101
|
Wang Z, Von Dem Bussche A, Kabadi PK, Kane AB, Hurt RH. Biological and environmental transformations of copper-based nanomaterials. ACS NANO 2013; 7:8715-27. [PMID: 24032665 PMCID: PMC3894052 DOI: 10.1021/nn403080y] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing because of ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO-NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species.
Collapse
Affiliation(s)
- Zhongying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Annette Von Dem Bussche
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Pranita K. Kabadi
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Agnes B. Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912
| | - Robert H. Hurt
- School of Engineering, Brown University, Providence, Rhode Island 02912
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912
- Address correspondence to
| |
Collapse
|
102
|
Liu X, Chen G, Erwin JG, Adam NK, Su C. Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications. WATER RESEARCH 2013; 47:6149-6156. [PMID: 24050683 DOI: 10.1016/j.watres.2013.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Phosphorus-bearing materials as an additive have been popularly used in nanomaterial synthesis and the residual phosphorus within the nanoparticles (NPs) can be of an environmental concern. For instance, phosphorus within pristine commercial TiO2 NPs greatly influences the surface charge and aggregation behavior of the host TiO2 in aquatic environments; however, it is unknown whether and how fast phosphorus is released. In this study, we focus on the phosphorus release kinetics from five types of TiO2 NPs (i.e., 5, 10, and 50 nm anatase and 10 × 40, 30 × 40 nm rutile) under the influence of varying solution chemistries. The 50 nm anatase has the highest quantity of P (8.05 g/kg) and most leachable P dissolves within the first 2 h (i.e., 5.01 g/kg), which presents a potential pollutant source of P. Higher pH favors the phosphorus release (release order: pH 11.2 > pH 8.2 > pH 2.4), while variations in the environmentally relevant ionic strengths (0.01 M NaCl + 0.01 M NaHCO3 and 0.04 M NaCl + 0.01 M NaHCO3) and the presence of dissolved natural organic matter (10 mg/L) do not affect release rate greatly. X-ray Absorption Near Edge Structure results suggest that phosphate adsorbed on the pristine 50 nm anatase desorbs, and some dissolved phosphate again re-sorbs as a surface precipitate. The findings from this research may have important environmental implications such as accidental release of TiO2 NPs and other nanomaterials that are synthesized using phosphorus containing chemicals as an ingredient.
Collapse
Affiliation(s)
- Xuyang Liu
- National Research Council, 919 Kerr Research Drive, Ada, OK 74820, United States.
| | | | | | | | | |
Collapse
|
103
|
Worthington KL, Dodd AA, Wongrakpanich A, Mudunkotuwa IA, Mapuskar KA, Joshi VB, Guymon CA, Spitz DR, Grassian VH, Thorne PS, Salem AK. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. NANOTECHNOLOGY 2013; 24:395101. [PMID: 24008224 PMCID: PMC3816956 DOI: 10.1088/0957-4484/24/39/395101] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.
Collapse
Affiliation(s)
- Kristan L.S. Worthington
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Andrea A. Dodd
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Imali A. Mudunkotuwa
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology and Toxicology Programs, Department of Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Vijaya B. Joshi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology and Toxicology Programs, Department of Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Vicki H. Grassian
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aliasger K. Salem
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
- CORRESPONDING AUTHOR: Aliasger K. Salem, Ph.D., Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, the University of Iowa, S228 PHAR, 115 S. Grand Ave. Iowa City, IA 52242, Phone: (319)-335-8810, Fax: (319)-335-9349,
| |
Collapse
|
104
|
Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2013; 31:50820. [PMID: 24482557 PMCID: PMC3869349 DOI: 10.1116/1.4818423] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/25/2013] [Indexed: 05/17/2023]
Abstract
This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.
Collapse
Affiliation(s)
- Donald R Baer
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Mark H Engelhard
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Grant E Johnson
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Julia Laskin
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Jinfeng Lai
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Karl Mueller
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Prabhakaran Munusamy
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | | | - Hongfei Wang
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Nancy Washton
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Brittany L Baisch
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Ajay Karakoti
- Battelle Science and Technology India, Pune, Maharashtra, India
| | | | - Daewon Moon
- Daegu Gyeongbuk Institute of Science and Technology, Daeju, Korea
| |
Collapse
|
105
|
Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7215-21. [PMID: 22651907 DOI: 10.1021/es301027a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The toxicity and fate of nanoparticles (NPs) have been reported to be highly dependent on the chemistry of the medium, and the effects of phosphate have tended to be ignored despite the wide existence of phosphate contamination in aqueous environments. In the present study the influence of phosphate on the dissolution and microstructural transformation of ZnO NPs was investigated. Phosphate at a low concentration rapidly and substantially reduced the release of Zn(2+) into aqueous solution. Synchrotron X-ray absorption spectroscopy and X-ray diffraction analysis reveal that interaction between ZnO NPs and phosphate induced the transformation of ZnO into zinc phosphate. Transmission electronic microscopy observation shows that the morphology of the particles changed from structurally uniform nanosized spherical to anomalous and porous material containing mixed amorphous and crystalline phases of ZnO and zinc phosphate in the presence of phosphate. To our knowledge, this is the first study in which the detailed process of phosphate-induced speciation and microstructural transformation of ZnO NPs has been analyzed. In view of the wide existence of phosphate contamination in water and its strong metal-complexation capability, phosphate-induced transformations may play an important role in the behaviors, fate, and toxicity of many other metal-based nanomaterials in the environment.
Collapse
Affiliation(s)
- Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|