101
|
Davies S, Oliveira BL, Bernardes GJL. Development of a self-immolative linker for tetrazine-triggered release of alcohols in cells. Org Biomol Chem 2020; 17:5725-5730. [PMID: 31135016 DOI: 10.1039/c9ob01167f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioorthogonal decaging reactions are a promising strategy for prodrug activation because they involve bond cleavage to release a molecule of interest. The trans-cyclooctene (TCO)-tetrazine inverse electron-demand Diels-Alder reaction has been widely applied in vivo for decaging of amine prodrugs, however, the release of alcohol-containing bioactive compounds has been less well studied. Here, we report a TCO-carbamate benzyl ether self-immolative linker for the release of OH-molecules upon reaction with a tetrazine trigger. The benzyl ether linker proved to be highly stable and can rapidly liberate alcohols under physiological conditions upon reaction with tetrazines. The mechanism and decaging yield were systematically examined by fluorescence and HPLC analysis by using a fluorogenic TCO-benzyl ether-coumarin probe and different 3,6-substituted tetrazine derivatives. This study revealed that decaging occurs rapidly (t1/2 = 27 min) and the cycloaddition step happens within seconds (t1/2 = 7 s) with reaction rates of ≈100 M-1 s-1. Importantly, the reaction is compatible with living organisms as demonstrated by the decaging of a prodrug of the antibacterial compound triclosan in the presence of live E. Coli, that resulted in complete cell killing by action of the released "OH-active drug". Overall, this work describes a new linker for masking alcohol functionality that can be rapidly reinstated through tetrazine-triggered decaging.
Collapse
Affiliation(s)
- Sarah Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | | | | |
Collapse
|
102
|
Johann K, Svatunek D, Seidl C, Rizzelli S, Bauer TA, Braun L, Koynov K, Mikula H, Barz M. Tetrazine- and trans-cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polym Chem 2020. [DOI: 10.1039/d0py00375a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazine- and trans-cyclooctene-functionalised polypeptides and polypetoids were prepared by ring-opening polymerisation of N-carboxyanhydrides using the respective functional initiators and shown to react in fast bioorthogonal tetrazine ligations.
Collapse
Affiliation(s)
- Kerstin Johann
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Christine Seidl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Silvia Rizzelli
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Tobias A. Bauer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Lydia Braun
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Matthias Barz
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
103
|
Xiong H, Gu Y, Zhang S, Lu F, Ji Q, Liu L, Ma P, Yang G, Hou W, Xu H. Iridium-catalyzed C–H amidation of s-tetrazines. Chem Commun (Camb) 2020; 56:4692-4695. [DOI: 10.1039/d0cc01647k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthesis of ortho-amino substituted s-tetrazines by iridium-catalyzed C–H activation for bioconjugation and DNA-encoded library.
Collapse
Affiliation(s)
- Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
- School of Life Science and Technology
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
- School of Life Science and Technology
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology
- Hangzhou
- China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| |
Collapse
|
104
|
Riomet M, Porte K, Wijkhuisen A, Audisio D, Taran F. Fluorogenic iminosydnones: bioorthogonal tools for double turn-on click-and-release reactions. Chem Commun (Camb) 2020; 56:7183-7186. [DOI: 10.1039/d0cc03067h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iminosydnones are able to quench two fluorophores when connected to their core structure. Bioorthogonal click and release reaction with cyclooctynes provokes significant fluorescence enhancement of the two products, allowing their tracking in cells.
Collapse
Affiliation(s)
- Margaux Riomet
- Université Paris Saclay
- CEA
- INRAE
- Département Médicaments et Technologies pour la Santé (DMTS)
- SCBM
| | - Karine Porte
- Université Paris Saclay
- CEA
- INRAE
- Département Médicaments et Technologies pour la Santé (DMTS)
- SCBM
| | - Anne Wijkhuisen
- Université Paris Saclay
- CEA
- INRAE
- Département Médicaments et Technologies pour la Santé (DMTS)
- SCBM
| | - Davide Audisio
- Université Paris Saclay
- CEA
- INRAE
- Département Médicaments et Technologies pour la Santé (DMTS)
- SCBM
| | - Frédéric Taran
- Université Paris Saclay
- CEA
- INRAE
- Département Médicaments et Technologies pour la Santé (DMTS)
- SCBM
| |
Collapse
|
105
|
Mboyi CD, Vivier D, Daher A, Fleurat-Lessard P, Cattey H, Devillers CH, Bernhard C, Denat F, Roger J, Hierso JC. Bridge-Clamp Bis(tetrazine)s with [N] 8 π-Stacking Interactions and Azido-s-Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angew Chem Int Ed Engl 2019; 59:1149-1154. [PMID: 31643125 DOI: 10.1002/anie.201911947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Click chemistry at a tetrazine core is useful for bioorthogonal labeling and crosslinking. Introduced here are two new classes of doubly clickable s-aryl tetrazines synthesized by Cu-catalyzed cross-coupling. Homocoupling of o-brominated s-aryl tetrazines leads to bis(tetrazine)s structurally characterized by tetrazine cores arranged face-to-face. [N]8 π-stacking interactions are essential to the conformation. Upon inverse electron demand Diels-Alder (iEDDA) cycloaddition, the bis(tetrazine)s produce a unique staple structure. The o-azidation of s-aryl tetrazines introduces a second proximal intermolecular clickable function that leads to double click chemistry opportunities. The stepwise introduction of fluorophores and then iEDDA cycloaddition, including bioconjugation to antibodies, was achieved on this class of tetrazines. This method extends to (thio)etherification, phosphination, trifluoromethylation and the introduction of various bioactive nitrogen-based heterocycles.
Collapse
Affiliation(s)
- Clève D Mboyi
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Delphine Vivier
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Ahmad Daher
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Paul Fleurat-Lessard
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Hélène Cattey
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Charles H Devillers
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Claire Bernhard
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Franck Denat
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Julien Roger
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| | - Jean-Cyrille Hierso
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302-, Université de Bourgogne Franche-Comté (UBFC), 9, avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
106
|
Xu M, Deb T, Tu J, Franzini RM. Tuning Isonitrile/Tetrazine Chemistry for Accelerated Deprotection and Formation of Stable Conjugates. J Org Chem 2019; 84:15520-15529. [DOI: 10.1021/acs.joc.9b02522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
107
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
108
|
Tag and release: strategies for the intracellular cleavage of protein conjugates. Curr Opin Chem Biol 2019; 52:39-46. [DOI: 10.1016/j.cbpa.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/12/2023]
|
109
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
110
|
Liu G, Wold EA, Zhou J. Applications of Bioorthogonal Chemistry in Tumor-Targeted Drug Discovery. Curr Top Med Chem 2019; 19:892-897. [DOI: 10.2174/1568026619666190510091921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Eric A. Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
111
|
Beliu G, Kurz AJ, Kuhlemann AC, Behringer-Pliess L, Meub M, Wolf N, Seibel J, Shi ZD, Schnermann M, Grimm JB, Lavis LD, Doose S, Sauer M. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun Biol 2019; 2:261. [PMID: 31341960 PMCID: PMC6642216 DOI: 10.1038/s42003-019-0518-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Genetic code expansion (GCE) technology allows the specific incorporation of functionalized noncanonical amino acids (ncAAs) into proteins. Here, we investigated the Diels-Alder reaction between trans-cyclooct-2-ene (TCO)-modified ncAAs, and 22 known and novel 1,2,4,5-tetrazine-dye conjugates spanning the entire visible wavelength range. A hallmark of this reaction is its fluorogenicity - the tetrazine moiety can elicit substantial quenching of the dye. We discovered that photoinduced electron transfer (PET) from the excited dye to tetrazine is the main quenching mechanism in red-absorbing oxazine and rhodamine derivatives. Upon reaction with dienophiles quenching interactions are reduced resulting in a considerable increase in fluorescence intensity. Efficient and specific labeling of all tetrazine-dyes investigated permits super-resolution microscopy with high signal-to-noise ratio even at the single-molecule level. The different cell permeability of tetrazine-dyes can be used advantageously for specific intra- and extracellular labeling of proteins and highly sensitive fluorescence imaging experiments in fixed and living cells.
Collapse
Affiliation(s)
- Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas J. Kurz
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander C. Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lisa Behringer-Pliess
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Natalia Wolf
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Martin Schnermann
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147 USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147 USA
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
112
|
Lin F, Chen L, Zhang H, Ching Ngai WS, Zeng X, Lin J, Chen PR. Bioorthogonal Prodrug–Antibody Conjugates for On-Target and On-Demand Chemotherapy. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Current antibody–drug conjugates (ADCs) suffer from low tissue penetration and significant side effects, largely due to the permanent linkage and/or premature release of cytotoxic payloads. Herein, we developed a prodrug–antibody conjugate (ProADC) strategy by conjugating a bioorthogonal-activatable prodrug with an antibody that allowed on-target release and on-demand activation of cytotoxic drugs at a tumor site. The bioorthogonal-caged prodrug exhibited an enhanced permeability into and on-demand activation within cancer cells, while the pH-sensitive ADC linker allowed on-target release of the anticancer agent. Together, the ProADCs showed enhanced tumor penetration and alleviated side effects for use as an on-target and on-demand chemotherapy agents.
Collapse
|
113
|
Ji X, Aghoghovbia RE, De La Cruz LKC, Pan Z, Yang X, Yu B, Wang B. Click and Release: A High-Content Bioorthogonal Prodrug with Multiple Outputs. Org Lett 2019; 21:3649-3652. [DOI: 10.1021/acs.orglett.9b01086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert E. Aghoghovbia
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ladie Kimberly C. De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
114
|
Siegl SJ, Galeta J, Dzijak R, Dračínský M, Vrabel M. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products. Chempluschem 2019; 84:493-497. [PMID: 31245251 PMCID: PMC6582594 DOI: 10.1002/cplu.201900176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Fluorogenic bioorthogonal reactions enable visualization of biomolecules with excellent signal-to-noise ratio. A bicyclononyne-tetrazine ligation that produces fluorescent pyridazine products has been developed. In stark contrast to previous approaches, the formation of the dye is an inherent result of the chemical reaction and no additional fluorophores are needed in the reagents. The crucial structural elements that determine dye formation are electron-donating groups present in the starting tetrazine unit. The newly formed pyridazine fluorophores show interesting photophysical properties the fluorescence intensity increase in the reaction can reach an excellent 900-fold. Model imaging experiments demonstrate the application potential of this new fluorogenic bioorthogonal reaction.
Collapse
Affiliation(s)
- Sebastian J. Siegl
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Juraj Galeta
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
115
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
116
|
Neumann K, Gambardella A, Bradley M. The Emerging Role of Tetrazines in Drug-Activation Chemistries. Chembiochem 2019; 20:872-876. [PMID: 30394615 DOI: 10.1002/cbic.201800590] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Traditionally, prodrug activation has been limited to enzymatic triggers or gross physiological aberrations, such as pH, that offer low selectivity and control over dosage. In recent years, the field of prodrug activation chemistry has been transformed by the use of bioorthogonal reactions that can be carried out under biological conditions at sub-millimolar concentrations, with the tetrazine-mediated inverse electron demand Diels-Alder reaction amongst the most recognised. Their high reaction rates, chemoselectivity and excellent biocompatibility make tetrazines ideal small molecules for activating prodrugs. Recently the tetrazine moiety has been used as a prodrug for a pyridazine thus broadening the scope of prodrug systems. This article discusses the concept of using tetrazines as small-molecule activators for prodrugs, and provides an overview of tetrazine-based prodrug systems, with a particular focus on the recently reported prodrug-prodrug activation strategy.
Collapse
Affiliation(s)
- Kevin Neumann
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.,Present address: Laboratory of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alessia Gambardella
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
117
|
Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B. Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem Soc Rev 2019; 48:1077-1094. [PMID: 30724944 DOI: 10.1039/c8cs00395e] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review summarizes recent developments in using bioorthogonal chemistry in prodrug design for the delivery of traditional small molecule- and gasotransmitter-based therapeutics.
Collapse
Affiliation(s)
- Xingyue Ji
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
118
|
Lelieveldt LPWM, Eising S, Wijen A, Bonger KM. Vinylboronic acid-caged prodrug activation using click-to-release tetrazine ligation. Org Biomol Chem 2019; 17:8816-8821. [DOI: 10.1039/c9ob01881f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vinylboronic acids react selectively with tetrazines containing a boron-coordinating substituent. The authors explore this coordination-assisted cycloaddition for the click-to-release activation of a therapeutic drug.
Collapse
Affiliation(s)
- Lianne P. W. M. Lelieveldt
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Selma Eising
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Abel Wijen
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| |
Collapse
|
119
|
Shao Z, Liu W, Tao H, Liu F, Zeng R, Champagne PA, Cao Y, Houk KN, Liang Y. Bioorthogonal release of sulfonamides and mutually orthogonal liberation of two drugs. Chem Commun (Camb) 2018; 54:14089-14092. [PMID: 30480281 PMCID: PMC6314811 DOI: 10.1039/c8cc08533a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sulfonamide derivatives have been used in pharmaceutics for decades. Here we report a new approach to release sulfonamides efficiently using a bioorthogonal reaction of sulfonyl sydnonimines and dibenzoazacyclooctyne (DIBAC). The second-order rate constant of the cycloaddition reaction can be up to 0.62 M-1 s-1, and the reactants are highly stable under physiological conditions. Most significantly, we also discovered the mutual orthogonality between the sydnonimine-DIBAC and benzonorbornadiene-tetrazine cycloaddition pairs, which can be used for selective and simultaneous liberation of sulfonamide and primary amine drugs.
Collapse
Affiliation(s)
- Zhuzhou Shao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| | - Huimin Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| | - Fang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| | - Ruxin Zeng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| | - Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.,
| | - Yang Cao
- Institute of Future Industrial Technologies, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.,
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,
| |
Collapse
|
120
|
Yu S, de Bruijn HM, Svatunek D, Hamlin TA, Bickelhaupt FM. Factors Controlling the Diels-Alder Reactivity of Hetero-1,3-Butadienes. ChemistryOpen 2018; 7:995-1004. [PMID: 30524925 PMCID: PMC6276106 DOI: 10.1002/open.201800193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
We have quantum chemically explored the Diels-Alder reactivities of a systematic series of hetero-1,3-butadienes with ethylene by using density functional theory at the BP86/TZ2P level. Activation strain analyses provided physical insight into the factors controlling the relative cycloaddition reactivity of aza- and oxa-1,3-butadienes. We find that dienes with a terminal heteroatom, such as 2-propen-1-imine (NCCC) or acrolein (OCCC), are less reactive than the archetypal 1,3-butadiene (CCCC), primarily owing to weaker orbital interactions between the more electronegative heteroatoms with ethylene. Thus, the addition of a second heteroatom at the other terminal position (NCCN and OCCO) further reduces the reactivity. However, the introduction of a nitrogen atom in the backbone (CNCC) leads to enhanced reactivity, owing to less Pauli repulsion resulting from polarization of the diene HOMO in CNCC towards the nitrogen atom and away from the terminal carbon atom. The Diels-Alder reactions of ethenyl-diazene (NNCC) and 1,3-diaza-butadiene (NCNC), which contain heteroatoms at both the terminal and backbone positions, are much more reactive due to less activation strain compared to CCCC.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Hans M de Bruijn
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry, Gorlaeus Laboratories Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Dennis Svatunek
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institut für Angewandte Synthesechemie Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
121
|
Sarris AJC, Hansen T, de Geus MAR, Maurits E, Doelman W, Overkleeft HS, Codée JDC, Filippov DV, van Kasteren SI. Fast and pH‐Independent Elimination of
trans
‐Cyclooctene by Using Aminoethyl‐Functionalized Tetrazines. Chemistry 2018; 24:18075-18081. [DOI: 10.1002/chem.201803839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Alexi J. C. Sarris
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas Hansen
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mark A. R. de Geus
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Elmer Maurits
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ward Doelman
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sander I. van Kasteren
- Leiden Institute of Chemistry, and The Institute for Chemical ImmunologyLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
122
|
Litau S, Seibold U, Wängler B, Schirrmacher R, Wängler C. iEDDA Conjugation Reaction in Radiometal Labeling of Peptides with 68Ga and 64Cu: Unexpected Findings. ACS OMEGA 2018; 3:14039-14053. [PMID: 30411057 PMCID: PMC6217686 DOI: 10.1021/acsomega.8b01926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/15/2018] [Indexed: 05/31/2023]
Abstract
The inverse electron demand Diels-Alder conjugation reaction has gained increasing importance over the past few years for efficient in vivo and ex vivo radiometal labeling of antibodies. However, the application of this very fast reaction type has not been studied for radiolabeling of peptides so far. We show here the synthesis of 3-benzyl-1,2,4,5-tetrazine-comprising ((1,4,7,10-tetraazacyclododecane-4,7,10-triyl)triacetic acid-1-glutaric acid) (DOTA-GA) and ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) chelators and their radiometal labeling with 68Ga3+ and 64Cu2+. The secondary labeling precursors 68Ga-DOTA-GA-Tz, 68Ga-NODA-GA-Tz, and 64Cu-DOTA-GA-Tz were obtained in high radiochemical yields (RCYs) and purities as well as molar activities for further labeling of trans-cyclooctene (TCO)-modified peptides. However, the following reactions of the radiometal-labeled tetrazines with different TCO-comprising model peptide analogs unexpectedly resulted in the formation of a considerable amount of side products (20-55%) which limits the overall achievable RCYs and purities as well as molar activities of the target radiopeptides. Under otherwise identical, nonradioactive reaction conditions, this effect could however not be observed. In contrast, the corresponding one-step radiolabeling protocols provided the target 68Ga-labeled radiopeptides in exceptionally high RCYs and purities of ≥99% and molar activities of 68-72 GBq/μmol starting from activities of 340-358 MBq of 68Ga. Thus, the usefulness of the two-step labeling of TCO-modified peptides with radiometal-labeled chelator-tetrazines seems to be limited.
Collapse
Affiliation(s)
- Shanna Litau
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Uwe Seibold
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Björn Wängler
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada
| | - Carmen Wängler
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| |
Collapse
|
123
|
Devaraj NK. The Future of Bioorthogonal Chemistry. ACS CENTRAL SCIENCE 2018; 4:952-959. [PMID: 30159392 PMCID: PMC6107859 DOI: 10.1021/acscentsci.8b00251] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Bioorthogonal reactions have found widespread use in applications ranging from glycan engineering to in vivo imaging. Researchers have devised numerous reactions that can be predictably performed in a biological setting. Depending on the requirements of the intended application, one or more reactions from the available toolkit can be readily deployed. As an increasing number of investigators explore and apply chemical reactions in living systems, it is clear that there are a myriad of ways in which the field may advance. This article presents an outlook on the future of bioorthogonal chemistry. I discuss currently emerging opportunities and speculate on how bioorthogonal reactions might be applied in research and translational settings. I also outline hurdles that must be cleared if progress toward these goals is to be made. Given the incredible past successes of bioorthogonal chemistry and the rapid pace of innovations in the field, the future is undoubtedly very bright.
Collapse
|
124
|
Versteegen RM, ten Hoeve W, Rossin R, de Geus MAR, Janssen HM, Robillard MS. Click‐to‐Release from
trans
‐Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Raffaella Rossin
- Tagworks Pharmaceuticals Geert Grooteplein Zuid 10 6525 GA Nijmegen The Netherlands
| | - Mark A. R. de Geus
- Leiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | | | - Marc S. Robillard
- Tagworks Pharmaceuticals Geert Grooteplein Zuid 10 6525 GA Nijmegen The Netherlands
| |
Collapse
|
125
|
Blanco‐Ania D, Maartense L, Rutjes FPJT. Rapid Production of
trans
‐Cyclooctenes in Continuous Flow. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Blanco‐Ania
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Luuk Maartense
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| |
Collapse
|
126
|
Versteegen RM, Ten Hoeve W, Rossin R, de Geus MAR, Janssen HM, Robillard MS. Click-to-Release from trans-Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angew Chem Int Ed Engl 2018; 57:10494-10499. [PMID: 29746709 DOI: 10.1002/anie.201800402] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 01/26/2023]
Abstract
The bioorthogonal cleavage of allylic carbamates from trans-cyclooctene (TCO) upon reaction with tetrazine is widely used to release amines. We disclose herein that this reaction can also cleave TCO esters, carbonates, and surprisingly, ethers. Mechanistic studies demonstrated that the elimination is mainly governed by the formation of the rapidly eliminating 1,4-dihydropyridazine tautomer, and less by the nature of the leaving group. In contrast to the widely used p-aminobenzyloxy linker, which affords cleavage of aromatic but not of aliphatic ethers, the aromatic, benzylic, and aliphatic TCO ethers were cleaved as efficiently as the carbamate, carbonate, and esters. Bioorthogonal ether release was demonstrated by the rapid uncaging of TCO-masked tyrosine in serum, followed by oxidation by tyrosinase. Finally, tyrosine uncaging was used to chemically control cell growth in tyrosine-free medium.
Collapse
Affiliation(s)
| | | | - Raffaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mark A R de Geus
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Henk M Janssen
- SyMO-Chem, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
127
|
Tu J, Xu M, Parvez S, Peterson RT, Franzini RM. Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo. J Am Chem Soc 2018; 140:8410-8414. [DOI: 10.1021/jacs.8b05093] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Minghao Xu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
128
|
van der Gracht AMF, de Geus MAR, Camps MGM, Ruckwardt TJ, Sarris AJC, Bremmers J, Maurits E, Pawlak JB, Posthoorn MM, Bonger KM, Filippov DV, Overkleeft HS, Robillard MS, Ossendorp F, van Kasteren SI. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes. ACS Chem Biol 2018; 13:1569-1576. [PMID: 29733186 PMCID: PMC6006443 DOI: 10.1021/acschembio.8b00155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Activation
of a cytotoxic T-cell is a complex multistep process,
and tools to study the molecular events and their dynamics that result
in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes
for time-controlled T-cell activation in vivo. We
show that trans-cyclooctene-protected SIINFEKL (with
the lysine amine masked) is unable to elicit the T-cell response characteristic
for the free SIINFEKL epitope. Epitope uncaging by means of an inverse-electron
demand Diels–Alder (IEDDA) event restored T-cell activation
and provided temporal control of T-cell proliferation in vivo.
Collapse
Affiliation(s)
- Anouk M. F. van der Gracht
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark A. R. de Geus
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marcel G. M. Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institute of Health, 40 Convent Drive, Building 40, Bethesda, Maryland 20814, United States
| | - Alexi J. C. Sarris
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jessica Bremmers
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Elmer Maurits
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Joanna B. Pawlak
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Michelle M. Posthoorn
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marc S. Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|