101
|
Muneeswara M, Muthukumar A, Sekar G. Dual Role of N-Bromosuccinimide as Oxidant and Succinimide Surrogate in Domino One-Pot Oxidative Amination of Benzyl Alcohols for the Synthesis of α-Imido Ketones. ChemistrySelect 2018. [DOI: 10.1002/slct.201803465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Madithedu Muneeswara
- Department of Chemistry; Indian Institution of Technology Madras Chennai-600036, Tamilnadu; India
| | - Alagesan Muthukumar
- Department of Chemistry; Indian Institution of Technology Madras Chennai-600036, Tamilnadu; India
| | - Govindasamy Sekar
- Department of Chemistry; Indian Institution of Technology Madras Chennai-600036, Tamilnadu; India
| |
Collapse
|
102
|
Paudel S, Min X, Acharya S, Khadka DB, Yoon G, Kim KM, Cheon SH. Design, synthesis, and systematic evaluation of 4-arylpiperazine- and 4-benzylpiperidine napthyl ethers as inhibitors of monoamine neurotransmitters reuptake. Bioorg Med Chem 2018; 26:5538-5546. [DOI: 10.1016/j.bmc.2018.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
|
103
|
Dutta L, Bhuyan PJ. Copper-catalyzed oxidative synthesis of 2-oxo-acetamidines from one-pot three-component reaction of aryl methyl ketones, secondary amines and anilines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Ying J, Wang H, Qi X, Peng JB, Wu XF. Gold-Catalyzed Regiospecific Hydration of N-Tosyl Propargylic Amines. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Hai Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
105
|
Detection of pyrovalerone as a possible synthetic by-product of 4′-methyl-α-pyrrolidinohexanophenone and 4-methyl-α-ethylaminopentiophenone in illicit drug products. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
106
|
Marzo L, Pagire SK, Reiser O, König B. Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709766] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leyre Marzo
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Santosh K. Pagire
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Oliver Reiser
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Burkhard König
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
107
|
Marzo L, Pagire SK, Reiser O, König B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew Chem Int Ed Engl 2018; 57:10034-10072. [PMID: 29457971 DOI: 10.1002/anie.201709766] [Citation(s) in RCA: 1173] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/12/2018] [Indexed: 12/12/2022]
Abstract
Visible-light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. Photocatalytic variants have been reported for many important transformations, such as cross-coupling reactions, α-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations. To help chemists select photocatalytic methods for their synthesis, we compare in this Review classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed under milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, such as air, oxygen, or amines. Does visible-light photocatalysis make a difference in organic synthesis? The prospect of shuttling electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible-light-absorbing photocatalyst holds the promise to improve current procedures in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown, especially by merging photocatalysis with organo- or metal catalysis.
Collapse
Affiliation(s)
- Leyre Marzo
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Santosh K Pagire
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
108
|
Coccini T, Vecchio S, Crevani M, De Simone U. Cytotoxic Effects of 3,4-Catechol-PV (One Major MDPV Metabolite) on Human Dopaminergic SH-SY5Y Cells. Neurotox Res 2018; 35:49-62. [DOI: 10.1007/s12640-018-9924-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
109
|
Kumar Y, Jaiswal Y, Thakur R, Kumar A. A Straightforward Synthesis of α
-Amino Diaryl Ketones from (Hetero)Arylacetonitriles Promoted by N
-Bromosuccinimide. ChemistrySelect 2018. [DOI: 10.1002/slct.201801073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar India
| | - Yogesh Jaiswal
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar India
| | - Rima Thakur
- Department of Chemistry; National Institute of Technology Patna; Patna- 800005 Bihar India
| | - Amit Kumar
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar India
| |
Collapse
|
110
|
Pantano F, Tittarelli R, Mannocchi G, Pacifici R, di Luca A, Busardò FP, Marinelli E. Neurotoxicity Induced by Mephedrone: An up-to-date Review. Curr Neuropharmacol 2018; 15:738-749. [PMID: 27908258 PMCID: PMC5771050 DOI: 10.2174/1570159x14666161130130718] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
Mephedrone is a β-ketoamphetamine belonging to the family of synthetic cathinones, an emerging class of designer drugs known for their hallucinogenic and psychostimulant properties as well as for their abuse potential. The aim of this review was to examine the emerging scientific literature on the possible mephedrone-induced neurotoxicity, yet not well defined due to the limited number of experimental studies, mainly carried on animal models. Relevant scientific articles were identified from international literature databases (Medline, Scopus, etc.) using the keywords: “Mephedrone”, “4-MMC,” “neurotoxicity,” “neuropharmacology”, “patents”, “monoamine transporters” and “neurochemical effects”. Of the 498 sources initially found, only 36 papers were suitable for the review. Neurotoxic effect of mephedrone on 5-HT and DA systems remains controversial. Although some studies in animal models reported no damage to DA nerve endings in the striatum and no significant changes in brain monoamine levels, some others suggested a rapid reduction in 5-HT and DA transporter function. Persistent serotonergic deficits were observed after binge like treatment in a warm environment and in both serotonergic and dopaminergic nerve endings at high ambient temperature. Oxidative stress cytotoxicity and an increase in frontal cortex lipid peroxidation were also reported. In vitro cytotoxic properties were also observed, suggesting that mephedrone may act as a reductant agent and can also determine changes in mitochondrial respiration. However, due to the differences in the design of the experiments, including temperature and animal model used, the results are difficult to compare. Further studies on toxicology and pharmacology of mephedrone are therefore necessary to establish an appropriate treatment for substance abuse and eventual consequences for public health.
Collapse
Affiliation(s)
- Flaminia Pantano
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Tittarelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Giulio Mannocchi
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Pacifici
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Alessandro di Luca
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Francesco Paolo Busardò
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Viale Regina Elena 336, 00161 Rome, Italy. Italy
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| |
Collapse
|
111
|
King A, Dimovska M, Bisoski L. Sympathomimetic Toxidromes and Other Pharmacological Causes of Acute Hypertension. Curr Hypertens Rep 2018; 20:8. [DOI: 10.1007/s11906-018-0807-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
112
|
Carlsson A, Sandgren V, Svensson S, Konradsson P, Dunne S, Josefsson M, Dahlén J. Prediction of designer drugs: Synthesis and spectroscopic analysis of synthetic cathinone analogs that may appear on the Swedish drug market. Drug Test Anal 2018; 10:1076-1098. [PMID: 29426062 DOI: 10.1002/dta.2366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/05/2023]
Abstract
The use of hyphenated analytical techniques in forensic drug screening enables simultaneous identification of a wide range of different compounds. However, the appearance of drug seizures containing new substances, mainly new psychoactive substances (NPS), is steadily increasing. These new and other already known substances often possess structural similarities and consequently they exhibit spectral data with slight differences. This situation has made the criteria that ensure indubitable identification of compounds increasingly important. In this work, 6 new synthetic cathinones that have not yet appeared in any Swedish drug seizures were synthesized. Their chemical structures were similar to those of already known cathinone analogs of which 42 were also included in the study. Hence, a total of 48 synthetic cathinones making up sets of homologous and regioisomeric compounds were used to challenge the capabilities of various analytical techniques commonly applied in forensic drug screening, ie, gas chromatography-mass spectrometry (GC-MS), gas chromatography-Fourier transform infrared spectroscopy (GC-FTIR), nuclear magnetic resonance (NMR), and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Special attention was paid to the capabilities of GC-MS and GC-FTIR to distinguish between the synthetic cathinones and the results showed that neither GC-MS nor GC-FTIR alone can successfully differentiate between all synthetic cathinones. However, the 2 techniques proved to be complementary and their combined use is therefore beneficial. For example, the structural homologs were better differentiated by GC-MS, while GC-FTIR performed better for the regioisomers. Further, new spectroscopic data of the synthesized cathinone analogs is hereby presented for the forensic community. The synthetic work also showed that cathinone reference compounds can be produced in few reaction steps.
Collapse
Affiliation(s)
- Andreas Carlsson
- Swedish National Forensic Centre - NFC, Linköping, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Veronica Sandgren
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Stefan Svensson
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Peter Konradsson
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Simon Dunne
- Swedish National Forensic Centre - NFC, Linköping, Sweden
| | - Martin Josefsson
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Sweden
| |
Collapse
|
113
|
Karila L, Benyamina A. The Effects and Risks Associated with Synthetic Cathinones Use in Humans. CURRENT TOPICS IN NEUROTOXICITY 2018. [DOI: 10.1007/978-3-319-78707-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
114
|
Horsley RR, Lhotkova E, Hajkova K, Feriancikova B, Himl M, Kuchar M, Páleníček T. Behavioural, Pharmacokinetic, Metabolic, and Hyperthermic Profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front Psychiatry 2018; 9:144. [PMID: 29740356 PMCID: PMC5928397 DOI: 10.3389/fpsyt.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
3,4-methylenedioxypyrovalerone (MDPV) is a potent pyrovalerone cathinone that is substituted for amphetamines by recreational users. We report a comprehensive and detailed description of the effects of subcutaneous MDPV (1-4 mg/kg) on pharmacokinetics, biodistribution and metabolism, acute effects on thermoregulation under isolated and aggregated conditions, locomotion (open field) and sensory gating (prepulse inhibition, PPI). All studies used male Wistar rats. Pharmacokinetics after single dose of 2 mg/kg MDPV was measured over 6 h in serum, brain and lungs. The biotransformation study recorded 24 h urinary levels of MDPV and its metabolites after 4 mg/kg. The effect of 2 mg/kg and 4 mg/kg on body temperature (°C) was measured over 12 h in group- vs. individually-housed rats. In the open field, locomotion (cm) and its spatial distribution were assessed. In PPI, acoustic startle response (ASR), habituation, and PPI were measured (AVG amplitudes). In behavioural experiments, 1, 2, or 4 mg/kg MDPV was administered 15 or 60 min prior to testing. Thermoregulation and behavioural data were analysed using factorial analysis of variance (ANOVA). Peak concentrations of MDPV in sera, lung and brain tissue were reached in under 30 min. While negligible levels of metabolites were detected in tissues, the major metabolites in urine were demethylenyl-MDPV and demethylenyl-methyl-MDPV at levels three-four times higher than the parent drug. We also established a MDPV brain/serum ratio ~2 lasting for ~120 min, consistent with our behavioural observations of locomotor activation and disrupted spatial distribution of behaviour as well as moderate increases in body temperature (exacerbated in group-housed animals). Finally, 4 mg/kg induced stereotypy in the open field and transiently disrupted PPI. Our findings, along with previous research suggest that MDPV is rapidly absorbed, readily crosses the blood-brain barrier and is excreted primarily as metabolites. MDPV acts as a typical stimulant with modest hyperthermic and psychomimetic properties, consistent with a primarily dopaminergic mechanism of action. Since no specific signs of acute toxicity were observed, even at the highest doses used, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Collapse
Affiliation(s)
- Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Eva Lhotkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Katerina Hajkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Barbara Feriancikova
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Michal Himl
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchar
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
115
|
Simmons SJ, Gregg RA, Tran FH, Mo L, von Weltin E, Barker DJ, Gentile TA, Watterson LR, Rawls SM, Muschamp JW. Comparing rewarding and reinforcing properties between 'bath salt' 3,4-methylenedioxypyrovalerone (MDPV) and cocaine using ultrasonic vocalizations in rats. Addict Biol 2018; 23:102-110. [PMID: 27910188 DOI: 10.1111/adb.12479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Abuse of synthetic psychostimulants like synthetic cathinones has risen in recent years. 3,4-Methylenedioxypyrovalerone (MDPV) is one such synthetic cathinone that demonstrates a mechanism of action similar to cocaine. Compared to cocaine, MDPV is more potent at blocking dopamine and norepinephrine reuptake and is readily self-administered by rodents. The present study compared the rewarding and reinforcing properties of MDPV and cocaine using systemic injection dose-response and self-administration models. Fifty kilohertz ultrasonic vocalizations (USVs) were recorded as an index of positive affect throughout experiments. In Experiment 1, MDPV and cocaine dose-dependently elicited 50-kHz USVs upon systemic injection, but MDPV increased USVs at greater rates and with greater persistence relative to cocaine. In Experiment 2, latency to begin MDPV self-administration was shorter than latency to begin cocaine self-administration, and self-administered MDPV elicited greater and more persistent rates of 50-kHz USVs versus cocaine. MDPV-elicited 50-kHz USVs were sustained over the course of drug load-up whereas cocaine-elicited USVs waned following initial infusions. Notably, we observed a robust presence of context-elicited 50-kHz USVs from both MDPV and cocaine self-administering rats. Collectively, these data suggest that MDPV has powerfully rewarding and reinforcing effects relative to cocaine at one-tenth doses. Consistent with prior work, we additionally interpret these data in supporting that MDPV has significant abuse risk based on its potency and subjectively positive effects. Future studies will be needed to better refine therapeutic strategies targeted at reducing the rewarding effects of cathinone analogs in efforts to ultimately reduce abuse liability.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Ryan A. Gregg
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Fionya H. Tran
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Lili Mo
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Eva von Weltin
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - David J. Barker
- National Institute on Drug Abuse, Neuronal Networks Section; National Institutes of Health; USA
| | - Taylor A. Gentile
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Lucas R. Watterson
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - Scott M. Rawls
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| | - John W. Muschamp
- Center for Substance Abuse Research; Lewis Katz School of Medicine at Temple University; USA
| |
Collapse
|
116
|
Simmler LD. Monoamine Transporter and Receptor Interaction Profiles of Synthetic Cathinones. CURRENT TOPICS IN NEUROTOXICITY 2018. [DOI: 10.1007/978-3-319-78707-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
117
|
Abstract
Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.
Collapse
|
118
|
Li YJ, Zhang L, Yan N, Meng XH, Zhao YL. Acid/Base-Co-catalyzed Direct Oxidative α-Amination of Cyclic Ketones: Using Molecular Oxygen as the Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi-Jin Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Na Yan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| |
Collapse
|
119
|
MDPV and α-PVP use in humans: The twisted sisters. Neuropharmacology 2017; 134:65-72. [PMID: 29030166 DOI: 10.1016/j.neuropharm.2017.10.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
The new psychoactive substances phenomenon continues to represent a considerable public health challenge. Synthetic cathinones are β-keto amphetamine analogues, also known as legal highs, research chemicals, bath salts. These drugs have surfaced as a popular alternative to other illicit drugs of abuse, such as cocaine, MDMA, and methamphetamine, due to their potent psychostimulant and empathogenic effects. Pyrovalerone cathinones (a-pyrrolidinophenones) form a distinct group of designer cathinones, such as MDPV. After being listed as an illegal product, "second generation" compounds such as α-PVP, sharing a very similar chemical structure with MDPV, were developed. Clinical effects of these compounds are individual, dose- and route of administration-dependent. Both of them have been involved in an increased number of, not only acute intoxications but also fatalities over the past few years, raising concerns in the medical field. In this paper, we will review the available data regarding the use and effects of MDPV and α-PVP in humans in order to highlight their impact on public health. Health actors and general population need to be clearly informed of potential risks and consequences of these 2 novel psychoactive substances spread and use. The literature search conducted led to the identification of potentially 83 relevant articles. All articles were screened from their abstracts to determine their relevance in the framework of the current review. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
|
120
|
Hambuchen MD, Hendrickson HP, Gunnell MG, McClenahan SJ, Ewing LE, Gibson DM, Berquist MD, Owens SM. The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats. Drug Alcohol Depend 2017; 179:347-354. [PMID: 28844011 PMCID: PMC5600196 DOI: 10.1016/j.drugalcdep.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND These studies investigated the serum pharmacokinetic (PK) profile of racemic (3,4)-methylenedioxypyrovalerone [(R,S)-MDPV)] and its (R)- and (S)-enantiomers in female and male Sprague Dawley rats. METHODS Intravenous (R,S)-MDPV (3 and 5.6mg/kg) and single enantiomer of (R)- and (S)-MDPV (1.5mg/kg) were administered to both sexes for PK studies. Intraperitoneal (ip) bioavailability was determined at 3mg/kg (R,S)-MDPV. Locomotor activity studies were conducted after ip treatment with saline and 0.3-5.6mg/kg of (R,S)-MDPV. RESULTS PK values after iv (R,S)-MDPV showed a significant (p<0.05) sex-dependent differences in the volume of distribution at steady state (Vdss) for (R)- and (R,S)-MDPV at both (R,S)-MDPV doses. The female S/R enantiomeric ratios for area under the concentration time curve (AUCinf) and clearance were significantly lower and higher, respectively, than values determined in males. Importantly, there was no evidence of in vivo inversion of (R)-MDPV or (S)-MDPV to its antipode. There were, however, significant sex-dependent differences in volume of distribution after administration of the (R)-enantiomer. Bioavailability studies of ip (R,S)-MDPV showed greater variability and significantly greater bioavailability in male rats. Accordingly, there was a significantly greater maximal distance traveled measurement in male rats at a 3.0mg/kg dose. CONCLUSION PK sex differences in (R,S)-MDPV and enantiomers were most apparent in volume of distribution, which could be caused by differences in drug blood and tissue protein binding. The increased magnitude and variance in ip bioavailability in male compared to female rats could lead to sex-dependent differences in the pharmacological action caused by active enantiomer (S)-MDPV.
Collapse
Affiliation(s)
- Michael D. Hambuchen
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Howard P. Hendrickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melinda G. Gunnell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samantha J. McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Laura E. Ewing
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dillon M. Gibson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael D. Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - S. Michael Owens
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
121
|
Beck O, Bäckberg M, Signell P, Helander A. Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats. Clin Toxicol (Phila) 2017; 56:256-263. [DOI: 10.1080/15563650.2017.1370097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Olof Beck
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Laboratory, Stockholm, Sweden
| | | | - Patrick Signell
- Department of Clinical Pharmacology, Karolinska University Laboratory, Stockholm, Sweden
| | - Anders Helander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
122
|
Smith DA, Negus SS, Poklis JL, Blough BE, Banks ML. Cocaine-like discriminative stimulus effects of alpha-pyrrolidinovalerophenone, methcathinone and their 3,4-methylenedioxy or 4-methyl analogs in rhesus monkeys. Addict Biol 2017; 22:1169-1178. [PMID: 27060605 DOI: 10.1111/adb.12399] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023]
Abstract
Synthetic cathinones are beta-ketone amphetamine analogs that have emerged as a heterogeneous class of abused compounds that function as either monoamine transporter substrates or inhibitors. Pre-clinical drug discrimination procedures are useful for interrogating structure-activity relationships of abuse-related drug effects; however, in vivo structure-activity relationship comparisons between synthetic cathinones with different mechanisms of action are lacking. The aim of the present study was to determine whether the cocaine-like discriminative stimulus effects of the monoamine transporter inhibitor alpha-pyrrolidinovalerophenone (alpha-PVP) and the monoamine transporter substrate methcathinone were differentially sensitive to 3,4-methylenedioxy and 4-methyl substitutions. Male rhesus monkeys (n = 4) were trained to discriminate intramuscular cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Potency and timecourse of cocaine-like discriminative stimulus effects were determined for (±)-alpha-PVP, (±)-methcathinone and their 3,4-methylenedioxy or 4-methyl analogs. Alpha-PVP and methcathinone produced dose- and time-dependent cocaine-like effects. A 3,4-methylenedioxy addition to either alpha-PVP or methcathinone (methylone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. A 4-methyl addition to alpha-PVP (pyrovalerone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. In contrast, addition of a 4-methyl moiety to methcathinone (4MMC; mephedrone) significantly attenuated efficacy to produce cocaine-like effects. Overall, these results suggest different structural requirements for cocaine-like discriminative stimulus effects of monoamine transporter inhibitor and substrate synthetic cathinone analogs. Given that 4MMC is more hydrophobic than MDMC, these results suggest that hydrophobicity may be an important determinant for limiting monoamine transporter substrate abuse-related behavioral effects.
Collapse
Affiliation(s)
- Douglas A. Smith
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA 23298
- Institute for Drug and Alcohol Studies; Virginia Commonwealth University; Richmond VA USA 23298
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA 23298
| | - Bruce E. Blough
- Center for Drug Discovery; Research Triangle Institute; Research Triangle Park NC USA 27709
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA 23298
- Institute for Drug and Alcohol Studies; Virginia Commonwealth University; Richmond VA USA 23298
| |
Collapse
|
123
|
Evaluation of carboxamide-type synthetic cannabinoids as CB 1/CB 2 receptor agonists: difference between the enantiomers. Forensic Toxicol 2017; 36:51-60. [PMID: 29367862 PMCID: PMC5754384 DOI: 10.1007/s11419-017-0378-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
Recently, carboxamide-type synthetic cannabinoids have been distributed globally as new psychoactive substances (NPS). Some of these compounds possess asymmetric carbon, which is derived from an amide moiety composed of amino acid derivatives (i.e., amides or esters of amino acids). In this study, we synthesized both enantiomers of synthetic cannabinoids, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(2-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA 2-fluorobenzyl isomer), N-(1-amino-1-oxo-3-phenylpropan-2-yl)-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide (APP-CHMINACA), ethyl [1-(5-fluoropentyl)-1H-indazole-3-carbonyl]valinate (5F-EMB-PINACA), ethyl [1-(4-fluorobenzyl)-1H-indazole-3-carbonyl]valinate (EMB-FUBINACA), and methyl 2-[1-(4-fluorobenzyl)-1H-indole-3-carboxamido]-3,3-dimethylbutanoate (MDMB-FUBICA), which were reported as NPS found in Europe from 2014 to 2015, to evaluate their activities as CB1/CB2 receptor agonists. With the exception of (R) MDMB-FUBICA, all of the tested enantiomers were assumed to be agonists of both CB1 and CB2 receptors, and the EC50 values of the (S)-enantiomers for the CB1 receptors were about five times lower than those of (R)-enantiomers. (R) MDMB-FUBICA was shown to function as an agonist of the CB2 receptor, but lacks CB1 receptor activity. To the best of our knowledge, this is the first report to show that the (R)-enantiomers of the carboxamide-type synthetic cannabinoids have the potency to activate CB1 and CB2 receptors. The findings presented here shed light on the pharmacological properties of these carboxamide-type synthetic cannabinoids in forensic cases.
Collapse
|
124
|
Abstract
The term "new psychoactive substances" (NPS) can be defined as individual drugs in pure form or in complex preparations that are not scheduled under the Single Convention on Narcotic Drugs (1961) or the Convention on Psychotropic Substances (1971). NPS may be categorized by chemical structure, by psychoactive properties, by biological targets, or by source (plant, synthetic, or combined). The emergence of hundreds of NPS in the past decade is challenging for public health and drug policies globally. The novelty of NPS, their ambiguous legal status, ability to evade toxicological tests, swift adaptation to legal restrictions, global Internet marketing, and scant public knowledge of their adverse effects are among the key drivers of this twenty-first century phenomenon. Multi-disciplinary research in areas of biology, epidemiology, prevention, and web analytics are needed to develop effective responses in a domain capable of overwhelming current international conventions and national drug control policies. Ultimately, research-guided prevention education will fortify societies against this tidal wave.
Collapse
Affiliation(s)
- Bertha K Madras
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA.
- Division of Alcohol and Drug Abuse, McLean Hospital, Oaks Building, Room 342, 115 Mill Street, Belmont, MA, 02478, USA.
| |
Collapse
|
125
|
Giannotti G, Canazza I, Caffino L, Bilel S, Ossato A, Fumagalli F, Marti M. The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotox Res 2017. [PMID: 28646469 DOI: 10.1007/s12640-017-9769-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the mid-to-late 2000s, synthetic cathinones have gained popularity among drug users due to their psychostimulant effects greater than those produced by cocaine and amphetamine. Among them, 3,4-methylenedioxypyrovalerone (MDPV) and 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PVP) are ones of the most popular cathinones available in the clandestine market as "bath salts" or "fertilizers." Pre-clinical studies indicate that MDPV and α-PVP induced psychomotor stimulation, affected thermoregulation, and promoted reinforcing properties in rodents. However, a direct comparative analysis on the effects caused by MDPV and α-PVP on the behavior and neuronal activation in rodents is still lacking. Behavioral analyses revealed that both MDPV and α-PVP affect spontaneous and stimulated motor responses. In particular, MDPV showed a greater psychomotor effect than α-PVP in line with its higher potency in blocking the dopamine transporter (DAT). Notably, MDPV was found to be more effective than α-PVP in facilitating spontaneous locomotion and it displayed a biphasic effect in contrast to the monophasically stimulated locomotion induced by α-PVP. In addition to the behavioral results, we also found a different modulation of immediate early genes (IEGs) such as Arc/Arg3.1 and c-Fos in the frontal lobe, striatum, and hippocampus, indicating that these drugs do impact brain homeostasis with changes in neuronal activity that depend on the drug, the brain area analyzed, and the timing after the injection. These results provide the first discrimination between MDPV and α-PVP based on behavioral and molecular data that may contribute to explain, at least in part, their toxicity.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy. .,Center for Neuroscience and Istituto Nazionale di Neuroscienze, Ferrara, Italy.
| |
Collapse
|
126
|
Luethi D, Liechti ME, Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 2017. [PMID: 28645576 DOI: 10.1016/j.tox.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are a new class of psychostimulant substances. Rarely, they can cause liver injury but associated mechanisms are not completely elucidated. In order to increase our knowledge about mechanisms of hepatotoxicity, we investigated the effect of five frequently used cathinones on two human cell lines. Bupropion was included as structurally related drug used therapeutically. In HepG2 cells, bupropion, MDPV, mephedrone and naphyrone depleted the cellular ATP content at lower concentrations (0.2-1mM) than cytotoxicity occurred (0.5-2mM), suggesting mitochondrial toxicity. In comparison, methedrone and methylone depleted the cellular ATP pool and induced cytotoxicity at similar concentrations (≥2mM). In HepaRG cells, cytotoxicity and ATP depletion could also be demonstrated, but cytochrome P450 induction did not increase the toxicity of the compounds investigated. The mitochondrial membrane potential was decreased in HepG2 cells by bupropion, MDPV and naphyrone, confirming mitochondrial toxicity. Bupropion, but not the other compounds, uncoupled oxidative phosphorylation. Bupropion, MDPV, mephedrone and naphyrone inhibited complex I and II of the electron transport chain, naphyrone also complex III. All four mitochondrial toxicants were associated with increased mitochondrial ROS and increased lactate production, which was accompanied by a decrease in the cellular total GSH pool for naphyrone and MDPV. In conclusion, bupropion, MDPV, mephedrone and naphyrone are mitochondrial toxicants impairing the function of the electron transport chain and depleting cellular ATP stores. Since liver injury is rare in users of these drugs, affected persons must have susceptibility factors rendering them more sensitive for these drugs.
Collapse
Affiliation(s)
- Dino Luethi
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland.
| |
Collapse
|
127
|
Abstract
An efficient and mild method for acyl-Csp3 bond formation based on the direct conversion of carboxylic acids has been established. This protocol is enabled by the synergistic, Ir-photoredox/nickel catalytic cross-coupling of in situ activated carboxylic acids and alkyltrifluoroborates. This versatile method is amenable to the cross-coupling of structurally diverse carboxylic acids with various potassium alkyltrifluoroborates, affording the corresponding ketones with high yields. In this operationally simple cross-coupling protocol, aliphatic ketones are obtained in one step from bench stable, readily available carboxylic acids.
Collapse
Affiliation(s)
- Javad Amani
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
128
|
Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicol In Vitro 2017; 45:60-71. [PMID: 28506818 DOI: 10.1016/j.tiv.2017.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/03/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters.
Collapse
|
129
|
Amani J, Alam R, Badir S, Molander GA. Synergistic Visible-Light Photoredox/Nickel-Catalyzed Synthesis of Aliphatic Ketones via N-C Cleavage of Imides. Org Lett 2017; 19:2426-2429. [PMID: 28445061 PMCID: PMC5423445 DOI: 10.1021/acs.orglett.7b00989] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/30/2022]
Abstract
An electrophilic, imide-based, visible-light-promoted photoredox/Ni-catalyzed cross-coupling reaction for the synthesis of aliphatic ketones has been developed. This protocol proceeds through N-C(O) bond activation, made possible through the lower activation energy for metal insertion into this bond due to delocalization of the lone pair of electrons on the nitrogen by electron-withdrawing groups. The operationally simple and mild cross-coupling reaction is performed at ambient temperature and exhibits tolerance for a variety of functional groups.
Collapse
Affiliation(s)
- Javad Amani
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauful Alam
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shorouk Badir
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
130
|
Nelson KH, Hempel BJ, Clasen MM, Rice KC, Riley AL. Conditioned taste avoidance, conditioned place preference and hyperthermia induced by the second generation 'bath salt' α-pyrrolidinopentiophenone (α-PVP). Pharmacol Biochem Behav 2017; 156:48-55. [PMID: 28427995 PMCID: PMC6155479 DOI: 10.1016/j.pbb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND α-Pyrrolidinopentiophenone (α-PVP) has been reported to be rewarding in a variety of pre-clinical models. Given that a number of drugs of abuse have both rewarding and aversive effects, the balance of which influences addiction potential, the present study examined the aversive properties of α-PVP by assessing its ability to induce taste avoidance. This assessment was made in a combined taste avoidance/place conditioning design that also allowed an evaluation of the relationship between α-PVP's aversive and rewarding effects. METHODS Male Sprague-Dawley rats were exposed to a novel saccharin solution, injected with one of four doses of α-PVP (0, 0.3, 1.0 and 3.0mg/kg) (IP) and placed on one side of a place conditioning apparatus. The next day, they were injected with vehicle, given access to water and placed on the other side. Following four conditioning cycles, saccharin avoidance and place preferences were then assessed. The effects of α-PVP on body temperature were also examined. RESULTS α-PVP induced dose-dependent taste avoidance as well as significant increases in time spent on the drug-paired side (although this effect was not dependent on dose). α-PVP also induced dose- and time-dependent hyperthermia. CONCLUSIONS α-PVP induced significant taste avoidance whose strength relative to the psychostimulants methylenedioxypyrovalerone (MDPV) and cocaine paralleled their relative binding to the dopamine transporter. Similar to other drugs of abuse, α-PVP has both aversive and rewarding effects. It will be important to assess how various experiential and subject variables impact these effects and their balance to predict abuse liability.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| |
Collapse
|
131
|
DeLarge AF, Erwin LL, Winsauer PJ. Atypical binding at dopamine and serotonin transporters contribute to the discriminative stimulus effects of mephedrone. Neuropharmacology 2017; 119:62-75. [PMID: 28396142 DOI: 10.1016/j.neuropharm.2017.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023]
Abstract
Mephedrone (4-methylmethcathinone), a constituent of the recreational substances known as "bath salts", is a synthetic cathinone that can produce auditory and visual hallucinations, as well as problematic cardiovascular effects. This study compared the discriminative stimulus effects of mephedrone (0.32-10 mg/kg) with other prototypical drugs of abuse: cocaine (0.56-32 mg/kg), d-amphetamine (0.18-3.2 mg/kg), ketamine (1.8-18 mg/kg), phencyclidine (PCP, 1-5.6 mg/kg), heroin (1-10 mg/kg), 2,5-dimethoxy-4-iodoamphetamine (R-DOI, 0.1-1 mg/kg), Δ9-tetrahydrocannabinol (Δ9-THC 0.56-5.6 mg/kg), 3,4-methylenedioxyamphetamine (MDA, 0.32-5.6 mg/kg), methylphenidate (1-10 mg/kg), and 3,4-methylenedioxypyrovalerone (MDPV, 0.56-5.6 mg/kg). The discriminative stimulus effects of mephedrone were also assessed after administration of the sigma receptor antagonist rimcazole (0.32-10 mg/kg), the relatively selective norepinephrine transporter (NET) inhibitor desipramine (1.8-18 mg/kg), and the selective serotonin transporter (SERT) inhibitor fluoxetine (1-18 mg/kg). Initially, rats were trained to discriminate an intraperitoneal injection of mephedrone (3.2 mg/kg) from saline under a fixed-ratio 20 schedule of food presentation. Following training, cumulative doses of mephedrone and the other drugs were administered to test for substitution (80% drug-lever responding). Of the drugs tested, including those that were tested in combination with mephedrone (i.e., rimcazole, desipramine, and fluoxetine), only cocaine fully substituted for mephedrone without substantially decreasing response rate. In addition, the three drugs administered in combination with mephedrone shifted the cumulative dose-effect curves leftward (percent drug-lever responding) and down (response rate), although fluoxetine did so in a dose-dependent manner ranging from antagonism to potentiation. In summary, the discriminative stimulus effects of mephedrone were most similar to those for the central nervous system (CNS) stimulant, cocaine, and SERT and DAT activity were necessary for these effects.
Collapse
Affiliation(s)
- Alyssa F DeLarge
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, USA.
| | - Laura L Erwin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, USA; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
132
|
Botanas CJ, Yoon SS, de la Peña JB, Dela Peña IJ, Kim M, Woo T, Seo JW, Jang CG, Park KT, Lee YH, Lee YS, Kim HJ, Cheong JH. The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent. Biomol Ther (Seoul) 2017; 25:122-129. [PMID: 28173643 PMCID: PMC5340536 DOI: 10.4062/biomolther.2016.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 11/05/2022] Open
Abstract
A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) α-piperidinopropiophenone (PIPP) and (2) α-piperidinopentiothiophenone (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.
Collapse
Affiliation(s)
- Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seong Shoon Yoon
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Taeseon Woo
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung-Tae Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Hun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
133
|
Beck O, Franzén L, Bäckberg M, Signell P, Helander A. Toxicity evaluation of α-pyrrolidinovalerophenone (α-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 2017; 54:568-75. [PMID: 27412885 DOI: 10.1080/15563650.2016.1190979] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT An increasing number of new psychoactive substances (NPS) of different chemical classes have become available through marketing and sale over the Internet. This report from the Swedish STRIDA project presents the prevalence, laboratory results, and clinical features in a series of intoxications involving the stimulant NPS α-pyrrolidinovalerophenone (α-PVP), a potent dopamine re-uptake inhibitor, over a 4-year period. STUDY DESIGN Observational case series of consecutive patients with admitted or suspected intake of NPS presenting to hospitals in Sweden from 2012 to 2015. PATIENTS AND METHODS In the STRIDA project, blood and urine samples are collected from intoxicated patients with admitted or suspected intake of NPS or unknown drugs presenting to hospitals over the country. Analysis of NPS is performed by mass spectrometry multicomponent methods. Clinical data are collected when caregivers consult the Swedish Poisons Information Centre (PIC), and retrieved from medical records. The severity of poisoning is graded retrospectively using the Poisoning Severity Score (PSS). The inclusion criteria for this study included absence of other stimulants than α-PVP. RESULTS During the 4-year study period, 23 intoxications were originally coded as "α-PVP related" out of a total 3743 NPS-related inquiries (0.6%) at the PIC. The present study covered 42 analytically confirmed cases in which α-PVP was the only stimulant detected. The age range of patients was 20-58 (median 32) years, of which 79% were males. The α-PVP concentration in serum was 4.0-606 (median 64; n = 42) ng/mL and 2.0-41,294 (median 1782; n = 25) ng/mL in urine. There was no statistically significant association between the serum α-PVP concentration and urinary α-PVP/creatinine ratio in 25 cases, where both sets of data were available. In 14/42 (33%) cases, α-PVP was the only psychoactive substance identified. In the remaining cases, additional substances comprised opioids, benzodiazepines, and ethanol. The main clinical manifestations were tachycardia (80%), agitation (70%), hypertension (33%), hallucinations (20%), and delirium (18%). Classification of poisoning severity yielded 25 (60%) moderate (PSS 2), 7 (17%) severe (PSS 3), and 2 fatal cases (PSS 4). CONCLUSIONS In analytically confirmed α-PVP intoxication cases involving no other stimulant drugs, the urine and serum concentrations showed high variability. The clinical features were consistent with a severe sympathomimetic toxidrome. The results further demonstrated that α-PVP prevailed as a drug of abuse after being classified as a narcotic substance, and despite a high incidence of severe poisonings and fatalities. However, the low prevalence of α-PVP cases registered at the PIC suggested that many were unaware of the actual substance they had taken.
Collapse
Affiliation(s)
- Olof Beck
- a Department of Laboratory Medicine , Karolinska Institutet , Stockholm , Sweden ;,b Department of Clinical Pharmacology , Karolinska University Laboratory , Stockholm , Sweden
| | - Lisa Franzén
- c Swedish Poisons Information Centre , Stockholm , Sweden
| | | | - Patrick Signell
- b Department of Clinical Pharmacology , Karolinska University Laboratory , Stockholm , Sweden
| | - Anders Helander
- a Department of Laboratory Medicine , Karolinska Institutet , Stockholm , Sweden ;,b Department of Clinical Pharmacology , Karolinska University Laboratory , Stockholm , Sweden
| |
Collapse
|
134
|
Behavioral evidence for the abuse potential of the novel synthetic cathinone alpha-pyrrolidinopentiothiophenone (PVT) in rodents. Psychopharmacology (Berl) 2017; 234:857-867. [PMID: 28070621 DOI: 10.1007/s00213-017-4526-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Synthetic cathinones are chemical derivatives of cathinone that are pharmacologically similar to cocaine and methamphetamine. Recently, abuse of synthetic cathinones among young people has increased. OBJECTIVES The present study aimed to characterize the behavioral effects of alpha-pyrrolidinopentiothiophenone (PVT), an analog of alpha-pyrrolidinovalerophenone and second-generation synthetic cathinone, as well as to evaluate its abuse potential, using conditioned place preference, intravenous self-administration (SA), and drug discrimination paradigms in rodent models. RESULTS Alpha-PVT produced a significant place preference in mice at doses of 10, 30, and 50 mg/kg. In the SA experiment, alpha-PVT (0.1, 0.3, and 1.0 mg/kg/infusion) produced an inverted U-shaped dose-effect curve in rats. Under a progressive ratio schedule of reinforcement, there appeared to be a positive relationship between alpha-PVT dose and the breakpoints for alpha-PVT reinforcement. Additionally, alpha-PVT fully substituted for the discriminative stimulus effects of both cocaine and methamphetamine in rats. CONCLUSIONS Our results indicate that alpha-PVT has rewarding and reinforcing effects and shares the interoceptive effects of cocaine and methamphetamine. To the best of our knowledge, the present study is the first to show that alpha-PVT has reinforcing properties when delivered on its own, which suggests possible abuse liability in humans.
Collapse
|
135
|
Grapp M, Kaufmann C, Ebbecke M. Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): Detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 2017; 273:1-9. [PMID: 28187296 DOI: 10.1016/j.forsciint.2017.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 02/03/2023]
Abstract
3,4-methylenedioxypyrovalerone (MDPV) is a synthetic cathinone belonging to the class of α-pyrrolidinophenones that become increasingly popular as a designer psychostimulant. Here, we report a comprehensive collection of MDPV exposure with quantitative serum level confirmation in Germany. During the years 2014-2016, we could proof consumption of MDPV in 23 cases where urine and blood samples were submitted to our laboratory by the police of Lower Saxony. Most of the samples underwent systematic toxicological analysis by gas chromatography-mass spectrometry (GC-MS), where MDPV could be detected in urine and/or serum samples. The determined concentrations of MDPV in serum showed a high variability, ranging from traces (<10ng/mL) up to 576ng/mL with a mean concentration of 118ng/mL and median of 47ng/mL. The majority of MDPV users were men (87%) and the age ranged from 23 to 49 years (mean 35.9, median 37 years). For most of the analytically confirmed MDPV cases we could prove co-consumption of other psychotropic drugs with frequent occurrence of opiates and cannabinoids in 22% of the cases, followed by benzodiazepines and cocaine in 17%. Analysis of urine samples by GC-MS disclosed the presence of MDPV and its metabolites 2'-oxo-MDPV, demethylenyl-MDPV, demethylenyl-methyl-MDPV, demethylenyl-oxo-MDPV, demethylenyl-methyl-oxo-MDPV and demethylenyl-methyl-N,N-bisdealkyl-MDPV. The metabolite pattern substantiates previous suggestions for principle metabolic pathways of MDPV in humans.
Collapse
Affiliation(s)
- Marcel Grapp
- Forensic Toxicological Laboratory, University Medical Center Göttingen, Georg-August-University, 37075 Göttingen, Germany.
| | - Christoph Kaufmann
- Forensic Toxicological Laboratory, University Medical Center Göttingen, Georg-August-University, 37075 Göttingen, Germany
| | - Martin Ebbecke
- GIZ-Nord Poisons Center, University Medical Center Göttingen, Georg-August-University, 37075 Göttingen, Germany
| |
Collapse
|
136
|
Ramakrishna I, Bhajammanavar V, Mallik S, Baidya M. Advanced Nitroso Aldol Reaction: Metal-Free Cross-Coupling of Anilines with Silyl Enol Ethers en Route to α-Amino Ketones. Org Lett 2017; 19:516-519. [DOI: 10.1021/acs.orglett.6b03686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
137
|
Abstract
Until recently, there was rather little interest in the structure-activity relationships (SARs) of cathinone analogs because so few agents were available and because they represented a relatively minor drug abuse problem. Most of the early SAR was formulated on the basis of behavioral (e.g., locomotor and drug discrimination) studies using rodents. With the emergence on the clandestine market in the last few years of a large number of new cathinone analogs, termed "synthetic cathinones", and the realization that they likely act at dopamine, norepinephrine, and/or serotonin transporters as releasing agents (i.e., as substrates) or reuptake inhibitors (i.e., as transport blockers), it has now become possible to better examine their SAR and even their quantitative SAR (QSAR), in a more effective and systematic manner. An SAR picture is beginning to emerge, and key structural features, such as the nature of the terminal amine, the size of the α-substituent, stereochemistry, and the presence and position of aromatic substituents, are being found to impact action (i.e., as releasing agents or reuptake inhibitors) and transporter selectivity.
Collapse
Affiliation(s)
- Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Małgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
138
|
Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, Huestis MA. Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs. Curr Top Behav Neurosci 2017; 32:93-117. [PMID: 27830575 PMCID: PMC5392131 DOI: 10.1007/7854_2016_53] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a psychoactive component of so-called bath salts products that has caused serious medical consequences in humans. In this chapter, we review the neuropharmacology of MDPV and related analogs, and supplement the discussion with new results from our preclinical experiments. MDPV acts as a potent uptake inhibitor at plasma membrane transporters for dopamine (DAT) and norepinephrine (NET) in nervous tissue. The MDPV formulation in bath salts is a racemic mixture, and the S isomer is much more potent than the R isomer at blocking DAT and producing abuse-related effects. Elevations in brain extracellular dopamine produced by MDPV are likely to underlie its locomotor stimulant and addictive properties. MDPV displays rapid pharmacokinetics when injected into rats (0.5-2.0 mg/kg), with peak plasma concentrations achieved by 10-20 min and declining quickly thereafter. MDPV is metabolized to 3,4-dihydroxypyrovalerone (3,4-catechol-PV) and 4-hydroxy-3-methoxypyrovalerone (4-OH-3-MeO-PV) in vivo, but motor activation produced by the drug is positively correlated with plasma concentrations of parent drug and not its metabolites. 3,4-Catechol-PV is a potent uptake blocker at DAT in vitro but has little activity after administration in vivo. 4-OH-3-MeO-PV is the main MDPV metabolite but is weak at DAT and NET. MDPV analogs, such as α-pyrrolidinovalerophenone (α-PVP), display similar ability to inhibit DAT and increase extracellular dopamine concentrations. Taken together, these findings demonstrate that MDPV and its analogs represent a unique class of transporter inhibitors with a high propensity for abuse and addiction.
Collapse
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| | - Mohammad O Bukhari
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Kurt R Lehner
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Sebastien Anizan
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Marta Concheiro
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
139
|
Martinez-Erro S, Bermejo Gómez A, Vázquez-Romero A, Erbing E, Martín-Matute B. 2,2-Diiododimedone: a mild electrophilic iodinating agent for the selective synthesis of α-iodoketones from allylic alcohols. Chem Commun (Camb) 2017; 53:9842-9845. [DOI: 10.1039/c7cc04823h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In combination with an iridium catalyst, a new electrophilic iodinating agent enables the synthesis of α-iodocarbonyls from allylic alcohols.
Collapse
Affiliation(s)
- Samuel Martinez-Erro
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Antonio Bermejo Gómez
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Ana Vázquez-Romero
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Elis Erbing
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
140
|
Schifano F, Orsolini L, Papanti D, Corkery J. NPS: Medical Consequences Associated with Their Intake. Curr Top Behav Neurosci 2017; 32:351-380. [PMID: 27272067 DOI: 10.1007/7854_2016_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decade, the 'traditional' drug scene has been supplemented - but not replaced - by the emergence of a range of novel psychoactive substances (NPS), which are either newly created or existing drugs, including medications, now being used in novel ways. By the end of 2014, in excess of 500 NPS had been reported by a large number of countries in the world. Most recent data show, however, that synthetic cathinones, synthetic cannabinoids, and psychedelics/phenethylamines account for the largest number of NPS.The present chapter aims at providing an overview of the clinical and pharmacological issues relating to these most popular NPS categories. Given the vast range of medical and psychopathological issues associated with the molecules here described, it is crucial for health professionals to be aware of the effects and toxicity of NPS. A general overview of the acute management of NPS adverse events is provided as well, although further studies are required to identify a range of evidence-based, index molecule-focused, treatment strategies. The rapid pace of change in the NPS online market constitutes a major challenge to the provision of current and reliable scientific knowledge on these substances.
Collapse
Affiliation(s)
- Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, Herts, AL10 9AB, UK.
| | - Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, Herts, AL10 9AB, UK
| | - Duccio Papanti
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, Herts, AL10 9AB, UK
| | - John Corkery
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, Herts, AL10 9AB, UK
| |
Collapse
|
141
|
Xu S, Wu P, Zhang W. 1,3-Dibromo-5,5-dimethylhydantoin (DBH) mediated one-pot syntheses of α-bromo/amino ketones from alkenes in water. Org Biomol Chem 2016; 14:11389-11395. [PMID: 27858035 DOI: 10.1039/c6ob02200f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-Bromo ketones are versatile intermediates of high practical utility. Traditional approaches to these compounds are restricted to a relatively hazardous/complex reagent combination, a long reaction time, the use of non-environmentally friendly solvents, or a limited substrate scope. Herein, we describe the development of a new methodology for the preparation of α-bromo ketones from alkenes using 1,3-dibromo-5,5-dimethylhydantoin (DBH) as a bromine source and an oxidant simultaneously. This easy to carry out two-step one-pot protocol proceeds in water and provides high yield of a great variety of α-bromo ketones. Addition of an amine to the intermediate α-bromo ketone further enables the preparation of α-amino ketones in a one-pot sequence.
Collapse
Affiliation(s)
- Senhan Xu
- School of Pharmacy, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
142
|
Shiomi N, Yamamoto K, Nagasaki K, Hatanaka T, Funahashi Y, Nakamura S. Enantioselective Oxidative Ring-Opening Reaction of Aziridines with α-Nitroesters Using Cinchona Alkaloid Amide/Nickel(II) Catalysts. Org Lett 2016; 19:74-77. [DOI: 10.1021/acs.orglett.6b03346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noriyuki Shiomi
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Frontier
Research Institute for Material Science, Nagoya Institute of Technology, Gokiso,
Showa-ku, Nagoya 466-8555, Japan
| | - Keisuke Yamamoto
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuma Nagasaki
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsubasa Hatanaka
- Department
of Chemistry, Graduate School of Science, Osaka University 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Funahashi
- Department
of Chemistry, Graduate School of Science, Osaka University 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Nakamura
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Frontier
Research Institute for Material Science, Nagoya Institute of Technology, Gokiso,
Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
143
|
Tyrkkö E, Andersson M, Kronstrand R. The Toxicology of New Psychoactive Substances: Synthetic Cathinones and Phenylethylamines. Ther Drug Monit 2016; 38:190-216. [PMID: 26587869 DOI: 10.1097/ftd.0000000000000263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND New psychoactive substances (NPSs) are substitutes for classical drugs of abuse and there are now compounds available from all groups of classical drugs of abuse. During 2014, the number of synthetic cathinones increased dramatically and, together with phenylethylamines, they dominate the NPS markets in the European Union. In total, 31 cathinones and 9 phenylethylamines were encountered in 2014. The aim of this article was to summarize the existing knowledge about the basic pharmacology, metabolism, and human toxicology of relevant synthetic cathinones and phenylethylamines. Compared with existing reviews, we have also compiled the existing case reports from both fatal and nonfatal intoxications. METHODS We performed a comprehensive literature search using bibliographic databases PubMed and Web of Science, complemented with Google Scholar. The focus of the literature search was on original articles, case reports, and previously published review articles published in 2014 or earlier. RESULTS The rapid increase of NPSs is a growing concern and sets new challenges not only for societies in drug prevention and legislation but also in clinical and forensic toxicology. In vivo and in vitro studies have demonstrated that the pharmacodynamic profile of cathinones is similar to that of other psychomotor stimulants. Metabolism studies show that cathinones and phenylethylamines are extensively metabolized; however, the parent compound is usually detectable in human urine. In vitro studies have shown that many cathinones and phenylethylamines are metabolized by CYP2D6 enzymes. This indicates that these drugs may have many possible drug-drug interactions and that genetic polymorphism may influence their toxicity. However, the clinical and toxicological relevance of CYP2D6 in adverse effects of cathinones and phenylethylamines is questionable, because these compounds are metabolized by other enzymes as well. The toxidromes commonly encountered after ingestion of cathinones and phenylethylamines are mainly of sympathomimetic and hallucinogenic character with a risk of excited delirium and life-threatening cardiovascular effects. CONCLUSIONS The acute and chronic toxicity of many NPSs is unknown or very sparsely investigated. There is a need for evidence-based-treatment recommendations for acute intoxications and a demand for new strategies to analyze these compounds in clinical and forensic cases.
Collapse
Affiliation(s)
- Elli Tyrkkö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | | | | |
Collapse
|
144
|
Liang S, Zeng CC, Tian HY, Sun BG, Luo XG, Ren FZ. Electrochemically Oxidative α-C–H Functionalization of Ketones: A Cascade Synthesis of α-Amino Ketones Mediated by NH4I. J Org Chem 2016; 81:11565-11573. [DOI: 10.1021/acs.joc.6b01595] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sen Liang
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, School
of Food and Chemical Engineering, Beijing Technology and Business University, Beijing100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Cheng-Chu Zeng
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, School
of Food and Chemical Engineering, Beijing Technology and Business University, Beijing100048, China
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing100124, China
| | - Hong-Yu Tian
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, School
of Food and Chemical Engineering, Beijing Technology and Business University, Beijing100048, China
| | - Bao-Guo Sun
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, School
of Food and Chemical Engineering, Beijing Technology and Business University, Beijing100048, China
| | - Xu-Gang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Fa-zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing100083, China
| |
Collapse
|
145
|
Schindler CW, Thorndike EB, Suzuki M, Rice KC, Baumann MH. Pharmacological mechanisms underlying the cardiovascular effects of the "bath salt" constituent 3,4-methylenedioxypyrovalerone (MDPV). Br J Pharmacol 2016; 173:3492-3501. [PMID: 27714779 DOI: 10.1111/bph.13640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE 3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with stimulatory cardiovascular effects that can lead to serious medical complications. Here, we examined the pharmacological mechanisms underlying these cardiovascular actions of MDPV in conscious rats. EXPERIMENTAL APPROACH Male Sprague-Dawley rats had telemetry transmitters surgically implanted for the measurement of BP and heart rate (HR). On test days, rats were placed individually in standard isolation cubicles. Following drug treatment, cardiovascular parameters were monitored for 3 h sessions. KEY RESULTS Racemic MDPV (0.3-3.0 mg·kg-1 ) increased BP and HR in a dose-dependent manner. The S(+) enantiomer (0.3-3.0 mg·kg-1 ) of MDPV produced similar effects, while the R(-) enantiomer (0.3-3.0 mg·kg-1 ) had no effects. Neither of the hydroxylated phase I metabolites of MDPV altered cardiovascular parameters significantly from baseline. Pretreatment with the ganglionic blocker chlorisondamine (1 and 3 mg·kg-1 ) antagonized the increases in BP and HR produced by 1 mg·kg-1 MDPV. The α1 -adrenoceptor antagonist prazosin (0.3 mg·kg-1 ) attenuated the increase in BP following MDPV, while the β-adrenoceptor antagonists propranolol (1 mg·kg-1 ) and atenolol (1 and 3 mg·kg-1 ) attenuated the HR increases. CONCLUSIONS AND IMPLICATIONS The S(+) enantiomer appeared to mediate the cardiovascular effects of MDPV, while the metabolites of MDPV did not alter BP or HR significantly; MDPV increased BP and HR through activation of central sympathetic outflow. Mixed-action α/β-adrenoceptor antagonists may be useful as treatments in counteracting the adverse cardiovascular effects of MDPV.
Collapse
Affiliation(s)
- Charles W Schindler
- Preclinical Pharmacology Section, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD
| | - Eric B Thorndike
- Preclinical Pharmacology Section, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD
| | - Masaki Suzuki
- Drug Design and Synthesis Section, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD
| | - Michael H Baumann
- Designer Drug Research Unit, National Institutes of Health, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD
| |
Collapse
|
146
|
Doi T, Asada A, Takeda A, Tagami T, Katagi M, Kamata H, Sawabe Y. Enantioseparation of the carboxamide-type synthetic cannabinoids N -(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1 H -indazole-3-carboxamide and methyl [1-(5-fluoropentyl)-1 H -indazole-3-carbonyl]-valinate in illicit herbal products. J Chromatogr A 2016; 1473:83-89. [DOI: 10.1016/j.chroma.2016.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/07/2016] [Accepted: 10/19/2016] [Indexed: 11/26/2022]
|
147
|
Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Swanson T, Johnson RA, Janowsky A. Structure-Activity Relationships of Substituted Cathinones, with Transporter Binding, Uptake, and Release. J Pharmacol Exp Ther 2016; 360:33-47. [PMID: 27799294 DOI: 10.1124/jpet.116.236349] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Synthetic cathinones are components of "bath salts" and have physical and psychologic side effects, including hypertension, paranoia, and hallucinations. Here, we report interactions of 20 "bath salt" components with human dopamine, serotonin, and norepinephrine transporters [human dopamine transporter (hDAT), human serotonin transporter (hSERT), and human norepinephrine transporter (hNET), respectively] heterologously expressed in human embryonic kidney 293 cells. Transporter inhibitors had nanomolar to micromolar affinities (Ki values) at radioligand binding sites, with relative affinities of hDAT>hNET>hSERT for α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinobutiophenone, α-pyrrolidinohexiophenone, 1-phenyl-2-(1-pyrrolidinyl)-1-heptanone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, 3,4-methylenedioxy-α-pyrrolidinobutiophenone, 4-methyl-α-pyrrolidinopropiophenone, α-pyrrolidinovalerophenone, 4-methoxy-α-pyrrolidinovalerophenone, α-pyrrolidinopentiothiophenone (alpha-PVT), and α-methylaminovalerophenone, and hDAT>hSERT>hNET for methylenedioxypentedrone. Increasing the α-carbon chain length increased the affinity and potency of the α-pyrrolidinophenones. Uptake inhibitors had relative potencies of hDAT>hNET>hSERT except α-PPP and α-PVT, which had highest potencies at hNET. They did not induce [3H]neurotransmitter release. Substrates can enter presynaptic neurons via transporters, and the substrates methamphetamine and 3,4-methylenedioxymethylamphetamine are neurotoxic. We determined that 3-fluoro-, 4-bromo-, 4-chloro-methcathinone, and 4-fluoroamphetamine were substrates at all three transporters; 5,6-methylenedioxy-2-aminoindane (MDAI) and 4-methylethcathinone (4-MEC) were substrates primarily at hSERT and hNET; and 3,4-methylenedioxy-N-ethylcathinone (ethylone) and 5-methoxy-methylone were substrates only at hSERT and induced [3H]neurotransmitter release. Significant correlations between potencies for inhibition of uptake and for inducing release were observed for these and additional substrates. The excellent correlation of efficacy at stimulating release versus Ki/IC50 ratios suggested thresholds of binding/uptake ratios above which compounds were likely to be substrates. Based on their potencies at hDAT, most of these compounds have potential for abuse and addiction. 4-Bromomethcathinone, 4-MEC, 5-methoxy-methylone, ethylone, and MDAI, which have higher potencies at hSERT than hDAT, may have empathogen psychoactivity.
Collapse
Affiliation(s)
- Amy J Eshleman
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Katherine M Wolfrum
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - John F Reed
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Sunyoung O Kim
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Tracy Swanson
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Robert A Johnson
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Aaron Janowsky
- Research Service, Portland VA Health Care System (A.J.E., K.M.W., J.F.R., S.O.K., T.S., R.A.J., A.J.), Departments of Psychiatry and Behavioral Neuroscience (A.J.E., A.J.), and Methamphetamine Abuse Research Center (T.S., A.J.), Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
148
|
Zdrazil B, Hellsberg E, Viereck M, Ecker GF. From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter. MEDCHEMCOMM 2016; 7:1819-1831. [PMID: 27891211 PMCID: PMC5100691 DOI: 10.1039/c6md00207b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022]
Abstract
Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to do if no appropriate in-house data set is available. However, combining integrated open data sources (such as the Open PHACTS Discovery Platform) with workflow tools now offers the possibility of querying across multiple domains and tailoring the search to the given research question. Starting from two phylogenetically related protein targets of interest (the human serotonin and dopamine transporters), the whole chemical compound space was explored by implementing a scaffold-based clustering of compounds possessing biological measurements for both targets. In addition, potential hERG blocking liabilities were included. The workflow allowed studying the selectivity trends of scaffold series, identifying potentially harmful compound series, and performing SAR, docking studies and molecular dynamics (MD) simulations for a consistent data set of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity over hSERT. With respect to the scaffold-based analyses it should be noted that the cathinone data set could be retrieved only when Murcko scaffold analyses were combined with similarity searches such as a common substructure search.
Collapse
Affiliation(s)
- Barbara Zdrazil
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Eva Hellsberg
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Michael Viereck
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| |
Collapse
|
149
|
Dissociable effects of the prodrug phendimetrazine and its metabolite phenmetrazine at dopamine transporters. Sci Rep 2016; 6:31385. [PMID: 27514281 PMCID: PMC4981850 DOI: 10.1038/srep31385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022] Open
Abstract
Phendimetrazine (PDM) is a clinically available anorectic and a candidate pharmacotherapy for cocaine addiction. PDM has been hypothesized to function as a prodrug that requires metabolism to the amphetamine-like monoamine transporter substrate phenmetrazine (PM) to produce its pharmacological effects; however, whether PDM functions as an inactive prodrug or has pharmacological activity on its own remains unclear. The study aim was to determine PDM pharmacological mechanisms using electrophysiological, neurochemical, and behavioral procedures. PDM blocked the endogenous basal hDAT (human dopamine transporter) current in voltage-clamped (−60 mV) oocytes consistent with a DAT inhibitor profile, whereas its metabolite PM induced an inward hDAT current consistent with a DAT substrate profile. PDM also attenuated the PM-induced inward current during co-application, providing further evidence that PDM functions as a DAT inhibitor. PDM increased nucleus accumbens dopamine levels and facilitated electrical brain stimulation reinforcement within 10 min in rats, providing in vivo evidence supporting PDM pharmacological activity. These results demonstrate that PDM functions as a DAT inhibitor that may also interact with the pharmacological effects of its metabolite PM. Overall, these results suggest a novel mechanism for PDM therapeutic effects via initial PDM DAT inhibition followed by PM DAT substrate-induced dopamine release.
Collapse
|
150
|
Kumar A, Battini N, Kumar RR, Athimoolam S, Ahmed QN. Air-Assisted 2-Oxo-Driven Dehydrogenative α,α-Diamination of 2-Oxo Aldehydes to 2-Oxo Acetamidines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| | - Narsaiah Battini
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai India
| | - S. Athimoolam
- Department of Physics; University College of Engineering Nagercoil; Anna University; 629004 Nagercoil India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| |
Collapse
|