101
|
Mazumder A, Chakraborty P, Sen D, Bhattacharjee C. Separation of trace naphthalene dissolved in wastewater using microemulsion based liquid extractant followed by its detection through UV-photometric method. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
102
|
Yusof R, Jumbri K, Abdul Rahman MB. An insight into the effects of ratios and temperatures on a tetrabutylammonium bromide and ethylene glycol deep eutectic solvent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
103
|
Theoretical investigation on the improper hydrogen bond in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH 3, H 2O, and H 2S) complexes. J Mol Model 2021; 27:292. [PMID: 34546413 DOI: 10.1007/s00894-021-04904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The nature of H-bonds in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH3, H2O, and H2S) complexes was studied. For this aim, the structure of isolated κ-carrabiose was optimized using three global hybrids functional: B3LYP, PBE0, and M06-2X combined with 6-311G** basis set. Subsequently, the κ-carrabiose in the presence of HF, HCl, HBr, NH3, H2O, and H2S was optimized using the CBS-4 M method. NBO analyses were then carried out at the MP2/6-311G** level of theory. A particular interest was focused on C(18)-H(34)⋯Y bond. The results reveal that the C(18)-H(34)⋯Y bond is an improper H-bond since a significant contraction of C(18)-H(34) was observed during the complexation leading to a significant blueshifted stretching frequency. The NBO analyses have shown that the formation of the improper H-bonds C(18)-H(34)⋯Y (Y = F, Cl, Br, N, O, and S) is principally due to the increase of the s-character of the hybrid orbital in carbon atom (rehybridization) in κ-carrabiose⋯Y complexes. Regarding the polarization, it was proved that more the H-bond center (carbon in C(18)-H(34)⋯Y) becomes less positive, the hydrogen more positive, and Y more negative; more the contraction of the C(18)-H(34) bond is important. It was also confirmed for intramolecular H-bonds in κ-carrabiose⋯Y complexes that the rehybridization is responsible for H-bonds nature either proper or improper.
Collapse
|
104
|
Ahirwar MB, Patkar D, Yadav I, Deshmukh MM. Appraisal of individual hydrogen bond strengths and cooperativity in ammonia clusters via a molecular tailoring approach. Phys Chem Chem Phys 2021; 23:17224-17231. [PMID: 34369546 DOI: 10.1039/d1cp02839a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we propose and test a method, based on the molecular tailoring approach (MTA), for the evaluation of individual hydrogen bond (HB) energies in ammonia (NH3)n clusters. This methodology was tested, in our earlier work, on water clusters. Liquid ammonia being a universal, non-aqueous ionizing solvent, such information of individual HB strength is indispensable in many studies. The estimated HB energies by an MTA-based method, in (NH3)n for n = 3-8, were calculated to be in the range of 0.65 to 5.54 kcal mol-1 with the cooperativity contribution falling between -0.54 and 1.88 kcal mol-1 both calculated at the MP2(full)/aug-cc-pVTZ level of theory. It is seen that the strong HBs in (NH3)n clusters were additionally strengthened by the large contribution of HB cooperativity. The accuracy of these estimated HB energies was validated by approximately estimating the molecular energy of a given cluster by adding the sum of HB energies to the sum of monomer energies. This approximately estimated molecular energy of a given cluster was found to be in excellent agreement with the actual calculated values. The negligibly small difference (less than 5.6 kcal mol-1) in these two values suggests that the estimated individual HB energies in ammonia clusters are quite reliable. Furthermore, these estimated HB energies by MTA are in excellent qualitative agreement with the other indirect measures of HB strength, such as HB bond distances and angles, N-H stretching frequency and the electron density values at the (3,-1) bond critical points.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, 470003, India.
| | | | | | | |
Collapse
|
105
|
Wang TH, Wang WX, Chang HC. Pressure-Dependent Clustering in Ionic-Liquid-Poly (Vinylidene Fluoride) Mixtures: An Infrared Spectroscopic Study. NANOMATERIALS 2021; 11:nano11082099. [PMID: 34443929 PMCID: PMC8400791 DOI: 10.3390/nano11082099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
The nanostructures of ionic liquids (ILs) have been the focus of considerable research attention in recent years. Nevertheless, the nanoscale structures of ILs in the presence of polymers have not been described in detail at present. In this study, nanostructures of ILs disturbed by poly(vinylidene fluoride) (PVdF) were investigated via high-pressure infrared spectra. For 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([HEMIm][TFSI])-PVdF mixtures, non-monotonic frequency shifts of the C4,5-H vibrations upon dilution were observed under ambient pressure. The experimental results suggest the presence of microheterogeneity in the [HEMIm][TFSI] systems. Upon compression, PVdF further influenced the local structure of C4,5–H via pressure-enhanced IL–PVdF interactions; however, the local structures of C2–H and hydrogen-bonded O–H were not affected by PVdF under high pressures. For choline [TFSI]–PVdF mixtures, PVdF may disturb the local structures of hydrogen-bonded O–H. In the absence of the C4,5–H⋯anion and C2–H⋯anion in choline [TFSI]–PVdF mixtures, the O–H group becomes a favorable moiety for pressure-enhanced IL–PVdF interactions. Our results indicate the potential of high-pressure application for designing pressure-dependent electronic switches based on the possible changes in the microheterogeneity and electrical conductivity in IL-PVdF systems under various pressures.
Collapse
Affiliation(s)
| | | | - Hai-Chou Chang
- Correspondence: ; Tel.: +886-3-8903585; Fax: +886-3-8900162
| |
Collapse
|
106
|
Kabadi EM, Khire SS, Pingale SS, Gadre SR, Chiba T, Fujji A. Theoretical and experimental study of IR spectra of large phenol-acetylene clusters, Ph(Ac)n for 8 ≤ n ≤ 12. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
107
|
Zheng YZ, Chen H, Zhou Y, Zhang YC. Combination of FTIR and DFT to study the structure and hydrogen-bond properties of alkylammonium-based ILs and DMSO mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
108
|
Chen H, Wang Z, Xu X, Gong S, Zhou Y. The molecular behavior of pyridinium/imidazolium based ionic liquids and toluene binary systems. Phys Chem Chem Phys 2021; 23:13300-13309. [PMID: 34095933 DOI: 10.1039/d1cp00874a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium and pyridinium-based ionic liquids (ILs) have attracted increasing attention in the extraction of aromatic VOCs. However, fundamental studies on the mechanism of capturing aromatic VOCs have been less reported. In this work, the interactions between two ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) and N-butylpyridinium bis(trifluoromethylsulfonyl)imide (BpyTFSI), and toluene (C6H5CH3), were investigated by using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), excess infrared spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy and quantum chemical calculations. Some conclusions were obtained as follows: (1) H atoms on EMIMTFSI/BpyTFSI were located above or below the benzene ring and were mainly formed as C2-Hπ bonds and C2,6-Hπ bonds with C6H5CH3, respectively. C-Hπ bonds played a significant role in capturing aromatic compounds. (2) Upon adding C6H5CH3, the two IL-C6H5CH3 system's interaction strength was as follows: EMIMTFSI-C6H5CH3 > BpyTFSI-C6H5CH3. (3) Since C6H5CH3 was unable to disrupt the interactions between cations and anions of ion pairs in the two studied IL-C6H5CH3 systems, only ion cluster-C6H5CH3 and ion pair-C6H5CH3 complexes were observed. This work may provide theoretical insights into the separation mechanism for capturing VOCs.
Collapse
Affiliation(s)
- Hong Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | |
Collapse
|
109
|
Xiong D, Zhang Q, Ma W, Wang Y, Wan W, Shi Y, Wang J. Temperature-switchable deep eutectic solvents for selective separation of aromatic amino acids in water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
110
|
Huang L, Frank ES, Shrestha M, Riahi S, Tobias DJ, Grassian VH. Heterogeneous Interactions of Prevalent Indoor Oxygenated Organic Compounds on Hydroxylated SiO 2 Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6623-6630. [PMID: 33945687 DOI: 10.1021/acs.est.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxygenated organic compounds (OOCs) are widely found in indoor environments and come from either the direct emissions from indoor activities or the subsequent oxidation of nonoxygenated OCs. Adsorption and partitioning of OCs on surfaces are significant processes in indoor chemistry, yet these interactions specifically involving OOCs are still poorly understood. In this study, we investigate the interactions of three prevalent indoor OOCs (dihydromyrcenol, α-terpineol, and linalool) on an indoor surface proxy (hydroxylated SiO2) by combining vibrational spectroscopy with ab initio molecular dynamics simulations. The adsorption of these compounds on the SiO2 surface is driven by π hydrogen bonding and O-H hydrogen bonding interactions, with O-H hydrogen bonding interactions being stronger. The results of kinetic measurements suggest that indoor surfaces play a significant role in the removal of these OOCs, especially under moderate and low air exchange. Additionally, indoor surfaces can also serve as a reservoir of OOCs due to their much slower desorption kinetics when compared to other indoor relevant organic compounds such as limonene. Overall, the results gleaned by experiment and theoretical simulations provide a molecular representation of the interaction of OOCs on indoor relevant surfaces as well as implications of these interactions for indoor air chemistry.
Collapse
Affiliation(s)
- Liubin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Mona Shrestha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saleh Riahi
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
111
|
Banerjee P, Pandey P, Bandyopadhyay B. CH⋯O H-bond mediated tautomerization of 2-methyl-1,3-cyclohexanedione: A combined IR spectroscopic and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119550. [PMID: 33631624 DOI: 10.1016/j.saa.2021.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Molecular association and its impact on the keto-enol tautomerization of 2-methyl-1,3-cyclohexanedione (MCHD) have been investigated in low temperature argon matrix and thin solid film. The system exists exclusively in diketo tautomeric form in argon matrix. The CH⋯O H-bonded homodimers of the diketo tautomer are produced by annealing the matrix at 28 K. No trace of the keto-enol tautomer is observed in matrix isolated homodimers in the temperature range of 8-28 K. However, tautomeric conversion initiates in a thin film of pure diketo tautomer when the temperature of the film is raised to ~170 K. Transition state calculations on the monomeric and dimeric MCHD demonstrate that CH⋯O H-bond formations between diketo tautomers play a vital role in lowering the tautomerization barrier. However, the extent of CH⋯O H-bonded dimer formation in matrix isolation, as well as extent of tautomerization in the neat sample are found to be smaller than that for the previously reported 1,3-cyclohexanedione (CHD) under similar experimental conditions (J. Phys. Chem. A 2012, 116, 3836-3845). Electronic structure calculations suggest that formation of the CH⋯O H-bonded dimer is less feasible in presence of the bulky 2-methyl groups of MCHD, as compared to CHD. Additionally, the transition state geometry of the dimeric keto-enol product of MCHD, as compared to the same for CHD, is more strained and offers a weaker CH---O H-bond that contributes to lesser tautomeric conversion in the former.
Collapse
Affiliation(s)
- Pujarini Banerjee
- Department of Chemistry, Diamond Harbour Women's University, West Bengal, India
| | - Prasenjit Pandey
- Department of Chemistry, Asutosh College, 92, S.P. Mukherjee Road, Kolkata, India
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, J L N Marg, Jaipur 302017, India.
| |
Collapse
|
112
|
Carbazole derivatives: Synthesis, spectroscopic characterization, antioxidant activity, molecular docking study, and the quantum chemical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
113
|
Bulat FA, Murray JS, Politzer P. Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113192] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
114
|
Qu G, Bilal R, Xin M, Lv Z, Jin G, Tan Y, Yao Z, Cai H. Phase transition-induced changes in the Raman properties of DMSO/benzene binary systems. Phys Chem Chem Phys 2021; 23:9211-9217. [PMID: 33885110 DOI: 10.1039/d1cp00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Raman spectra of dimethylsulfoxide (DMSO)/benzene binary mixtures were studied by decreasing the temperature from 333 K to 263 K with the aim to reveal the molecular interaction properties during phase transition. The intensity of the Raman band for benzene at 992 cm-1 showed an increasing trend in the liquid and solid phases, while it exhibited a highly decreasing trend during the liquid-solid phase transition. The potential energy was calculated to study the effect of intermolecular interaction distance between DMSO and benzene on Raman intensity. The observations indicated that the blueshift of the low-frequency bands of DMSO was significantly different from the redshift of its high-frequency bands. The hydrogen bond generated between DMSO and benzene was well formed in the binary systems. This interaction inducing an enhanced hydrogen bond between the binary systems and attenuated C-H bonds led to opposite Raman shift variations with decreasing temperature. The Raman bands of DMSO at 1425 cm-1, 2899 cm-1, and 2992 cm-1 each split into two peaks after phase transition. The splitting of the Raman bands of DMSO at 1417 cm-1, 2895 cm-1, and 2982 cm-1 cropped up as the temperature dropped to the transformation point of 288 K. This is attributed to the phase transition-induced latent def.(C7) atomic vibrations corresponding to the individual methyl groups of DMSO. The implications of these analyses are expected to be helpful to understand the effect of phase transition on the Raman properties of binary solutions.
Collapse
Affiliation(s)
- Guannan Qu
- School of Science, Changchun University of Science and Technology, Changchun, 130022, China.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Niebuur BJ, Lohstroh W, Ko CH, Appavou MS, Schulte A, Papadakis CM. Pressure Dependence of Water Dynamics in Concentrated Aqueous Poly( N-isopropylacrylamide) Solutions with a Methanol Cosolvent. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
116
|
Lee TH, Jung JG, Kim YJ, Roh JS, Yoon HW, Ghanem BS, Kim HW, Cho YH, Pinnau I, Park HB. Defect Engineering in Metal-Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angew Chem Int Ed Engl 2021; 60:13081-13088. [PMID: 33655622 DOI: 10.1002/anie.202100841] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Highly permselective and durable membrane materials have been sought for energy-efficient C3 H6 /C3 H8 separation. Mixed-matrix membranes (MMMs) comprising a polymer matrix and metal-organic frameworks (MOFs) are promising candidates for this application; however, rational matching of filler-matrix is challenging and their separation performances need to be further improved. Here, we propose a novel strategy of "defect engineering" in MOFs as an additional degree of freedom to design advanced MMMs. MMMs incorporated with defect-engineered MOFs exhibit exceptionally high C3 H6 permeability and maintained C3 H6 /C3 H8 selectivity, especially with enhanced stability under industrial mixed-gas conditions. The gas transport, sorption, and material characterizations reveal that the defect sites in MOFs provide the resulting MMMs with not only ultrafast diffusion pathways but also favorable C3 H6 sorption by forming complexation with unsaturated open metal sites, confirmed by in situ FT-IR studies. Most importantly, the concept is also valid for different polymer matrices and gas pairs, demonstrating its versatile potential in other fields.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Gu Jung
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yu Jin Kim
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji Soo Roh
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hee Wook Yoon
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bader S Ghanem
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Hyo Won Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, 25931, Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Ingo Pinnau
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
117
|
Lee TH, Jung JG, Kim YJ, Roh JS, Yoon HW, Ghanem BS, Kim HW, Cho YH, Pinnau I, Park HB. Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tae Hoon Lee
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Jae Gu Jung
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Yu Jin Kim
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Ji Soo Roh
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Hee Wook Yoon
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Bader S. Ghanem
- Functional Polymer Membranes Group Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Hyo Won Kim
- Department of Advanced Materials Engineering Kangwon National University Samcheok 25931 Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Chemical & Process Technology Division Korea Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Ingo Pinnau
- Functional Polymer Membranes Group Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
118
|
Lu N, Elakkat V, Thrasher JS, Wang X, Tessema E, Chan KL, Wei RJ, Trabelsi T, Francisco JS. Neutron Diffraction Study of Significant sp3 and sp2 C-H Bond Shortening in a Fluorinated Pyridinium Saccharinate. J Am Chem Soc 2021; 143:5550-5557. [PMID: 33784456 DOI: 10.1021/jacs.1c02570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have experimentally shown by neutron diffraction significant shortening of both sp3- and sp2-hybridized C-H bonds to 1.092(2) and 1.081(1) Å in a hydrogen-bonded crystal of a difluorinated compound, 4-((2,2-difluoroethoxy)methyl)pyridinium saccharinate. Both MP2 and DFT calculations affirmed the C-H bond shrinkages. Sanderson's electronegativity equalization principle provides insight into the shortening of the C-H covalent bond lengths for both sp3- and sp2-hybridized carbon atoms. To the best of our knowledge, this neutron diffraction study has revealed the largest extents of sp3 and sp2 C-H bond shrinkages with a 3-sigma rule being satisfied.
Collapse
Affiliation(s)
- Norman Lu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan, ROC.,Development Center for Smart Textile, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Vijayanath Elakkat
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Joseph S Thrasher
- Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, Anderson, South Carolina 29625, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eskedar Tessema
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Ka Long Chan
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Rong-Jun Wei
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tarek Trabelsi
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
119
|
Chen H, Wang Z, Zhao P, Xu X, Gong S, Yu Z, Zhou Y. Comparative study of the hydrogen bonding properties between bis(fluorosulfonyl)imide/bis(trifluoromethyl)sulfonylimide-based ether-functionalized ionic liquids and methanol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
120
|
Tsuyuki M, Furudate S, Kugaya Y, Yabushita S. Graphical Transition Moment Decomposition and Conceptual Density Functional Theory Approaches to Study the Fundamental and Lower-Level Overtone Absorption Intensities of Some OH Stretching Vibrations. J Phys Chem A 2021; 125:2101-2113. [PMID: 33663218 DOI: 10.1021/acs.jpca.0c11619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The investigation of electron density migrations caused by molecular structure changes is of central importance in various fields of chemistry. To address this topic in general and to study absorption intensities of vibrations, we analyze sensitive dipole moment functions (DMFs) of a molecule by combining the linear response function of conceptual DFT and bond dipoles separated by the quantum theory of atoms in molecules with a graphical transition moment decomposition scheme. The fundamental intensities of OH stretching vibrations depend strongly on the substituents but only weakly on the molecular conformations. Interestingly, in some alcohols, completely opposite trends have been observed for the lower-level overtone intensities: a weak substituent dependence but a stronger conformation dependence. It is well known that the formation of a hydrogen-bonded complex increases the OH stretching fundamental intensity, but less well known is the decrease in their overtone intensities. To investigate these characteristics comprehensively, we calculated their intensities (Δv = 1, 2, and 3) for conformers of ethanol and trifluoroethanol (TFE) and hydrogen-bonded phenol (PhOH) systems via the DFT method in the local mode model for the OH stretching coordinate ΔR. Their first and second derivatives of the electron density with respect to ΔR were calculated and interpreted using their bond moments. For ethanol and TFE, the OH, CC, and CH bond moments were found to make an important contribution to the molecular DMF derivatives parallel to the OH bond. The OH bond contributes only to the first derivative of DMF, and its conformational dependence is determined by the magnitude of the charge polarization of each structure. The electron density derivatives in the CC bond region were largely maintained during the internal rotation; thus, their conformation-dependent contributions were expressed by a geometrical factor of the CC bond direction. The CH bond at the antiperiplanar position of the OH bond was found to make a remarkably large contribution to the second derivative of DMF in the gauche conformer. The importance of electron density migration on substituents was also identified in the hydrogen-bonded phenol, in which the π-electron density change on the aromatic ring was clearly shown. This migration creates the DMF derivatives both perpendicular and parallel to the OH bond and strongly affects the absorption intensities. In all the cases, some bond moments on the substituents contribute to the first and second DMF derivatives in a structure-dependent manner, thus explaining their stereoelectronic effects.
Collapse
Affiliation(s)
- Masafumi Tsuyuki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Shunki Furudate
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Yuto Kugaya
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Satoshi Yabushita
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| |
Collapse
|
121
|
Nguyen TN, Rangel A, Grainger DW, Migonney V. Influence of spin finish on degradation, functionalization and long-term storage of polyethylene terephthalate fabrics dedicated to ligament prostheses. Sci Rep 2021; 11:4258. [PMID: 33608601 PMCID: PMC7895958 DOI: 10.1038/s41598-021-83572-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Polyethylene terephthalate (PET) fibers and fabrics are widely used for medical device applications such as vascular and anterior cruciate ligament prostheses. Several years ago, we began functionalizing PET fabrics using anionic polymers to enhance their biocompatibility, cell adhesion, proliferation and functional performance as PET ligament prostheses. Polymer functionalization followed a grafting-from process from virgin PET surfaces subject to spin-finish oil additive removal under Soxhlet extraction to remove residual fiber manufacturing oil. Nevertheless, with increasing time from manufacture, PET fabrics stored without a spin finish removal step exhibited degradation of spin finish oil, leading to (1) incomplete surface cleaning, and (2) PET surface degradation. Moreover, oxidizing agents present in the residual degraded oil prevented reliable functionalization of the prosthesis fibers in these PET fabrics. This study compares effects of PET fabric/spin finish oil storage on PET fabric anionic polymer functionalization across two PET fabric ligament storage groups: (1) 2- and 10- year old ligaments, and (2) 26-year old ligaments. Strong interactions between degraded spin finish oil and PET fiber surfaces after long storage times were demonstrated via extraction yield; oil chemistry changed assessed by spectral analysis. Polymer grafting/functionalization efficiency on stored PET fabrics was correlated using atomic force microscopy, including fiber surface roughness and relationships between grafting degree and surface Young’s modulus. New PET fabric Young’s modulus significantly decreased by anionic polymer functionalization (to 96%, grafting degree 1.6 µmol/g) and to reduced modulus and efficiency (29%) for 10 years storage fabric (grafting degree ~ 1 µmol/g). As fiber spin finish is mandatory in biomedically applicable fiber fabrication, assessing effects of spin finish oil on commercial polymer fabrics after longer storage under various conditions (UV light, temperature) is necessary to understand possible impacts on fiber degradation and surface functionalization.
Collapse
Affiliation(s)
- Tuan Ngoc Nguyen
- Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents Laboratory, LBPS-CSPBAT, UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Andre Rangel
- Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents Laboratory, LBPS-CSPBAT, UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - David W Grainger
- Department of Biomedical Engineering, and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Véronique Migonney
- Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents Laboratory, LBPS-CSPBAT, UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France.
| |
Collapse
|
122
|
Conformer selective monohydrated clusters of 1,2,3,4 –tetrahydroisoquinoline in S0: I-Potential energy surface studies, vibrational signatures and NBO analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
123
|
Investigation of hyperbranched Poly(glycerol esteramide) as potential drug carrier in solid dispersion for solubility enhancement of lovastatin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
124
|
Rangel A, Nguyen TN, Egles C, Migonney V. Different real‐time degradation scenarios of functionalized poly(ε‐caprolactone) for biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- André Rangel
- Laboratoire de Biomatériaux pour la Santé (LBPS), Laboratoire de Chimie Structures, Proprietés de Biomateriaux et d'Agents Thérapeutiques (CSPBAT), UMR CNRS 7244, Université Sorbonne Paris Nord Villetaneuse France
| | - Tuan Ngoc Nguyen
- Laboratoire de Biomatériaux pour la Santé (LBPS), Laboratoire de Chimie Structures, Proprietés de Biomateriaux et d'Agents Thérapeutiques (CSPBAT), UMR CNRS 7244, Université Sorbonne Paris Nord Villetaneuse France
| | - Christophe Egles
- BioMécanique et BioIngénierie (BMBI) Alliance Sorbonne université, Université de Technologie de Compiègne, CNRS, UMR 7338 , Centre de recherche Royallieu Compiègne cedex France
| | - Véronique Migonney
- Laboratoire de Biomatériaux pour la Santé (LBPS), Laboratoire de Chimie Structures, Proprietés de Biomateriaux et d'Agents Thérapeutiques (CSPBAT), UMR CNRS 7244, Université Sorbonne Paris Nord Villetaneuse France
| |
Collapse
|
125
|
Ashraf H, Cao B, Kalhor P, Yu ZW. Identification and properties of ion-pairs in the aqueous solutions of LiI and NaI by FTIR and quantum chemical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
126
|
Kalhor P, Ghandi K, Ashraf H, Yu Z. The structural properties of a ZnCl 2-ethylene glycol binary system and the peculiarities at the eutectic composition. Phys Chem Chem Phys 2021; 23:13136-13147. [PMID: 34075959 DOI: 10.1039/d1cp00573a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ATR-FTIR spectroscopy was performed on a series of ZnCl2-ethylene glycol (EG) mixtures with a wide-range of compositions (1 : 1.5-1 : 14 in molar ratios), involving the stable ZnCl2-4EG deep-eutectic solvent (DES) composition, to explore the spectral variations, structural heterogeneity, and hydrogen bonding (H-bonding) properties. To enhance the resolution of the spectra, excess absorption and two-dimensional correlation spectroscopies were employed. In the initial IR spectra, a quasi-isosbestic point was identified, signaling that the major disturbance on EG microstructures by adding ZnCl2 is to form a distinct complex. Further analysis uncovered the main transformation process to be from the EG tetramer to the ZnCl2-4EG complex. It was also found that as the EG content increases, negative charge increasingly transfers to ZnCl2, resulting in the strengthening of the Zn ← O coordination bonds and the weakening and finally dissociation of Zn-Cl bonds. Regarding the ZnCl2-4EG DES, several incomparable specificities were observed. It was found that ZnCl2 destructed the H-bonding network of pure EG to the largest extent, resulting in the highest production of the dimer and trimer of EG. Moreover, in comparison with other compositions, the ZnCl2-4EG DES showed abrupt increases in the negative charge of the salt, the length of the Zn-Cl bond, and the strength of the Zn ← O coordination bond. All these imply the strongest intermolecular interactions and the highest solvation of ZnCl2 in EG at the eutectic composition compared to those of other mixtures, resulting in a super-stable liquid mixture. The work provides physical insights into the structural and interactive properties of deep-eutectic solvents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
127
|
Araújo JR, de Andrade RB, Batista HJ, Ventura E, do Monte SA. Can a gas phase contact ion pair containing a hydrocarbon carbocation be formed in the ground state? RSC Adv 2021; 11:4221-4230. [PMID: 35424376 PMCID: PMC8694316 DOI: 10.1039/d0ra10523f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
So far, no conclusive evidence of a ground-state contact ion-pair containing a hydrocarbon carbocation has been given in the gas phase.
Collapse
Affiliation(s)
- José R. Araújo
- Departamento de Química
- CCEN
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| | | | - Hélcio J. Batista
- Departamento de Química
- Universidade Federal Rural de Pernambuco
- Recife
- Brazil
| | - Elizete Ventura
- Departamento de Química
- CCEN
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| | - Silmar A. do Monte
- Departamento de Química
- CCEN
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| |
Collapse
|
128
|
Ekanayake DA, Chakraborty A, Krause JA, Guan H. Hydrogenation reactions catalyzed by HN(CH2CH2PR2)2-ligated copper complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00776a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogenation of aldehydes and ketones can be catalyzed by a PNP-ligated copper hydride that is accessible from the copper borohydride or bromide complex or the copper hydride cluster.
Collapse
Affiliation(s)
- Dewmi A. Ekanayake
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Arundhoti Chakraborty
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| |
Collapse
|
129
|
Gautam R, Kumar N, Lynam JG. Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
130
|
Jabłoński M. A Critical Overview of Current Theoretical Methods of Estimating the Energy of Intramolecular Interactions. Molecules 2020; 25:molecules25235512. [PMID: 33255559 PMCID: PMC7728086 DOI: 10.3390/molecules25235512] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
This article is probably the first such comprehensive review of theoretical methods for estimating the energy of intramolecular hydrogen bonds or other interactions that are frequently the subject of scientific research. Rather than on a plethora of numerical data, the main focus is on discussing the theoretical rationale of each method. Additionally, attention is paid to the fact that it is very often possible to use several variants of a particular method. Both of the methods themselves and their variants often give wide ranges of the obtained estimates. Attention is drawn to the fact that the applicability of a particular method may be significantly limited by various factors that disturb the reliability of the estimation, such as considerable structural changes or new important interactions in the reference system.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
131
|
Cho HJ, Park SJ, Jung WH, Cho Y, Ahn DJ, Lee YS, Kim S. Injectable Single-Component Peptide Depot: Autonomously Rechargeable Tumor Photosensitization for Repeated Photodynamic Therapy. ACS NANO 2020; 14:15793-15805. [PMID: 33175520 DOI: 10.1021/acsnano.0c06881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The general practice of photodynamic therapy (PDT) comprises repeated multiple sessions, where photosensitizers are repeatedly administered prior to each operation of light irradiation. To address potential problems arising from the total overdose of photosensitizer by such repeated injections, we here introduce an internalizing RGD peptide (iRGD) derivative (Ppa-iRGDC-BK01) that self-aggregates into an injectable single-component supramolecular depot. Ppa-iRGDC-BK01 is designed as an in situ self-implantable photosensitizer so that it forms a depot by itself upon injection, and its molecular functions (cancer cell internalization and photosensitization) are activated by sustained release, tumor targeting, and tumor-selective proteolytic/reductive cleavage of the iRGD segment. The experimental and theoretical studies revealed that when exposed to body temperature, Ppa-iRGDC-BK01 undergoes thermally accelerated self-assembly to form a supramolecular depot through the hydrophobic interaction of the Ppa pendants and the reorganization of the interpeptide hydrogen bonding. It turned out that the self-aggregation of Ppa-iRGDC-BK01 into a depot exerts a multiple-quenching effect on the photosensitivity to effectively prevent nonspecific phototoxicity and protect it from photobleaching outside the tumor, while enabling autonomous tumor rephotosensitization by long sustained release, tumor accumulation, and intratumoral activation over time. We demonstrate that depot formation through a single peritumoral injection and subsequent quintuple laser irradiations at intervals resulted in complete eradication of the tumor. During the repeated PDT, depot-implanted normal tissues around the tumor exhibited no phototoxic damage under laser exposure. Our approach of single-component photosensitizing supramolecular depot, combined with a strategy of tumor-targeted therapeutic activation, would be a safer and more precise operation of PDT through a nonconventional protocol composed of one-time photosensitizer injection and multiple laser irradiations.
Collapse
Affiliation(s)
- Hong-Jun Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sung-Jun Park
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yuri Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
132
|
Korabel'nikov DV, Zhuravlev YN. Semi-empirical and ab initio calculations for crystals under pressure at fixed temperatures: the case of guanidinium perchlorate. RSC Adv 2020; 10:42204-42211. [PMID: 35516730 PMCID: PMC9057916 DOI: 10.1039/d0ra08588j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023] Open
Abstract
A simple semi-empirical approach is proposed to calculate structure and properties of crystals under pressure at fixed temperatures. The computed semi-empirical pressure dependencies for guanidinium perchlorate are in good agreement with available experimental data. Ab initio results within quasi-harmonic approximation for guanidinium perchlorate are also presented.
Collapse
Affiliation(s)
- Dmitry V Korabel'nikov
- Institute of Fundamental Sciences, Kemerovo State University Krasnaya 6 650043 Kemerovo Russia
| | - Yuriy N Zhuravlev
- Institute of Fundamental Sciences, Kemerovo State University Krasnaya 6 650043 Kemerovo Russia
| |
Collapse
|
133
|
Sruthi PK, Chandra S, Ramanathan N, Sundararajan K. Unusual blue to red shifting of C-H stretching frequency of CHCl 3 in co-operatively P⋯Cl phosphorus bonded POCl 3-CHCl 3 heterodimers at low temperature inert matrixes. J Chem Phys 2020; 153:174305. [PMID: 33167652 DOI: 10.1063/5.0031162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterodimers of POCl3-CHCl3 were generated in Ne, Ar, and Kr matrixes at low temperatures and were studied using infrared spectroscopy. The remarkable role of co-operative pentavalent phosphorus bonding in the stabilization of the structure dictated by hydrogen bonding is deciphered. The complete potential energy surface of the heterodimer was scanned by ab initio and density functional theory computational methodologies. The hydrogen bond between the phosphoryl oxygen of POCl3 and C-H group of CHCl3 in heterodimers induces a blue-shift in the C-H stretching frequency within the Ne matrix. However, in Ar and Kr matrixes, the C-H stretching frequency is exceptionally red-shifted in stark contrast with Ne. The plausibility of the Fermi resonance by the C-H stretching vibrational mode with higher order modes in the heterodimers has been eliminated as a possible cause within Ar and Kr matrixes by isotopic substitution (CDCl3) experiments. To evaluate the influence of matrixes as a possible cause of red-shift, self-consistent Iso-density polarized continuum reaction field model was applied. This conveyed the important role of the dielectric matrixes in inducing the fascinating vibrational shift from blue (Ne) to red (Ar and Kr) due to the matrix specific transmutation of the POCl3-CHCl3 structure. The heterodimer produced in the Ne matrix possesses a cyclic structure stabilized by hydrogen bonding with co-operative phosphorus bonding, while in Ar and Kr the generation of an acyclic open structure stabilized solely by hydrogen bonding is promoted. Compelling justification regarding the dispersion force based influence of matrix environments in addition to the well-known dielectric influence is presented.
Collapse
Affiliation(s)
- P K Sruthi
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| |
Collapse
|
134
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
135
|
Gopi R, Ramanathan N, Sundararajan K. The structure of benzonitrile-water complex as unveiled by matrix isolation infrared spectroscopy: Is it linear or cyclic at low temperatures? J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
136
|
Biswas S, Mallik BS. Probing the vibrational dynamics of amide bands of N-methylformamide, N, N-dimethylacetamide, and N-methylacetamide in water. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
137
|
Reversible multicolor chromism in layered formamidinium metal halide perovskites. Nat Commun 2020; 11:5234. [PMID: 33067460 PMCID: PMC7568568 DOI: 10.1038/s41467-020-19009-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this work, we leverage the low formation energy of metal halide perovskites to demonstrate multicolor reversible chromism. We synthesized layered Ruddlesden-Popper FAn+1PbnX3n+1 (FA = formamidinium, X = I, Br; n = number of layers = 1, 2, 3 … ∞) and reversibly tune the dimensionality (n) by modulating the strength and number of H-bonds in the system. H-bonding was controlled by exposure to solvent vapor (solvatochromism) or temperature change (thermochromism), which shuttles FAX salt pairs between the FAn+1PbnX3n+1 domains and adjacent FAX “reservoir” domains. Unlike traditional chromic materials that only offer a single-color transition, FAn+1PbnX3n+1 films reversibly switch between multiple colors including yellow, orange, red, brown, and white/colorless. Each colored phase exhibits distinct optoelectronic properties characteristic of 2D superlattice materials with tunable quantum well thickness. Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties that allow chemical manipulation of the structure with low energy input. Here, the authors leverage the low formation energy of 2D metal halide perovskites to demonstrate films that reversibly switch between multiple colors using tunable quantum well thickness.
Collapse
|
138
|
Magos-Palasyuk E, Litwiniuk A, Palasyuk T. Experimental and theoretical evidence of dihydrogen bonds in lithium amidoborane. Sci Rep 2020; 10:17431. [PMID: 33060733 PMCID: PMC7567059 DOI: 10.1038/s41598-020-74654-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
In situ high-pressure synchrotron X-ray diffraction, Raman scattering, and complementary first-principles calculations have revealed that structural and spectroscopic properties of lithium amidoborane compound are largely determined by multiple heteropolar dihydrogen bonds. The crystal structure of the compound is stabilized by dimeric complexes, wherein molecular ions bind together by intermolecular dihydrogen bonds of unconventional type. This strong intermolecular coupling determines stable character of the crystal structure in the pressure range up to ~ 30 GPa and is spectroscopically manifested by pronounced changes related to molecular vibrations of the amino group: the splitting of stretching modes, the anomalous behavior of wagging modes as well as Fermi resonance due to vibrational coupling of bending and stretching modes, significantly enhanced above 10 GPa. Unconventional nature of dihydrogen bonds is confirmed by the frequency increase, blueshift, of NH stretching modes with pressure. A role of certain hydrogen mediated interactions in the process of dehydrogenation of ammonia borane and its alkali metal derivatives is speculated. Findings presented here call for reconsideration of hydrogen release mechanism from alkali metal ammonia borane derivatives. The work makes significant contribution towards establishing the general theory of ubiquitous and versatile hydrogen mediated interactions.
Collapse
Affiliation(s)
- Ewelina Magos-Palasyuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Aleksander Litwiniuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Taras Palasyuk
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, Woycickiego 1/3, 01-938, Warsaw, Poland.
| |
Collapse
|
139
|
A Stable Coordination Polymer Based on Rod-Like Silver(I) Nodes with Contiguous Ag-S Bonding. Molecules 2020; 25:molecules25194548. [PMID: 33020442 PMCID: PMC7583003 DOI: 10.3390/molecules25194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
Silver(I)-based coordination polymers or metal-organic frameworks (MOFs) display useful antibacterial properties, whereby distinct materials with different bonding can afford control over the release of silver(I) ions. Such silver(I) materials are comprised of discrete secondary building units (SBUs), and typically formed with ligands possessing only soft or borderline donors. We postulated that a linker with four potential donor groups, comprising carboxylate and soft thioether donors, 2,5-bis (allylsulfanyl) benzene dicarboxylic acid (ASBDC), could be used to form stable, highly connected coordination polymers with silver(I). Here, we describe the synthesis of a new material, (Ag2(ASBDC)), which possesses a rod-like metal node-based 3D honeycomb structure, strongly π-stacked linkers, and steric bulk to protect the node. Due to the rod-like metal node and the blocking afforded by the ordered allyl groups, the material displays notable thermal and moisture stability. An interesting structural feature of (Ag2(ASBDC)) is contiguous Ag–S bonding, essentially a helical silver chalcogenide wire, which extends through the structure. These interesting structural features, coupled with the relative ease by which MOFs made with linear dicarboxylate linkers can be reticulated, suggests this may be a structure type worthy of further investigation.
Collapse
|
140
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
141
|
Lu J, Scheiner S. Relationships between Bond Strength and Spectroscopic Quantities in H-Bonds and Related Halogen, Chalcogen, and Pnicogen Bonds. J Phys Chem A 2020; 124:7716-7725. [DOI: 10.1021/acs.jpca.0c05936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia Lu
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| |
Collapse
|
142
|
Molecular interactions in 2-hydroxyethyl-trimethylammonium acetate (choline acetate) ion pair. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01800-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
143
|
A comparison of ether- and alkyl-imidazolium-based ionic liquids diluted with CH3CN: A combined FTIR and DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
144
|
Lemmens AK, Chopra P, Garg D, Steber AL, Schnell M, Buma WJ, Rijs AM. High-resolution infrared spectroscopy of naphthalene and acenaphthene dimers. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alexander K. Lemmens
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Nijmegen, The Netherlands
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Diksha Garg
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
| | - Amanda L. Steber
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Wybren Jan Buma
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Nijmegen, The Netherlands
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anouk M. Rijs
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Nijmegen, The Netherlands
| |
Collapse
|
145
|
Inafuku M, Marceca E. Carbonyl stretch of CH⋯O hydrogen-bonded methyl acetate in supercritical trifluoromethane. J Chem Phys 2020; 153:084502. [PMID: 32872872 DOI: 10.1063/5.0019058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared spectroscopy in the gas phase was used to study the formation reaction of the CH⋯O hydrogen bonding complex involving the CH group of trifluoromethane, as a hydrogen donor, and the carbonyl group of methyl acetate, as a hydrogen acceptor, under different (T, p) conditions. The hydrogen-bonded carbonyl stretch of the molecular pair was monitored in dilute mixtures of methyl acetate in trifluoromethane at near-critical temperatures, from gas- to liquid-like densities. In the gas region, it was possible to discriminate the carbonyl signal of the hydrogen-bonded complex from that of the free ester and have access to their relative concentration. The equilibrium constant of the hydrogen bonding reaction and the standard enthalpy and entropy changes in the process were determined using the spectroscopic data. CH⋯O bonding was favored by lowering temperature or pressurizing F3CH in the mixture, remaining essentially no free carbonyl groups about the critical density. The carbonyl band of the hydrogen-bonded pair appeared as a single symmetric peak up to liquid-like densities, suggesting that the 1:1 methyl acetate-trifluoromethane complex has the most abundant stoichiometry. Spectral features as frequency shift and bandwidth of the hydrogen-bonded carbonyl were studied as a function of temperature and solvent-density. A bathochromic (red) vibrational shift was registered for the bound carbonyl band against density, with a sudden change in behavior in the near-critical region, while the width of this band remains mostly unresponsive.
Collapse
Affiliation(s)
- Maximiliano Inafuku
- Department of Inorganic, Analytical and Physical Chemistry-FCEN, University of Buenos Aires and INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, Buenos Aires C1428EGA, Argentina
| | - Ernesto Marceca
- Department of Inorganic, Analytical and Physical Chemistry-FCEN, University of Buenos Aires and INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
146
|
Ahirwar MB, Gadre SR, Deshmukh MM. Direct and Reliable Method for Estimating the Hydrogen Bond Energies and Cooperativity in Water Clusters, W n, n = 3 to 8. J Phys Chem A 2020; 124:6699-6706. [PMID: 32786666 DOI: 10.1021/acs.jpca.0c05631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
No direct method for estimating the individual O-H···O hydrogen bond (H-bond) energies in water clusters (Wn) exists in the literature. In this work, we propose such a direct method based on the molecular tailoring approach, which also enables the estimation of the cooperativity contributions. The calculated H-bond energies at MP2(full)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVDZ levels for Wn, n = 3 to 8, agree well with one another and fall between 0.3 and 11.6 kcal mol-1 with the cooperativity contributions in the range of -1.2 and 7.0 kcal mol-1. For gauging the accuracy of our H-bond energies for a cluster, the H-bond energy sum is added to the sum of monomer energies, and the results are compared with the respective total energy. These two values agree with each other to within 8.3 mH (∼5 kcal mol-1), testifying the accuracy of our estimated H-bond energies. Further, these H-bond strengths show a good correlation with the respective O-H stretching frequencies and the molecular electron density values at the (3, -1) O-H···O H-bond critical point.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing and Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
147
|
Kazim M, Guan L, Chopra A, Sun R, Siegler MA, Lectka T. Switching a HO···π Interaction to a Nonconventional OH···π Hydrogen Bond: A Completed Crystallographic Puzzle. J Org Chem 2020; 85:9801-9807. [PMID: 32633510 DOI: 10.1021/acs.joc.0c01121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, we present crystallographic and spectroscopic evidence of a tunable system wherein a HO···π interaction switches incrementally to a nonconventional OH···π hydrogen bonding (HB) interaction. More specifically, we report the synthesis of substituted forms of model system 1 to study the effects of aryl ring electronic density on the qualitative characteristics of OH···π hydrogen bonds therein. The OH stretch in experimental infrared data, in agreement with density-functional theory (DFT) calculations, shows continuous red-shifts as the adjacent ring becomes more electron rich. For example, the OH stretch of an amino-substituted analogue is red-shifted by roughly 50 cm-1 compared to the same stretch in the CF3 analogue, indicating a significantly stronger HB interaction in the former. Moreover, DFT calculations (ωB97XD/6-311+G**) predict that increasing electronic density on the adjacent top ring reduces the aryl π-OH σ* energy gap with a concomitant enhancement of the OH n-π* energy gap. Consequently, a dominant π-σ* interaction in the amino substituted analogue locks the system in the in-form while a favorable n-π* interaction reverses the orientation of the oxygen-bound hydrogen in its protonated form. Additionally, the 1H NMR data of various analogues reveal that stronger OH···π interactions in systems with electron-rich aromatic rings slow exchange of the alcoholic proton, thereby revealing coupling with the geminal proton. Finally, X-ray crystallographic analyses of a spectrum of analogues clearly visualize the three distinct stages of "switch"-starting with exclusive HO···π, to partitioned HO···π/OH···π, and finally to achieving exclusive OH···π forms. Furthermore, the crystal structure of the amino analogue reveals an interesting feature in which an extended HB network, involving two conventional (NH···O) and two nonconventional (OH···π) HBs, dimerizes and anchors the molecule in the unit cell.
Collapse
Affiliation(s)
- Muhammad Kazim
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Liangyu Guan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Calibr-A Division of Scripps Research, 11119 N Torrey Pines Rd, La Jolla, San Diego, California 92037, United States
| | - Anant Chopra
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Roy Sun
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
148
|
Xavier JS, Jayabalan K, Ragavendran V, NityanandaShetty A. Syntheses, quantum mechanical modeling, biomolecular interaction and in vitro anticancer - Tubulin activity of thiosemicarbazones. Bioorg Chem 2020; 102:104081. [PMID: 32711086 DOI: 10.1016/j.bioorg.2020.104081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
Abstract
A new series of thiosemicarbazones were designed and synthesized. Their structures were confirmed by spectral characterization and single crystal XRD studies. Compounds MTSC-2 and ETSC-3 crystallized in the orthorhombic crystal system with space group Pbc21 andPca21respectively. Density functional theory computational studies were performed on MTSC-2 and ETSC-3 along with natural bond orbital analysis and Mulliken population analysis to study the structural and electronic properties of the thiosemicarbazones. The HOMOs of the two thiosemicarbazones are -5.2943 and -5.1133 eV respectively while the LUMOs are -1.6879 and -1.6398 eV respectively. The energy gap is 3.6064 and 3.4736 eV respectively. Molecular docking studies were performed to determine the binding mode of the thiosemicarbazones against β-tubulin. The theoretical studies were further supplemented with tubulin polymerization inhibition assay. All the four thiosemicarbazones proved effective in inhibiting the polymerization of α- and β-tubulin heterodimers into microtubules. The anticancer activity of these compounds showed their extreme potency against A549 and HepG2 cancer cell lines with IC50 values of 0.051 - 0.189 µm and 0.042 - 0.136 µm respectively. Compound PTSC-4 showed the highest activity both against tubulin and the two cancer cell lines. This was in correlation with the theoretical studies. Hence, these four compounds, specifically PTSC-4, can be considered to be potential leads in the development of non-metallic anticancer agents.
Collapse
Affiliation(s)
- Janet Sabina Xavier
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Karthikeyan Jayabalan
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - V Ragavendran
- Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram 631561, India
| | - A NityanandaShetty
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, India
| |
Collapse
|
149
|
Li Z, An X. Strengthening of halogen bond in XCl∙∙∙FH∙∙∙F - through cooperativity with a strong hydrogen bond and proton transfer. J Mol Graph Model 2020; 100:107673. [PMID: 32663778 DOI: 10.1016/j.jmgm.2020.107673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 11/18/2022]
Abstract
A theoretical calculation has been performed for the ternary complexes XCl∙∙∙FH∙∙∙F- (X = CCH, CN, OH, NC, and F) and the corresponding binary complexes. The halogen bond in the dyad is very weak with the interaction energy less than 2.5 kcal/mol. Interestingly, the halogen bond gets a big enhancement when it combines with a very strong hydrogen bond in FH∙∙∙F-, and the largest interaction energy is up to ∼25.6 kcal/mol in FCl∙∙∙FH∙∙∙F-. The enhancement of halogen bond not only results in a larger elongation of X-Cl bond and a bigger redshift of the bond stretch vibration but also makes the blue-shifting halogen bond in NCCl∙∙∙FH be a red-shifting one in NCCl∙∙∙FH∙∙∙F-. The halogen bond belongs to a purely close-shell interaction in the dyad, while it becomes a partially covalent interaction in XCl∙∙∙FH∙∙∙F- (X = OH, NC, and F) with negative energy density. In FH∙∙∙F-, the proton is shared between the two F atoms, however, this proton transfers towards the F- end in XCl∙∙∙FH∙∙∙F-.
Collapse
Affiliation(s)
- Zongsheng Li
- School of Management and Engineering, Capital University of Economics and Business, Beijing, 100070, People's Republic of China.
| | - Xiulin An
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
150
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|