allow us to delineate the exquisite interplay between membrane properties and structural components and understand the balanced contribution of each.
Collapse
Affiliation(s)
- Maria Lopez
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jacqueline Denver
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sue Ellen Evangelista
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alessandra Armetta
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Gabriella Di Domizio
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
120
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer. J Chem Phys 2018; 148:045105. [DOI: 10.1063/1.5018459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
121
|
Yesylevskyy SO, Ramseyer C, Savenko M, Mura S, Couvreur P. Low-Density Lipoproteins and Human Serum Albumin as Carriers of Squalenoylated Drugs: Insights from Molecular Simulations. Mol Pharm 2018; 15:585-591. [DOI: 10.1021/acs.molpharmaceut.7b00952] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Semen O. Yesylevskyy
- Department
of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Christophe Ramseyer
- Laboratoire
Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Mariia Savenko
- Laboratoire
Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Simona Mura
- Institut
Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry
Cedex, France
| | - Patrick Couvreur
- Institut
Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry
Cedex, France
| |
Collapse
|
122
|
Abstract
From the pharmacological point of view, allosteric modulators may present numerous advantages over orthosteric ligands. Growing availability of novel tools and experimental data provides a tempting opportunity to apply computational methods to improve known modulators and design novel ones. However, recent progress in understanding of complexity of allostery increases awareness of problems involved in design of modulators with desired properties. Deeper insight into phenomena such as probe dependence, altering signaling bias with minor changes in ligand structure, as well as influence of subtle endogenous allosteric factors turns out to be fundamental. These effects make the design of a modulator with precise pharmacological outcome a very challenging task, and need to be taken into consideration throughout the design process. In this chapter, we focus on nuances of targeting GPCR allosteric sites in computational drug design efforts, in particular with application of docking, virtual screening, and molecular dynamics.
Collapse
|
123
|
A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids. Molecules 2017; 23:molecules23010077. [PMID: 29301229 PMCID: PMC6017617 DOI: 10.3390/molecules23010077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.
Collapse
|
124
|
Bartuzi D, Kaczor AA, Matosiuk D. Molecular mechanisms of allosteric probe dependence in μ opioid receptor. J Biomol Struct Dyn 2017; 37:36-47. [PMID: 29241414 DOI: 10.1080/07391102.2017.1417914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Allostery is one of the most important features of proteins. It greatly contributes to the complexity of life, since it enables possibility of precise tuning of protein function, as well as performing more than one function per protein. Probe dependence is one of the unique features of allostery. It allows a protein to respond differently to the same allosteric modulator when different drugs or transmitters are bound. Unfortunately, allosteric mechanisms are difficult to investigate experimentally. Instead, they can be reproduced artificially in simulations. We simulated in silico a native-like cell membrane fragment with an active-state human μ opioid receptor (MOR) in order to investigate diverse effects of a receptor's positive allosteric modulator on various agonists. Particular emphasis on native-likeness of the environment was put. We managed to reproduce the experimentally observed effects, which allowed us to take deeper insight into their underlying mechanisms. We found an allosteric pathway in the receptor, leading from the ligand binding site to the intracellular, effector site. We observed that the modulator affected the pathway, inducing different resultant responses for full and partial agonists.
Collapse
Affiliation(s)
- Damian Bartuzi
- a Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab , Medical University of Lublin , Lublin , Poland
| | - Agnieszka A Kaczor
- a Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab , Medical University of Lublin , Lublin , Poland.,b School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Dariusz Matosiuk
- a Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
125
|
Liu Y, Liu Y, Chan-Park MB, Mu Y. Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study. Sci Rep 2017; 7:17197. [PMID: 29222455 PMCID: PMC5722933 DOI: 10.1038/s41598-017-17606-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Teixobactin (TXB) is a newly discovered antibiotic targeting the bacterial cell wall precursor Lipid II (LII). In the present work, four binding modes of TXB on LII were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered ensemble (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of LII are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in LII recognition. TXB-LII complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one LII, respectively. Our findings disclose that the ring motif of TXB is critical to LII binding and novel antibiotics can be designed based on its mimetics.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yaxin Liu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
126
|
Khondker A, Alsop RJ, Dhaliwal A, Saem S, Moran-Mirabal JM, Rheinstädter MC. Membrane Cholesterol Reduces Polymyxin B Nephrotoxicity in Renal Membrane Analogs. Biophys J 2017; 113:2016-2028. [PMID: 29117525 DOI: 10.1016/j.bpj.2017.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 01/21/2023] Open
Abstract
Polymyxin B (PmB) is a "last-line" antibiotic scarcely used due to its nephrotoxicity. However, the molecular basis for antibiotic nephrotoxicity is not clearly understood. We prepared kidney membrane analogs of detergent-susceptible membranes, depleted of cholesterol, and cholesterol enriched, resistant membranes. In both analogs, PmB led to membrane damage. By combining x-ray diffraction, molecular dynamics simulations, and electrochemistry, we present evidence for two populations of PmB molecules: peptides that lie flat on the membranes, and an inserted state. In cholesterol depleted membranes, PmB forms clusters on the membranes leading to an indentation of the bilayers and increase in water permeation. The inserted peptides formed aggregates in the membrane core leading to further structural instabilities and increased water intake. The presence of cholesterol in the resistant membrane analogs led to a significant decrease in membrane damage. Although cholesterol did not inhibit peptide insertion, it minimized peptide clustering and water intake through stabilization of the bilayer structure and suppression of lipid and peptide mobility.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Alexander Dhaliwal
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Sokunthearath Saem
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
127
|
Navrátilová V, Paloncýová M, Berka K, Mise S, Haga Y, Matsumura C, Sakaki T, Inui H, Otyepka M. Molecular insights into the role of a distal F240A mutation that alters CYP1A1 activity towards persistent organic pollutants. Biochim Biophys Acta Gen Subj 2017; 1861:2852-2860. [DOI: 10.1016/j.bbagen.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
|
128
|
Dong X, Sun Y, Wei G, Nussinov R, Ma B. Binding of protofibrillar Aβ trimers to lipid bilayer surface enhances Aβ structural stability and causes membrane thinning. Phys Chem Chem Phys 2017; 19:27556-27569. [PMID: 28979963 PMCID: PMC5647258 DOI: 10.1039/c7cp05959k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease, a common neurodegenerative disease, is characterized by the aggregation of amyloid-β (Aβ) peptides. The interactions of Aβ with membranes cause changes in membrane morphology and ion permeation, which are responsible for its neurotoxicity and can accelerate fibril growth. However, the Aβ-lipid interactions and how these induce membrane perturbation and disruption at the atomic level and the consequences for the Aβ organization are not entirely understood. Here, we perform multiple atomistic molecular dynamics simulations on three protofibrillar Aβ9-40 trimers. Our simulations show that, regardless of the morphologies and the initial orientations of the three different protofibrillar Aβ9-40 trimers, the N-terminal β-sheet of all trimers preferentially binds to the membrane surface. The POPG lipid bilayers enhance the structural stability of protofibrillar Aβ trimers by stabilizing inter-peptide β-sheets and D23-K28 salt-bridges. The interaction causes local membrane thinning. We found that the trimer structure related to Alzheimer's disease brain tissue () is the most stable both in water solution and at membrane surface, and displays slightly stronger membrane perturbation capability. These results provide mechanistic insights into the membrane-enhanced structural stability of protofibrillar Aβ oligomers and the first step of Aβ-induced membrane disruption at the atomic level.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
129
|
Enkavi G, Mikkolainen H, Güngör B, Ikonen E, Vattulainen I. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Comput Biol 2017; 13:e1005831. [PMID: 29084218 PMCID: PMC5679659 DOI: 10.1371/journal.pcbi.1005831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic detail two competitively favorable membrane binding orientations of npc2 with a low interconversion barrier. The first binding mode (Prone) places the cholesterol binding pocket in direct contact with the membrane and is characterized by membrane insertion of a loop (V59-M60-G61-I62-P63-V64-P65). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required for strong membrane binding in Prone mode, and that it cannot be substituted by other anionic lipids. Meanwhile, sphingomyelin counteracts bmp by hindering Prone mode without affecting Supine mode. Our results provide concrete evidence that lipids modulate npc2-mediated cholesterol transport either by favoring or disfavoring Prone mode and that they impose this by modulating the accessibility of bmp for interacting with npc2. Overall, we provide a mechanism by which npc2-mediated cholesterol transport is controlled by the membrane composition and how npc2-lipid interactions can regulate the transport rate.
Collapse
Affiliation(s)
- Giray Enkavi
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Heikki Mikkolainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
| | - Burçin Güngör
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
- Memphys—Center for Biomembrane Physics, Odense, Denmark
| |
Collapse
|
130
|
Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci Rep 2017; 7:12152. [PMID: 28939906 PMCID: PMC5610326 DOI: 10.1038/s41598-017-12127-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.
Collapse
Affiliation(s)
- Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia. .,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya, Moscow, 119435, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Moscow Institute of Physics and Technology, 9 Institutsky lane, 141700, Dolgoprudniy, Russia
| |
Collapse
|
131
|
Dignon GL, Zerze GH, Mittal J. Interplay Between Membrane Composition and Structural Stability of Membrane-Bound hIAPP. J Phys Chem B 2017; 121:8661-8668. [DOI: 10.1021/acs.jpcb.7b05689] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gregory L. Dignon
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Gül H. Zerze
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
132
|
Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations. Biophys J 2017. [PMID: 28636916 DOI: 10.1016/j.bpj.2017.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Microsecond molecular dynamics simulations of harzianin HK VI (HZ) interacting with a dimyristoylphosphatidylcholine bilayer were performed at the condition of low peptide-to-lipid ratio. Two orientations of HZ molecule in the bilayer were found and characterized. In the orientation perpendicular to the bilayer surface, HZ induces a local thinning of the bilayer. When inserted into the bilayer parallel to its surface, HZ is located nearly completely within the hydrophobic region of the bilayer. A combination of solid-state NMR and circular dichroism experiments found the latter orientation to be dominant. An extended sampling simulation provided qualitative results and showed the same orientation to be a global minimum of free energy. The secondary structure of HZ was characterized, and it was found to be located in the 310-helical family. The specific challenges of computer simulation of nonpolar peptides are discussed briefly.
Collapse
|
133
|
Timr Š, Pleskot R, Kadlec J, Kohagen M, Magarkar A, Jungwirth P. Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality. ACS CENTRAL SCIENCE 2017; 3:868-874. [PMID: 28852701 PMCID: PMC5571466 DOI: 10.1021/acscentsci.7b00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Recoverin is a neuronal calcium sensor involved in vision adaptation that reversibly associates with cellular membranes via its calcium-activated myristoyl switch. While experimental evidence shows that the myristoyl group significantly enhances membrane affinity of this protein, molecular details of the binding process are still under debate. Here, we present results of extensive molecular dynamics simulations of recoverin in the proximity of a phospholipid bilayer. We capture multiple events of spontaneous membrane insertion of the myristoyl moiety and confirm its critical role in the membrane binding. Moreover, we observe that the binding strongly depends on the conformation of the N-terminal domain. We propose that a suitable conformation of the N-terminal domain can be stabilized by the disordered C-terminal segment or by binding of the target enzyme, i.e., rhodopsin kinase. Finally, we find that the presence of negatively charged lipids in the bilayer stabilizes a physiologically functional orientation of the membrane-bound recoverin.
Collapse
Affiliation(s)
- Štěpán Timr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Roman Pleskot
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Institute
of Experimental Botany, Czech Academy of
Sciences, Rozvojová
263, 16502 Prague
6, Czech Republic
| | - Jan Kadlec
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Miriam Kohagen
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Institute
for Computational Physics, University of
Stuttgart, Allmandring
3, Stuttgart, 70569, Germany
| | - Aniket Magarkar
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki, 00014 Finland
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| |
Collapse
|
134
|
Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep 2017; 7:6343. [PMID: 28740256 PMCID: PMC5524714 DOI: 10.1038/s41598-017-06445-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/13/2017] [Indexed: 01/31/2023] Open
Abstract
Despite doxorubicin being commonly used in chemotherapy there still remain significant holes in our knowledge regarding its delivery efficacy and an observed resistance mechanism that is postulated to involve the cell membrane. One possible mechanism is the efflux by protein P-gp, which is found predominantly in cholesterol enriched domains. Thereby, a hypothesis for the vulnerability of doxorubicin to efflux through P-gp is its enhanced affinity for the ordered cholesterol rich regions of the plasma membrane. Thus, we have studied doxorubicin’s interaction with model membranes in a cholesterol rich, ordered environment and in liquid-disordered cholesterol poor environment. We have combined three separate experimental protocols: UV-Vis spectrophotometry, fluorescence quenching and steady-state anisotropy and computational molecular dynamics modeling. Our results show that the presence of cholesterol induces a change in membrane structure and doesn’t impair doxorubicin’s membrane partitioning, but reduces drug’s influence on membrane fluidity without directly interacting with it. It is thus possible that the resistance mechanism that lowers the efficacy of doxorubicin, results from an increased density in membrane regions where the efflux proteins are present. This work represents a successful approach, combining experimental and computational studies of membrane based systems to unveil the behavior of drugs and candidate drug molecules.
Collapse
|
135
|
Volynsky P, Efremov R, Mikhalev I, Dobrochaeva K, Tuzikov A, Korchagina E, Obukhova P, Rapoport E, Bovin N. Why human anti-Galα1-4Galβ1-4Glc natural antibodies do not recognize the trisaccharide on erythrocyte membrane? Molecular dynamics and immunochemical investigation. Mol Immunol 2017; 90:87-97. [PMID: 28708979 DOI: 10.1016/j.molimm.2017.06.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Human blood contains a big variety of natural antibodies, circulating throughout life at constant concentration. Previously, we have found natural antibodies capable of binding to trisaccharide Galα1-4Galβ1-4Glc (Pk) practically in all humans. Intriguingly, the same trisaccharide is a key fragment of glycosphingolipid globotriaosylceramide (Gb3Cer) - normal component of erythrocyte and endothelial cell membrane, i.e. the antibodies and their cognate antigen coexist without any immunological reaction. AIM To explain the inertness of human anti-Pk antibodies towards own cells. MATERIALS AND METHODS We used a combination of immunochemical and molecular dynamics (MD) experiments. Antibodies were isolated using affinity media with Pk trisaccharide, their epitope specificity was characterized using ELISA (enzyme-linked immunosorbent assay) with a set of synthetic glycans related to Pk synthetic glycans and FACS (Fluorescence-Activated Cell Sorting) analysis of cells with inserted natural Gb3Cer and its synthetic analogue. Conformations and clustering of glycolipids immersed into a lipid bilayer were studied using MD simulations. RESULTS Isolated specific antibodies were completely unable to bind natural Gb3Cer both inserted into cells and in artificial membrane, whereas strong interaction took place with synthetic analogue differing by the presence of a spacer between trisaccharide and lipid part. MD simulations revealed: i) although membrane-bound glycans do not form stable long-living aggregates, their transient packing is more compact in natural Gb3 as compared with the synthetic analog, ii) similar conformation of Pk glycan in composition of the glycolipids, iii) no effect on the mentioned above results when cholesterol was inserted into membrane, and iv) better accessibility of the synthetic version for interaction with proteins. CONCLUSIONS Both immunochemical and molecular dynamics data argue that the reason of the "tolerance" of natural anti-Pk antibodies towards cell-bound Gb3Cer is the spatial inaccessibility of Pk glycotope for interaction. We can conclude that the antibodies are not related to the blood group P system.
Collapse
Affiliation(s)
- Pavel Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Roman Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation.
| | - Ilya Mikhalev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Alexander Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Elena Korchagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Evgenia Rapoport
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
136
|
Chaibva M, Jawahery S, Pilkington AW, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J. Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophys J 2017; 111:349-362. [PMID: 27463137 DOI: 10.1016/j.bpj.2016.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Sudi Jawahery
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - James R Arndt
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Olivia Sarver
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Stephen Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, Institute for Physical Chemistry and Technology, University of Maryland, College Park, Maryland.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; NanoSAFE, West Virginia University, Morgantown, West Virginia; Center for Neurosciences, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
137
|
Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K, Dharmarajan V, Griffin PR, Gati C, Nelson G, Hunter MS, Hanson MA, Cherezov V, Stevens RC, Tan W, Tao H, Xu F. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun 2017; 8:15383. [PMID: 28513578 PMCID: PMC5442369 DOI: 10.1038/ncomms15383] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs. Smoothened receptors (SMO) play a key role in the Hedgehog signalling pathway. Here the authors present the structure of a multi-domain human SMO with a rationally designed stabilizing ligand bound in the transmembrane domain of the receptor, and propose a model for SMO activation.
Collapse
Affiliation(s)
- Xianjun Zhang
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gye Won Han
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrii Ishchenko
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Lintao Ye
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Ding
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Cornelius Gati
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Biomedical Campus, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Vadim Cherezov
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
138
|
Van Oosten B, Marquardt D, Harroun TA. Testing High Concentrations of Membrane Active Antibiotic Chlorhexidine Via Computational Titration and Calorimetry. J Phys Chem B 2017; 121:4657-4668. [DOI: 10.1021/acs.jpcb.6b12510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brad Van Oosten
- Department
of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Drew Marquardt
- Institute
of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thad A. Harroun
- Department
of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
139
|
Javanainen M, Martinez-Seara H, Vattulainen I. Nanoscale Membrane Domain Formation Driven by Cholesterol. Sci Rep 2017; 7:1143. [PMID: 28442766 PMCID: PMC5430823 DOI: 10.1038/s41598-017-01247-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic experimental techniques due to their small size, yet there is also a lack of atomistic simulation models able to describe spontaneous nanodomain formation in sufficiently simple but biologically relevant complex membranes. Here we use atomistic simulations to consider a binary mixture of saturated dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets. The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains. The model considered explains a plethora of controversial experimental results and provides an excellent basis for further computational studies on nanodomains. Furthermore, the results highlight the role of cholesterol as a key player in the modulation of nanodomains for membrane protein function.
Collapse
Affiliation(s)
- Matti Javanainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hector Martinez-Seara
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland. .,Department of Physics, University of Helsinki, Helsinki, Finland. .,MEMPHYS - Centre for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
140
|
Sandoval-Perez A, Pluhackova K, Böckmann RA. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. J Chem Theory Comput 2017; 13:2310-2321. [PMID: 28388089 DOI: 10.1021/acs.jctc.7b00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.
Collapse
Affiliation(s)
- Angelica Sandoval-Perez
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Staudtstrassre 5, 91058 Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Staudtstrassre 5, 91058 Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Staudtstrassre 5, 91058 Erlangen, Germany
| |
Collapse
|
141
|
Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an MD simulation study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
142
|
Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nat Commun 2017; 8:6. [PMID: 28232750 PMCID: PMC5431895 DOI: 10.1038/s41467-016-0015-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Bryostatin is in clinical trials for Alzheimer’s disease, cancer, and HIV/AIDS eradication. It binds to protein kinase C competitively with diacylglycerol, the endogenous protein kinase C regulator, and plant-derived phorbol esters, but each ligand induces different activities. Determination of the structural origin for these differing activities by X-ray analysis has not succeeded due to difficulties in co-crystallizing protein kinase C with relevant ligands. More importantly, static, crystal-lattice bound complexes do not address the influence of the membrane on the structure and dynamics of membrane-associated proteins. To address this general problem, we performed long-timescale (400–500 µs aggregate) all-atom molecular dynamics simulations of protein kinase C–ligand–membrane complexes and observed that different protein kinase C activators differentially position the complex in the membrane due in part to their differing interactions with waters at the membrane inner leaf. These new findings enable new strategies for the design of simpler, more effective protein kinase C analogs and could also prove relevant to other peripheral protein complexes. Natural supplies of bryostatin, a compound in clinical trials for Alzheimer’s disease, cancer, and HIV, are scarce. Here, the authors perform molecular dynamics simulations to understand how bryostatin interacts with membrane-bound protein kinase C, offering insights for the design of bryostatin analogs.
Collapse
|
143
|
Khomich DA, Nesterenko AM, Kostritskii AY, Kondinskaia DA, Ermakov YA, Gurtovenko AA. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/794/1/012010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
144
|
Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. J Biol Chem 2017; 292:5031-5042. [PMID: 28174298 PMCID: PMC5377815 DOI: 10.1074/jbc.m116.767616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.
Collapse
Affiliation(s)
- Fatemah Safar
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elliot Hurdiss
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Marios Erotocritou
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Timo Greiner
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark W Irvine
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Guangyu Fang
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - David Jane
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Rilei Yu
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,the Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Marc A Dämgen
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C Biggin
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Lucia G Sivilotti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
145
|
Witzke S, List NH, Olsen JMH, Steinmann C, Petersen M, Beerepoot MTP, Kongsted J. An averaged polarizable potential for multiscale modeling in phospholipid membranes. J Comput Chem 2017; 38:601-611. [PMID: 28160294 DOI: 10.1002/jcc.24718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/28/2023]
Abstract
A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Witzke
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Nanna Holmgaard List
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | | | - Casper Steinmann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| |
Collapse
|
146
|
Gorai B, Sivaraman T. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations. Int J Biol Macromol 2017; 95:1022-1036. [DOI: 10.1016/j.ijbiomac.2016.10.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023]
|
147
|
Drolle E, Bennett WFD, Hammond K, Lyman E, Karttunen M, Leonenko Z. Molecular dynamics simulations and Kelvin probe force microscopy to study of cholesterol-induced electrostatic nanodomains in complex lipid mixtures. SOFT MATTER 2017; 13:355-362. [PMID: 27901162 PMCID: PMC7733735 DOI: 10.1039/c6sm01350c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular arrangement of lipids and proteins within biomembranes and monolayers gives rise to complex film morphologies as well as regions of distinct electrical surface potential, topographical and electrostatic nanoscale domains. To probe these nanodomains in soft matter is a challenging task both experimentally and theoretically. This work addresses the effects of cholesterol, lipid composition, lipid charge, and lipid phase on the monolayer structure and the electrical surface potential distribution. Atomic force microscopy (AFM) was used to resolve topographical nanodomains and Kelvin probe force microscopy (KPFM) to resolve electrical surface potential of these nanodomains in lipid monolayers. Model monolayers composed of dipalmitoylphosphatidylcholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(3-lysyl(1-glycerol))] (DOPG), and cholesterol were studied. It is shown that cholesterol changes nanoscale domain formation, affecting both topography and electrical surface potential. The molecular basis for differences in electrical surface potential was addressed with atomistic molecular dynamics (MD). MD simulations are compared the experimental results, with 100 s of mV difference in electrostatic potential between liquid-disordered bilayer (Ld, less cholesterol and lower chain order) and a liquid-ordered bilayer (Lo, more cholesterol and higher chain order). Importantly, the difference in electrostatic properties between Lo and Ld phases suggests a new mechanism by which membrane composition couples to membrane function.
Collapse
Affiliation(s)
- E Drolle
- Department of Biology, University of Waterloo, Canada. and Waterloo Institute of Nanotechnology, University of Waterloo, Canada
| | - W F D Bennett
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| | - K Hammond
- Department of Physics and Astronomy, University of Waterloo, Canada
| | - E Lyman
- Department of Physics and Astronomy, 217 Sharp Lab, Newark, USA
| | - M Karttunen
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, MetaForum, 5600 MB Eindhoven, the Netherlands
| | - Z Leonenko
- Department of Biology, University of Waterloo, Canada. and Waterloo Institute of Nanotechnology, University of Waterloo, Canada and Department of Physics and Astronomy, University of Waterloo, Canada
| |
Collapse
|
148
|
Lopez H, Brandt EG, Mirzoev A, Zhurkin D, Lyubartsev A, Lobaskin V. Multiscale Modelling of Bionano Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:173-206. [PMID: 28168669 DOI: 10.1007/978-3-319-47754-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a framework for coarse-grained modelling of the interface between foreign nanoparticles (NP) and biological fluids and membranes. Our model includes united-atom presentations of membrane lipids and globular proteins in implicit solvent, which are based on all-atom structures of the corresponding molecules and parameterised using experimental data or atomistic simulation results. The NPs are modelled by homogeneous spheres that interact with the beads of biomolecules via a central force that depends on the NP size. The proposed methodology is used to predict the adsorption energies for human blood plasma proteins on NPs of different sizes as well as the preferred orientation of the molecules upon adsorption. Our approach allows one to rank the proteins by their binding affinity to the NP, which can be used for predicting the composition of the NP-protein corona for the corresponding material. We also show how the model can be used for studying NP interaction with a lipid bilayer membrane and thus can provide a mechanistic insight for modelling NP toxicity.
Collapse
Affiliation(s)
- Hender Lopez
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alexander Mirzoev
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Dmitry Zhurkin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Vladimir Lobaskin
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
149
|
Dickson CJ, Hornak V, Pearlstein RA, Duca JS. Structure–Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. J Am Chem Soc 2016; 139:442-452. [DOI: 10.1021/jacs.6b11215] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Callum J. Dickson
- Computer-Aided Drug Discovery,
Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery,
Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert A. Pearlstein
- Computer-Aided Drug Discovery,
Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose S. Duca
- Computer-Aided Drug Discovery,
Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
150
|
Ermilova I, Lyubartsev AP. Extension of the Slipids Force Field to Polyunsaturated Lipids. J Phys Chem B 2016; 120:12826-12842. [DOI: 10.1021/acs.jpcb.6b05422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Inna Ermilova
- Department of Materials and
Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Alexander P. Lyubartsev
- Department of Materials and
Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|