101
|
Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2016; 35:150-167. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 02/09/2023]
Abstract
The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.
Collapse
Affiliation(s)
- Jacqueline Kai Chin Chuah
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
102
|
Hosoya M, Czysz K. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery. Cells 2016; 5:cells5040046. [PMID: 28009813 PMCID: PMC5187530 DOI: 10.3390/cells5040046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Masaki Hosoya
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katherine Czysz
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
103
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
104
|
Hosohata K. Role of Oxidative Stress in Drug-Induced Kidney Injury. Int J Mol Sci 2016; 17:ijms17111826. [PMID: 27809280 PMCID: PMC5133827 DOI: 10.3390/ijms17111826] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023] Open
Abstract
The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Reseearch Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
105
|
Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Sci Rep 2016; 6:34845. [PMID: 27725720 PMCID: PMC5057112 DOI: 10.1038/srep34845] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023] Open
Abstract
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.
Collapse
Affiliation(s)
- Kimberly A. Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - David B. Kolesky
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark A. Skylar-Scott
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jessica Herrmann
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Humphrey Obuobi
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Annie Moisan
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Jennifer A. Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
106
|
Shah H, Patel M, Shrivastava N. Gene expression study of phase I and II metabolizing enzymes in RPTEC/TERT1 cell line: application in in vitro nephrotoxicity prediction. Xenobiotica 2016; 47:837-843. [PMID: 27616666 DOI: 10.1080/00498254.2016.1236299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The phase I and II metabolizing enzymes of kidneys play an important role in the metabolism of xenobiotic as well as endogenous compounds and proximal tubules of kidney constitute high concentration of these metabolizing enzymes compared with the other parts. 2. It has been shown previously that differential enzyme expression among human and rodent/non-rodent species can be a roadblock in drug discovery and development process. Currently, proximal tubule cell lines of human origin such as RPTEC/TERT1 and HK-2 are used to understand the pathophysiology of kidney diseases, therapeutic efficacy of drugs, and nephrotoxicity of compounds. 3. The purpose of the present study is to understand the metabolic enzymes present in RPTEC/TERT1 and HK-2 cell lines that would help to interpret and predict probable in vitro behavior of the molecule being tested. 4. We analyzed the expression of phase I and II metabolizing enzymes of RPTEC/TERT1 and HK-2 cell lines. We found equal expression of CYP1B1, 2J2, 3A4, 3A5, UGT1A9, SULT2A1 and GSTA, higher expression of 2B6, 2D6, 4A11, 4F2, 4F8, 4F11, UGT2B7, SULT1E1 in RPTEC/TERT1 and absence of GSTT in RPTEC/TERT1 compared to HK-2 at mRNA level. Such differences can affect the outcome of in vitro nephrotoxicity prediction.
Collapse
Affiliation(s)
- Heta Shah
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Manish Patel
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Neeta Shrivastava
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and.,b Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Center , Ahmedabad , Gujarat , India
| |
Collapse
|
107
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
108
|
|
109
|
In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron 2016; 86:697-705. [PMID: 27474967 DOI: 10.1016/j.bios.2016.07.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
The use of organ-on-a-chip (OOC) platforms enables improved simulation of the human kidney's response to nephrotoxic drugs. The standard method of analyzing nephrotoxicity from existing OOC has majorly consisted of invasively collecting samples (cells, lysates, media, etc.) from an OOC. Such disruptive analyses potentiate contamination, disrupt the replicated in vivo environment, and require expertize to execute. Moreover, traditional analyses, including immunofluorescence microscopy, immunoblot, and microplate immunoassay are essentially not in situ and require substantial time, resources, and costs. In the present work, the incorporation of fluorescence nanoparticle immunocapture/immunoagglutination assay into an OOC enabled dual-mode monitoring of drug-induced nephrotoxicity in situ. A smartphone-based fluorescence microscope was fabricated as a handheld in situ monitoring device attached to an OOC. Both the presence of γ-glutamyl transpeptidase (GGT) on the apical brush-border membrane of 786-O proximal tubule cells within the OOC surface, and the release of GGT to the outflow of the OOC were evaluated with the fluorescence scatter detection of captured and immunoagglutinated anti-GGT conjugated nanoparticles. This dual-mode assay method provides a novel groundbreaking tool to enable the internal and external in situ monitoring of the OOC, which may be integrated into any existing OOCs to facilitate their subsequent analyses.
Collapse
|
110
|
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2253-82. [PMID: 26901595 DOI: 10.1002/smll.201503208] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Indexed: 05/20/2023]
Abstract
"Organ-on-a-chip" systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell-cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ-level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ-on-a-chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof-of-concept studies are also be highlighted.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
111
|
Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, Humphreys BD, Koyner JL, Liu KD, Mour G, Nolin TD, Bihorac A. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am J Kidney Dis 2016; 68:19-28. [PMID: 26948834 DOI: 10.1053/j.ajkd.2015.12.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/26/2015] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a serious complication, commonly occurring in the critically ill population, with devastating short- and long-term consequences. Despite standardization of the definition and staging of AKI, early recognition remains challenging given that serum creatinine level is a marker, albeit imperfect, of kidney function and not kidney injury. Furthermore, the delay in increase in serum creatinine level after loss of glomerular filtration also prevents timely detection of decreased kidney function in patients with AKI. During the past decade, numerous clinical investigations have evaluated the utility of several biomarkers in the early diagnosis and risk stratification of AKI. In 2014, the US Food and Drug Administration approved the marketing of a test based on the combination of urine concentrations of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 ([TIMP-2] × [IGFBP7]) to determine whether certain critically ill patients are at risk for developing moderate to severe AKI. The optimal role of this biomarker in the diagnosis, management, and prognosis of AKI in different clinical settings requires further clarification. In this perspective, we summarize the biological actions of these 2 cell-cycle arrest biomarkers and present important considerations regarding the clinical application, interpretation, and limitations of this novel test for the early detection of AKI.
Collapse
Affiliation(s)
- Anitha Vijayan
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO.
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver VA Medical Center, Denver, CO
| | - David J Askenazi
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL
| | | | - William H Fissell
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Michael Heung
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Benjamin D Humphreys
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Kathleen D Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Anesthesia, University of California, San Francisco, San Francisco, CA
| | - Girish Mour
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL; Department of Anesthesiology, University of Florida, Gainesville, FL; Department of Surgery, University of Florida, Gainesville, FL
| | | |
Collapse
|
112
|
Nieskens TTG, Peters JGP, Schreurs MJ, Smits N, Woestenenk R, Jansen K, van der Made TK, Röring M, Hilgendorf C, Wilmer MJ, Masereeuw R. A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity. AAPS JOURNAL 2016; 18:465-75. [PMID: 26821801 PMCID: PMC4779111 DOI: 10.1208/s12248-016-9871-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a more complete human cell model suitable for screening of drug-related interactions and nephrotoxicity. In addition to endogenously expressed renal organic cation transporters and efflux transporters, conditionally immortalized proximal tubule epithelial cells (ciPTEC) were completed by transduction of cells with the organic anion transporter (OAT) 1 or OAT3. Fluorescence-activated cell sorting upon exposure to the OAT substrate fluorescein successfully enriched transduced cells. A panel of organic anions was screened for drug-interactions in ciPTEC-OAT1 and ciPTEC-OAT3. The cytotoxic response to the drug-interactions with antivirals was further examined by cell viability assays. Upon subcloning, concentration-dependent fluorescein uptake was found with a higher affinity for ciPTEC-OAT1 (Km = 0.8 ± 0.1 μM) than ciPTEC-OAT3 (Km = 3.7 ± 0.5 μM). Co-exposure to known OAT1 and/or OAT3 substrates (viz. para-aminohippurate, estrone sulfate, probenecid, furosemide, diclofenac, and cimetidine) in cultures spanning 29 passage numbers revealed relevant inhibitory potencies, confirming the robustness of our model for drug-drug interactions studies. Functional OAT1 was directly responsible for cytotoxicity of adefovir, cidofovir, and tenofovir, while a drug interaction with zidovudine was not associated with decreased cell viability. Our data demonstrate that human-derived ciPTEC-OAT1 and ciPTEC-OAT3 are promising platforms for highly predictive drug screening during early phases of drug development.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Janny G P Peters
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Marieke J Schreurs
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Niels Smits
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Katja Jansen
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Thom K van der Made
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Melanie Röring
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Constanze Hilgendorf
- Innovative Medicines, Drug Safety and Metabolism, AstraZeneca R&D, Mölndal, Sweden
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands. .,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University medical centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands.,Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
113
|
Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-Chip Technology for Drug-Induced Nephrotoxicity Screening. Trends Biotechnol 2015; 34:156-170. [PMID: 26708346 DOI: 10.1016/j.tibtech.2015.11.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Improved model systems to predict drug efficacy, interactions, and drug-induced kidney injury (DIKI) are crucially needed in drug development. Organ-on-a-chip technology is a suitable in vitro system because it reproduces the 3D microenvironment. A kidney-on-a-chip can mimic the structural, mechanical, transport, absorptive, and physiological properties of the human kidney. In this review we address the application of state-of-the-art microfluidic culturing techniques, with a focus on culturing kidney proximal tubules, that are promising for the detection of biomarkers that predict drug interactions and DIKI. We also discuss high-throughput screening and the challenges for in vitro to in vivo extrapolation (IVIVE) that will need to be overcome for successful implementation.
Collapse
Affiliation(s)
- Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboudumc, PO Box 9101, Nijmegen, HB 6500 The Netherlands.
| | - Chee Ping Ng
- MIMETAS BV, JH Oortweg 19, Leiden, CH, 2333 The Netherlands
| | | | - Paul Vulto
- MIMETAS BV, JH Oortweg 19, Leiden, CH, 2333 The Netherlands
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, CG 3584 The Netherlands
| |
Collapse
|
114
|
High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures. Arch Toxicol 2015; 90:2793-2808. [PMID: 26612367 PMCID: PMC5065616 DOI: 10.1007/s00204-015-1638-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
The kidney is a major target for xenobiotics, which include drugs, industrial chemicals, environmental toxicants and other compounds. Accurate methods for screening large numbers of potentially nephrotoxic xenobiotics with diverse chemical structures are currently not available. Here, we describe an approach for nephrotoxicity prediction that combines high-throughput imaging of cultured human renal proximal tubular cells (PTCs), quantitative phenotypic profiling, and machine learning methods. We automatically quantified 129 image-based phenotypic features, and identified chromatin and cytoskeletal features that can predict the human in vivo PTC toxicity of 44 reference compounds with ~82 % (primary PTCs) or 89 % (immortalized PTCs) test balanced accuracies. Surprisingly, our results also revealed that a DNA damage response is commonly induced by different PTC toxicants that have diverse chemical structures and injury mechanisms. Together, our results show that human nephrotoxicity can be predicted with high efficiency and accuracy by combining cell-based and computational methods that are suitable for automation.
Collapse
|
115
|
Mollet BB, Bogaerts ILJ, van Almen GC, Dankers PYW. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system. J Tissue Eng Regen Med 2015; 11:1820-1834. [PMID: 28586546 DOI: 10.1002/term.2080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Björne B Mollet
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | - Iven L J Bogaerts
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | - Geert C van Almen
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Recent studies on the directed differentiation of human pluripotent stem cells report tissue self-organization in vitro such that multiple component cell types arise in concert and arrange with respect to each, thereby recapitulating the morphogenetic events typical for that organ. Such self-organization has generated pituitary, optic cup, liver, brain, intestine, stomach and now kidney. Here, we will describe the cell types present within the self-organizing kidney, how these signal to each other to form a kidney organoid and the potential applications of kidney organoids. RECENT FINDINGS Protocols for the directed differentiation of human pluripotent cells focus on recapitulating the developmental steps required during embryogenesis. In the case of the kidney, this has involved mesodermal differentiation through posterior primitive streak and intermediate mesoderm. Recent studies have observed the simultaneous formation of both ureteric epithelium and nephron progenitors in vitro. These component cell types signal to each other to initiate nephron formation as would occur during development. SUMMARY The generation of kidney organoids is a major advance in nephrology. Such organoids may be useful for disease modelling and drug screening. Ultimately, our capacity to generate organoids may extend to the development of tissues for transplantation.
Collapse
|
117
|
Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 2015. [PMID: 26212763 PMCID: PMC4515747 DOI: 10.1038/srep12337] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The renal proximal tubule is a main target for drug-induced toxicity. The prediction of proximal tubular toxicity during drug development remains difficult. Any in vitro methods based on induced pluripotent stem cell-derived renal cells had not been developed, so far. Here, we developed a rapid 1-step protocol for the differentiation of human induced pluripotent stem cells (hiPSC) into proximal tubular-like cells. These proximal tubular-like cells had a purity of >90% after 8 days of differentiation and could be directly applied for compound screening. The nephrotoxicity prediction performance of the cells was determined by evaluating their responses to 30 compounds. The results were automatically determined using a machine learning algorithm called random forest. In this way, proximal tubular toxicity in humans could be predicted with 99.8% training accuracy and 87.0% test accuracy. Further, we studied the underlying mechanisms of injury and drug-induced cellular pathways in these hiPSC-derived renal cells, and the results were in agreement with human and animal data. Our methods will enable the development of personalized or disease-specific hiPSC-based renal in vitro models for compound screening and nephrotoxicity prediction.
Collapse
|
118
|
Faught LN, Greff MJE, Rieder MJ, Koren G. Drug-induced acute kidney injury in children. Br J Clin Pharmacol 2015; 80:901-9. [PMID: 25395343 DOI: 10.1111/bcp.12554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/12/2014] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious problem occurring in anywhere between 8 and 30% of children in the intensive care unit. Up to 25% of these cases are believed to be the result of pharmacotherapy. In this review we have focused on several relevant drugs and/or drug classes, which are known to cause AKI in children, including cancer chemotherapeutics, non-steroidal anti-inflammatory drugs and antimicrobials. AKI demonstrates a steady association with increased long term risk of poor outcomes including chronic kidney disease and death as determined by the extent of injury. For this reason it is important to understand the causality and implications of these drugs and drug classes. Children occupy a unique patient population, advocating the importance of understanding how they are affected dissimilarly compared with adults. While the kidney itself is likely more susceptible to injury than other organs, the inherent toxicity of these drugs also plays a major role in the resulting AKI. Mechanisms involved in the toxicity of these drugs include oxidative damage, hypersensitivity reactions, altered haemodynamics and tubule obstruction and may affect the glomerulus and/or the tubules. Understanding these mechanisms is critical in determining the most effective strategies for treatment and/or prevention, whether these strategies are less toxic versions of the same drugs or add-on agents to mitigate the toxic effect of the existing therapy.
Collapse
Affiliation(s)
- Lauren N Faught
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Michael J Rieder
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Pediatrics, Western University, London, Ontario, Canada.,CIHR-GSK Chair in Paediatric Clinical Pharmacology, Children's Hospital of Western Ontario, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada
| | - Gideon Koren
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pediatrics, Western University, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
119
|
Current research on experimental and applied animal sciences. Arch Toxicol 2015; 89:1149-50. [PMID: 26003615 DOI: 10.1007/s00204-015-1534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
120
|
Tortorici MA, Cutler DL, Hazra A, Nolin TD, Rowland-Yeo K, Venkatakrishnan K. Emerging areas of research in the assessment of pharmacokinetics in patients with chronic kidney disease. J Clin Pharmacol 2015; 55:241-50. [PMID: 25501531 DOI: 10.1002/jcph.444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) has been shown to alter the pharmacokinetics of drugs that are eliminated not only via the renal pathway but also by nonrenal clearance and transport. Dosing recommendations in subjects with CKD have historically come from small pharmacokinetic (PK) studies, which have been insulated from the broader clinical development strategy. Opportunities for prospective strategic integration of both preclinical and clinical data on drug clearance mechanisms, model-based approaches, and clinical knowledge of therapeutic index are therefore often missed in designing and analyzing the results of PK studies in subjects with CKD, and eventually providing dosing recommendations. These considerations are valuable in designing informative PK studies in subjects with CKD, as well as for guiding kidney function-related inclusion/exclusion criteria in the broader clinical program and ultimately defining dosing guidelines that optimize benefit-risk balance for these special patient populations based on all available data. This paper offers points to consider for drug developers to increase adoption of a contemporary multidisciplinary approach, which includes key considerations on study design and conduct, methodologies for analysis (population PK and physiologically based PK modeling), and a roadmap to interpret the effect of kidney function on the overall benefit-risk profile of drugs in development.
Collapse
Affiliation(s)
| | | | | | - Thomas D Nolin
- University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | | | | |
Collapse
|
121
|
Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F, Conti S, Sansavini G, Sisti A, Ravaglia F, Lombardi D, Provenzano A, Manonelles A, Cruzado JM, Giglio S, Roperto RM, Materassi M, Lasagni L, Romagnani P. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. J Am Soc Nephrol 2015; 26:1961-74. [PMID: 25568173 DOI: 10.1681/asn.2014010057] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022] Open
Abstract
The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders.
Collapse
Affiliation(s)
- Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Elisa Ronconi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Anna Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Francesca Becherucci
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy; and
| | - Giulia Sansavini
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Alessandro Sisti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Fiammetta Ravaglia
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Duccio Lombardi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | | | - Anna Manonelles
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Sabrina Giglio
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Medical Genetics Unit and
| | - Rosa Maria Roperto
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Materassi
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy;
| |
Collapse
|
122
|
Su R, Li Y, Zink D, Loo LH. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels. BMC Bioinformatics 2014; 15 Suppl 16:S16. [PMID: 25521947 PMCID: PMC4290648 DOI: 10.1186/1471-2105-15-s16-s16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Drug-induced nephrotoxicity causes acute kidney injury and chronic kidney diseases, and is a major reason for late-stage failures in the clinical trials of new drugs. Therefore, early, pre-clinical prediction of nephrotoxicity could help to prioritize drug candidates for further evaluations, and increase the success rates of clinical trials. Recently, an in vitro model for predicting renal-proximal-tubular-cell (PTC) toxicity based on the expression levels of two inflammatory markers, interleukin (IL)-6 and -8, has been described. However, this and other existing models usually use linear and manually determined thresholds to predict nephrotoxicity. Automated machine learning algorithms may improve these models, and produce more accurate and unbiased predictions. Results Here, we report a systematic comparison of the performances of four supervised classifiers, namely random forest, support vector machine, k-nearest-neighbor and naive Bayes classifiers, in predicting PTC toxicity based on IL-6 and -8 expression levels. Using a dataset of human primary PTCs treated with 41 well-characterized compounds that are toxic or not toxic to PTC, we found that random forest classifiers have the highest cross-validated classification performance (mean balanced accuracy = 87.8%, sensitivity = 89.4%, and specificity = 85.9%). Furthermore, we also found that IL-8 is more predictive than IL-6, but a combination of both markers gives higher classification accuracy. Finally, we also show that random forest classifiers trained automatically on the whole dataset have higher mean balanced accuracy than a previous threshold-based classifier constructed for the same dataset (99.3% vs. 80.7%). Conclusions Our results suggest that a random forest classifier can be used to automatically predict drug-induced PTC toxicity based on the expression levels of IL-6 and -8.
Collapse
|
123
|
Bolt HM. Current developments in toxicology. Arch Toxicol 2014; 88:2093-5. [PMID: 25428172 DOI: 10.1007/s00204-014-1417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hermann M Bolt
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), 44139, Dortmund, Germany,
| |
Collapse
|
124
|
Lash LH, Putt DA, Benipal B. Multigenerational study of chemically induced cytotoxicity and proliferation in cultures of human proximal tubular cells. Int J Mol Sci 2014; 15:21348-65. [PMID: 25411799 PMCID: PMC4264229 DOI: 10.3390/ijms151121348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
Primary cultures of human proximal tubular (hPT) cells are a useful experimental model to study transport, metabolism, cytotoxicity, and effects on gene expression of a diverse array of drugs and environmental chemicals because they are derived directly from the in vivo human kidney. To extend the model to investigate longer-term processes, primary cultures (P0) were passaged for up to four generations (P1-P4). hPT cells retained epithelial morphology and stained positively for cytokeratins through P4, although cell growth and proliferation successively slowed with each passage. Necrotic cell death due to the model oxidants tert-butyl hydroperoxide (tBH) and methyl vinyl ketone (MVK) increased with increasing passage number, whereas that due to the selective nephrotoxicant S-(1,2-dichlorovinyl)-l-cysteine (DCVC) was modest and did not change with passage number. Mitochondrial activity was lower in P2-P4 cells than in either P0 or P1 cells. P1 and P2 cells were most sensitive to DCVC-induced apoptosis. DCVC also increased cell proliferation most prominently in P1 and P2 cells. Modest differences with respect to passage number and response to DCVC exposure were observed in expression of three key proteins (Hsp27, GADD153, p53) involved in stress response. Hence, although there are some modest differences in function with passage, these results support the use of multiple generations of hPT cells as an experimental model.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | - David A Putt
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | - Bavneet Benipal
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
125
|
Huang JX, Blaskovich MA, Cooper MA. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 2014; 10:1621-35. [DOI: 10.1517/17425255.2014.967681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
126
|
Church RJ, McDuffie JE, Sonee M, Otieno M, Ma JY, Liu X, Watkins PB, Harrill AH. MicroRNA-34c-3p is an early predictive biomarker for doxorubicin-induced glomerular injury progression in male Sprague-Dawley rats. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00051j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased microRNA-34c-3p appeared as a novel biomarker for doxorubicin nephrotoxicity in rats; alterations showed greater specificity than and comparable sensitivity to albuminuria for early prediction of glomerular injury.
Collapse
Affiliation(s)
| | - J. Eric McDuffie
- Preclinical Development and Safety
- Janssen Research & Development
- LLC
- San Diego, USA
| | - Manisha Sonee
- Preclinical Development and Safety
- Janssen Research & Development
- LLC
- Spring House, USA
| | - Monicah Otieno
- Preclinical Development and Safety
- Janssen Research & Development
- LLC
- Spring House, USA
| | - Jing Ying Ma
- Preclinical Development and Safety
- Janssen Research & Development
- LLC
- San Diego, USA
| | - Xuejun Liu
- Immunology Systems Pharmacology and Biomarkers
- Janssen Research & Development
- LLC
- San Diego, USA
| | | | | |
Collapse
|