101
|
Abstract
A digital assay is one in which the sample is partitioned into many containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, . . .). A powerful technique in the biologist’s toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotype and phenotype. Where part I of this review focused on the fundamentals of partitioning and digital PCR, part II turns its attention to digital protein and cell assays. Digital enzyme assays measure the kinetics of single proteins with enzymatic activity. Digital enzyme-linked immunoassays (ELISAs) quantify antigenic proteins with 2 to 3 log lower detection limit than conventional ELISA, making them well suited for low-abundance biomarkers. Digital cell assays probe single-cell genotype and phenotype, including gene expression, intracellular and surface proteins, metabolic activity, cytotoxicity, and transcriptomes (scRNA-seq). These methods exploit partitioning to 1) isolate single cells or proteins, 2) detect their activity via enzymatic amplification, and 3) tag them individually by coencapsulating them with molecular barcodes. When scaled, digital assays reveal stochastic differences between proteins or cells within a population, a key to understanding biological heterogeneity. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows.
Collapse
Affiliation(s)
- Amar S. Basu
- Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
102
|
Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, Akbari M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosens Bioelectron 2017; 91:588-605. [PMID: 28088752 PMCID: PMC5323331 DOI: 10.1016/j.bios.2016.12.062] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complications and inflammatory disorders. Despite increasing scientific and clinical interest in this field, there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, Calgary, Alberta, Canada
| | - Saeid Ghavami
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada; Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, Calgary, Alberta, Canada; Department of Human Anatomy& Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Canada; Health Research Policy Centre, Shiraz University of Medical Science, Shiraz, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, Canada V8P 2C5; Center for Biomedical Research, University of Victoria, Victoria, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada.
| |
Collapse
|
103
|
Haliburton JR, Kim SC, Clark IC, Sperling RA, Weitz DA, Abate AR. Efficient extraction of oil from droplet microfluidic emulsions. BIOMICROFLUIDICS 2017; 11:034111. [PMID: 28611871 PMCID: PMC5438281 DOI: 10.1063/1.4984035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Droplet microfluidic techniques can perform large numbers of single molecule and cell reactions but often require controlled, periodic flow to merge, split, and sort droplets. Here, we describe a simple method to convert aperiodic flows into periodic ones. Using an oil extraction module, we efficiently remove oil from emulsions to readjust the droplet volume fraction, velocity, and packing, producing periodic flows. The extractor acts as a universal adaptor to connect microfluidic modules that do not operate under identical flow conditions, such as droplet generators, incubators, and merger devices.
Collapse
Affiliation(s)
| | - S C Kim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - I C Clark
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - R A Sperling
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
104
|
Ding Y, Choo J, deMello AJ. From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:58. [PMID: 32214953 PMCID: PMC7087872 DOI: 10.1007/s10404-017-1889-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter-nanoliter droplet, millions of (bio) chemical reactions can be processed in a parallel fashion and on ultra-short timescales. Recent applications of such technologies to genetic analysis have suggested significant utility in low-cost, efficient and rapid workflows for DNA amplification, rare mutation detection, antibody screening and next-generation sequencing. To this end, we describe and highlight some of the most interesting recent developments and applications of droplet-based microfluidics in the broad area of nucleic acid analysis. In addition, we also present a cursory description of some of the most essential functional components, which allow the creation of integrated and complex workflows based on flowing streams of droplets.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Ansan, 15588 Republic of Korea
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
105
|
Dong J, Ueda H. ELISA-type assays of trace biomarkers using microfluidic methods. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/15/2016] [Accepted: 12/17/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jinhua Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering, Linyi University; Linyi P.R. China
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
106
|
Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc Natl Acad Sci U S A 2017; 114:2550-2555. [PMID: 28202731 DOI: 10.1073/pnas.1621226114] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.
Collapse
|
107
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
108
|
Kaminski TS, Garstecki P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 2017; 46:6210-6226. [DOI: 10.1039/c5cs00717h] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science.
Collapse
Affiliation(s)
- T. S. Kaminski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - P. Garstecki
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
109
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
110
|
Heida T, Neubauer JW, Seuss M, Hauck N, Thiele J, Fery A. Mechanically Defined Microgels by Droplet Microfluidics. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Jens W. Neubauer
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Maximilian Seuss
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Department of Physical Chemistry of Polymeric Materials; Technische Universität Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
111
|
Etienne G, Kessler M, Amstad E. Influence of Fluorinated Surfactant Composition on the Stability of Emulsion Drops. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gianluca Etienne
- Soft Materials Laboratory; Institute of Materials; École Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Michael Kessler
- Soft Materials Laboratory; Institute of Materials; École Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Esther Amstad
- Soft Materials Laboratory; Institute of Materials; École Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
112
|
Abstract
Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the fluorescence signals by specific in vitro/in vivo fluorescent labeling, and consequently, the fluorescent molecules indicate the presence of target molecules. The resultant fluorescence signals may be simply counted by either microfluidic device-integrated confocal microscopy or total internal reflection fluorescence-based single-molecule imaging. We have developed a series of single-molecule counting-based biosensors which can be classified as separation-free and separation-assisted assays. As a proof-of-concept, we demonstrate the applications of single-molecule counting-based biosensors for sensitive detection of various target biomolecules such as DNAs, miRNAs, proteins, enzymes, and intact cells, which may function as the disease-related biomarkers. Moreover, we give a summary of future directions to expand the usability of single-molecule counting-based biosensors including (1) the development of more user-friendly and automated instruments, (2) the discovery of new fluorescent labels and labeling strategies, and (3) the introduction of new concepts for the design of novel biosensors. Due to their high sensitivity, good selectivity, rapidity, and simplicity, we believe that the single-molecule counting-based fluorescent biosensors will indubitably find wide applications in biological research, clinical diagnostics, and drug discovery.
Collapse
Affiliation(s)
- Fei Ma
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ying Li
- Medical
School, Shenzhen University, Shenzhen 518060, China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
113
|
Dutka F, Opalski AS, Garstecki P. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate. LAB ON A CHIP 2016; 16:2044-9. [PMID: 27161389 DOI: 10.1039/c6lc00265j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many modern analytical assays, for example, droplet digital PCR, or screening of the properties of single cells or single mutated genes require splitting a liquid sample into a number of small (typically ca. nano-liter in volume) independent compartments or droplets. This calls for a method that would allow splitting small (microliter) samples of liquid into libraries of nano-liter droplets without any dead volume or waste. Step emulsification allows for facile protocols that require delivery of only the sample liquid, yet they typically exhibit dependence of the droplet size on the rate at which the sample is injected. Here, we report a novel microfluidic junction that reduces the dependence of the volume of droplets on the rate of injection. We also demonstrate generation of tightly monodisperse nanoliter droplets by introduction of solely the dispersed phase into the system from an automatic pipette. The method presented here can readily be used and can replace the sophisticated devices typically used to generate libraries of nano-liter droplets from liquid samples.
Collapse
Affiliation(s)
- Filip Dutka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland. and Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
114
|
Sharma B, Takamura Y, Shimoda T, Biyani M. A bulk sub-femtoliter in vitro compartmentalization system using super-fine electrosprays. Sci Rep 2016; 6:26257. [PMID: 27199080 PMCID: PMC4873800 DOI: 10.1038/srep26257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
The extreme miniaturization of biological and chemical assays in aqueous-droplet compartments enables spatiotemporal control for large-scale parallel experimentation and can thus permit new capabilities for "digitizing" directed molecular evolution methodologies. We report a remarkably facile bulk method to generate mega-scale monodisperse sub-femtoliter aqueous droplets by electrospray, using a prototype head with super-fine inkjet technology. Moreover, the electrostatic inkjet nozzle that injects the aqueous phase when immersed within an immiscible phase (an optimized oil/surfactant mixture) has the advantage of generating cell-like sub-femtoliter compartments for biomolecule encapsulation and successive biological and chemical reactions. Sub-femtoliter droplets of both liquid (water-in-oil, volumes ranging from 0.2 to 6.4 fL) and gel bead (agarose-in-oil, volume ranging from 0.3 to 15.6 fL) compartments with average sizes of 1.3 μm and 1.5 μm, respectively, were successfully generated using an inkjet nozzle at a speed of more than 10(5) droplets per second. We demonstrated the applicability of this system by synthesizing fluorescent proteins using a cell-free expression system inside electrosprayed sub-femtoliter droplets at an accelerated rate, thereby extending the utility of in vitro compartmentalization with improved analytical performance for a top-down artificial cellular system.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuzuru Takamura
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuya Shimoda
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Manish Biyani
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Biyani BioSolutions Pvt. Ltd., Biyani Research Group, R-4, Sector 3, Vidhyadhar Nagar, Jaipur 302023, India
| |
Collapse
|
115
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
116
|
Derzsi L, Kaminski TS, Garstecki P. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette. LAB ON A CHIP 2016; 16:893-901. [PMID: 26805579 DOI: 10.1039/c5lc01151e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate a standalone microfluidic chip that allows us to carry out commonly executed antibiotic susceptibility assays in an array of nanoliter droplets. We eliminated the need for automation in performing an exemplary complicated liquid handling assay on a chip. Operations on droplets are hard-wired into the microfluidic chip. The liquid handling protocol can be executed with a simple and commonly available source of flow such as an automatic manual pipette. The system passively prepares a series of dilutions of a chemical compound and mixes them with portions of the sample. The precision of metering, merging, mixing, and splitting of discrete portions of liquid samples is rooted in the passive capillary action in microfluidic traps and not in the precision of dosing with a pipette. We show an exemplary use of the device in the determination of the minimum inhibitory concentration (MIC) of ampicillin against E. coli ATCC 25922.
Collapse
Affiliation(s)
- Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and University of Padova, Department of Physics and Astronomy, Via Marzolo 8, 35131 Padova, Italy
| | - Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
117
|
Yang X, Tang Y, Alt RR, Xie X, Li F. Emerging techniques for ultrasensitive protein analysis. Analyst 2016; 141:3473-81. [PMID: 26898911 DOI: 10.1039/c6an00059b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many important biomarkers for devastating diseases and biochemical processes are proteins present at ultralow levels. Traditional techniques, such as enzyme-linked immunosorbent assays (ELISA), mass spectrometry, and protein microarrays, are often not sensitive enough to detect proteins with concentrations below the picomolar level, thus requiring the development of analytical techniques with ultrahigh sensitivities. In this review, we highlight the recent advances in developing novel techniques, sensors, and assays for ultrasensitive protein analysis. Particular attention will be focused on three classes of signal generation and/or amplification mechanisms, including the uses of nanomaterials, nucleic acids, and digital platforms.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | | | | | | | | |
Collapse
|
118
|
Piraino F, Volpetti F, Watson C, Maerkl SJ. A Digital-Analog Microfluidic Platform for Patient-Centric Multiplexed Biomarker Diagnostics of Ultralow Volume Samples. ACS NANO 2016; 10:1699-710. [PMID: 26741022 DOI: 10.1021/acsnano.5b07939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic diagnostic devices have the potential to transform the practice of medicine. We engineered a multiplexed digital-analog microfluidic platform for the rapid and highly sensitive detection of 3-4 biomarkers in quadruplicate in 16 independent and isolated microfluidic unit cells requiring only a single 5 μL sample. We comprehensively characterized the platform by performing single enzyme and digital immunoassays, achieving single molecule detection and measured as low as ∼10 fM (330 fg/mL) GFP in buffer and ∼12 fM GFP in human serum. We applied our integrated digital detection mechanism to multiplexed detection of 1pM anti-Ebola IgG in human serum and were able to differentiate three common Ebola strains. To ascertain that the device can be applied in environments beyond clinical point-of-care settings, we developed a low-cost, portable hardware system to control and read out the microfluidic device and detected anti-Ebola IgG in ultralow volume whole blood samples to levels of 100 pM in a multiplexed assay format.
Collapse
Affiliation(s)
- Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Francesca Volpetti
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Craig Watson
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
119
|
Obayashi Y, Iino R, Noji H. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate. Analyst 2016; 140:5065-73. [PMID: 26101788 DOI: 10.1039/c5an00714c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Digitalization of fluorogenic enzymatic assays through the use of femtoliter chamber array technology is an emerging approach to realizing highly quantitative bioassays with single-molecule sensitivity. However, only a few digital fluorogenic enzyme assays have been reported, and the variations of the digital enzyme assays are basically limited to fluorescein- and resorufin-based fluorogenic assays. This limitation hampers the realization of a multiplex digital enzyme assay such as a digital enzyme-linked immunosorbent assay (ELISA). In this study, after optimization of buffer conditions, we achieved a single-molecule digital enzyme alkaline phosphatase (ALP) assay with a cumarin-based fluorogenic substrate, 4-methylunbelliferyl phosphate (4-MUP). When ALP molecules were encapsulated in a 44-femtoliter chamber array at a low ratio of less than 1 molecule per chamber, each chamber showed a discrete fluorescence signal in an all-or-none manner, allowing the digital counting of the number of active enzyme molecules. The fraction of fluorescent chambers linearly decreased with the enzyme concentration, obeying the Poisson distribution as expected. We also demonstrated a dual-color digital enzyme assay with a ALP/4-MUP and β-galactosidase (β-gal)/resorufin-β-d-galactopyranoside combination. The activities of single ALP and β-gal molecules were clearly detected simultaneously. The method developed in this study will enable us to carry out a parallelized, multiplex digital ELISA.
Collapse
Affiliation(s)
- Yusuke Obayashi
- Department of Applied Chemistry, The University of Tokyo, Japan.
| | | | | |
Collapse
|
120
|
Affiliation(s)
- Alexander K. Price
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Brian M. Paegel
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| |
Collapse
|
121
|
Weinmeister R, Freeman E, Eperon IC, Stuart AM, Hudson AJ. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing. ACS NANO 2015; 9:9718-30. [PMID: 26365461 DOI: 10.1021/acsnano.5b02422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aqueous microdroplets with a volume of a few femtoliters are an ideal sample size for single-molecule fluorescence experiments. In particular, they enable prolonged measurements to be made on individual molecules that can diffuse freely in the surrounding medium. However, the rapid production of monodisperse droplets in a hydrodynamic flow, such as microfluidic flow focusing, will often involve volumes that are typically too large (>0.5 pL) for single-molecule studies. Desired volumes of a few femtoliters, or smaller, can be produced by either tip streaming or step emulsification in a flow-focusing device; however, in both of these methods, the aqueous droplets are dispersed in a large volume of the continuous phase, where individual droplets can diffuse perpendicular to the flow direction, and the monodispersity of droplet size produced by tip streaming is difficult to sustain for more than transient time scales. We show here that the optimized design and fabrication of microfluidic devices with shallow channel depths can result in the reliable production of stable droplets of a few femtoliters at a high rate in the dripping regime of flow focusing. Furthermore, the generated microdroplets are localized in a two-dimensional plane to enable immediate analysis. We have demonstrated the fluorescence monitoring of single molecules of encapsulated green fluorescent protein. The apparatus is straightfoward, inexpensive, and readily assembled within an ordinary laboratory environment.
Collapse
Affiliation(s)
- Robert Weinmeister
- Department of Biochemistry, University of Leicester , Leicester, LE1 9HN, United Kingdom
- Department of Chemistry, University of Leicester , Leicester, LE1 7RH, United Kingdom
| | - Emma Freeman
- Department of Chemistry, University of Leicester , Leicester, LE1 7RH, United Kingdom
| | - Ian C Eperon
- Department of Biochemistry, University of Leicester , Leicester, LE1 9HN, United Kingdom
| | - Alison M Stuart
- Department of Chemistry, University of Leicester , Leicester, LE1 7RH, United Kingdom
| | - Andrew J Hudson
- Department of Chemistry, University of Leicester , Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
122
|
Labanieh L, Nguyen TN, Zhao W, Kang DK. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysis and Recovery. MICROMACHINES 2015; 6:1469-1482. [PMID: 27134760 PMCID: PMC4849166 DOI: 10.3390/mi6101431] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe the design, fabrication and use of a dual-layered microfluidic device for ultrahigh-throughput droplet trapping, analysis, and recovery using droplet buoyancy. To demonstrate the utility of this device for digital quantification of analytes, we quantify the number of droplets, which contain a β-galactosidase-conjugated bead among more than 100,000 immobilized droplets. In addition, we demonstrate that this device can be used for droplet clustering and real-time analysis by clustering several droplets together into microwells and monitoring diffusion of fluorescein, a product of the enzymatic reaction of β-galactosidase and its fluorogenic substrate FDG, between droplets.
Collapse
Affiliation(s)
| | | | - Weian Zhao
- Correspondence: (W.Z.); (D.-K.K.); Tel.: +1-949-824-8035- (D.-K.K.)
| | - Dong-Ku Kang
- Correspondence: (W.Z.); (D.-K.K.); Tel.: +1-949-824-8035- (D.-K.K.)
| |
Collapse
|
123
|
Collins DJ, Neild A, deMello A, Liu AQ, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. LAB ON A CHIP 2015; 15:3439-59. [PMID: 26226550 DOI: 10.1039/c5lc00614g] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.
Collapse
Affiliation(s)
- David J Collins
- Engineering Product Design pillar, Singapore University of Technology and Design, Singapore.
| | | | | | | | | |
Collapse
|
124
|
Colin PY, Zinchenko A, Hollfelder F. Enzyme engineering in biomimetic compartments. Curr Opin Struct Biol 2015; 33:42-51. [PMID: 26311177 DOI: 10.1016/j.sbi.2015.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
The success of a directed evolution approach to creating custom-made enzymes relies in no small part on screening as many clones as possible. The miniaturisation of assays into pico to femtoliter compartments (emulsion droplets, vesicles or gel-shell beads) makes directed evolution campaigns practically more straightforward than current large scale industrial screening that requires liquid handling equipment and much manpower. Several recent experimental formats have established protocols to screen more than 10 million compartments per day, representing unprecedented throughput at low cost. This review introduces the emerging approaches towards making biomimetic man-made compartments that are poised to be adapted by a wider circle of researchers. In addition to cost and time saving, control of selection pressures and conditions, the quantitative readout that reports on every library members and the ability to develop strategies based on these data will increase the degrees of freedom in designing and testing strategies for directed evolution experiments.
Collapse
Affiliation(s)
- Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
125
|
Guan W, Chen L, Rane TD, Wang TH. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification. Sci Rep 2015; 5:13795. [PMID: 26333806 PMCID: PMC4558716 DOI: 10.1038/srep13795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023] Open
Abstract
We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.
Collapse
Affiliation(s)
- Weihua Guan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Tushar D Rane
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, USA
| |
Collapse
|
126
|
|
127
|
van Vliet LD, Colin PY, Hollfelder F. Bioinspired genotype-phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins. Interface Focus 2015; 5:20150035. [PMID: 26464791 PMCID: PMC4590426 DOI: 10.1098/rsfs.2015.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments-water-in-oil droplets and gel-shell beads-for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological components.
Collapse
Affiliation(s)
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
128
|
Cretich M, Daaboul GG, Sola L, Ünlü MS, Chiari M. Digital detection of biomarkers assisted by nanoparticles: application to diagnostics. Trends Biotechnol 2015; 33:343-51. [DOI: 10.1016/j.tibtech.2015.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/19/2015] [Indexed: 01/09/2023]
|
129
|
Gruner P, Riechers B, Chacòn Orellana LA, Brosseau Q, Maes F, Beneyton T, Pekin D, Baret JC. Stabilisers for water-in-fluorinated-oil dispersions: Key properties for microfluidic applications. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
130
|
Lim J, Caen O, Vrignon J, Konrad M, Taly V, Baret JC. Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays. BIOMICROFLUIDICS 2015; 9:034101. [PMID: 26015838 PMCID: PMC4425725 DOI: 10.1063/1.4919415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/15/2015] [Indexed: 05/06/2023]
Abstract
Droplet-based microfluidic technologies are powerful tools for applications requiring high-throughput, for example, in biochemistry or material sciences. Several systems have been proposed for the high-throughput production of monodisperse emulsions by parallelizing multiple droplet makers. However, these systems have two main limitations: (1) they allow the use of only a single disperse phase; (2) they are based on multiple layer microfabrication techniques. We present here a pipette-and-play solution offering the possibility of manipulating simultaneously 10 different disperse phases on a single layer device. This system allows high-throughput emulsion production using aqueous flow rates of up to 26 ml/h (>110 000 drops/s) leading to emulsions with user-defined complex chemical composition. We demonstrate the multiplex capabilities of our system by measuring the kinetics of β-galactosidase in droplets using nine different concentrations of a fluorogenic substrate.
Collapse
Affiliation(s)
| | | | | | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Valérie Taly
- Université Paris Sorbonne Cité , INSERM UMR-S1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | |
Collapse
|
131
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
132
|
Affiliation(s)
- Jialan Cao
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro and Nanotechnologies/Institute for Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro and Nanotechnologies/Institute for Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| |
Collapse
|
133
|
Janiesch JW, Weiss M, Kannenberg G, Hannabuss J, Surrey T, Platzman I, Spatz JP. Key factors for stable retention of fluorophores and labeled biomolecules in droplet-based microfluidics. Anal Chem 2015; 87:2063-7. [PMID: 25607822 DOI: 10.1021/ac504736e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Water-in-oil emulsion droplets created in droplet-based microfluidic devices have been tested and used recently as well-defined picoliter-sized 3D compartments for various biochemical and biomedical applications. In many of these applications, fluorescence measurements are applied to reveal the protein content, spatial distribution, and dynamics in the droplets. However, emulsion droplets do not always provide entirely sealed compartments, and partitioning of dyes or labeled molecules to the oil phase is frequently observed. Therefore, stable molecular retention in the droplets represents a challenge, and many physical and chemical key factors of microfluidic system components have to be considered. In this study, we investigated the retention of 12 commonly used water-soluble dyes in droplets having six different aqueous phase conditions. We demonstrate that the physicochemical properties of the dyes have a major influence on the retention level. In particular, hydrophilicity has a strong influence on retention, with highly hydrophilic dyes (LogD < -7) showing stable, buffer/medium independent retention. In the case of less hydrophilic dyes, we showed that retention can be improved by adjusting the surfactants physical properties, such as geometry, length, and concentration. Furthermore, we analyzed the retention stability of labeled biomolecules such as antibodies, streptavidin, and tubulin proteins and showed that stable retention can be strongly dependent on dye and surfactants selection.
Collapse
Affiliation(s)
- Jan-Willi Janiesch
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
134
|
Leman M, Abouakil F, Griffiths AD, Tabeling P. Droplet-based microfluidics at the femtolitre scale. LAB ON A CHIP 2015; 15:753-65. [PMID: 25428861 DOI: 10.1039/c4lc01122h] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have built a toolbox of modules for droplet-based microfluidic operations on femtolitre volume droplets. We have demonstrated monodisperse production, sorting, coalescence, splitting, mixing, off-chip incubation and re-injection at high frequencies (up to 3 kHz). We describe the constraints and limitations under which satisfactory performances are obtained, and discuss the physics that controls each operation. For some operations, such as internal mixing, we obtained outstanding performances: for instance, in 75 fL droplets the mixing time was 45 μs, 35-fold faster than previously reported for a droplet microreactor. In practice, in all cases, a level of control comparable to nanolitre or picolitre droplet manipulation was obtained despite the 3 to 6 order of magnitude reduction in droplet volume. Remarkably, all the operations were performed using devices made using standard soft-lithography techniques and PDMS rapid prototyping. We show that femtolitre droplets can be used as microreactors for molecular biology with volumes one billion times smaller than conventional microtitre plate wells: in particular, the Polymerase Chain Reaction (PCR) was shown to work efficiently in 20 fL droplets.
Collapse
Affiliation(s)
- Marie Leman
- Microfluidics, MEMS and Nanostructures Laboratory (MMN), CNRS UMR 7083, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), 10, rue Vauquelin, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
135
|
Abstract
We provide an overview covering the existing challenges and latest developments in achieving high selectivity and sensitivity cancer-biomarker detection.
Collapse
Affiliation(s)
- Li Wu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry
- State Key laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
| | - Xiaogang Qu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry
- State Key laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
| |
Collapse
|
136
|
Ding Y, Casadevall i Solvas X, deMello A. “V-junction”: a novel structure for high-speed generation of bespoke droplet flows. Analyst 2015; 140:414-21. [DOI: 10.1039/c4an01730g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the use of microfluidic “V-junctions” as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional “T-junction” formats.
Collapse
Affiliation(s)
- Yun Ding
- Department of Chemistry and Applied Biosciences
- Institute for Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Xavier Casadevall i Solvas
- Department of Chemistry and Applied Biosciences
- Institute for Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Andrew deMello
- Department of Chemistry and Applied Biosciences
- Institute for Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| |
Collapse
|
137
|
Abstract
Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation.
Collapse
Affiliation(s)
- Evgenia Yu Basova
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
| | - Frantisek Foret
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic
| |
Collapse
|
138
|
Gielen F, Buryska T, Vliet LV, Butz M, Damborsky J, Prokop Z, Hollfelder F. Interfacing Microwells with Nanoliter Compartments: A Sampler Generating High-Resolution Concentration Gradients for Quantitative Biochemical Analyses in Droplets. Anal Chem 2014; 87:624-32. [DOI: 10.1021/ac503336g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fabrice Gielen
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Tomas Buryska
- International
Centre for Clinical Research, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Liisa Van Vliet
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Maren Butz
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Jiri Damborsky
- International
Centre for Clinical Research, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- International
Centre for Clinical Research, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| |
Collapse
|
139
|
Ge S, Liu W, Schlappi T, Ismagilov RF. Digital, Ultrasensitive, End-Point Protein Measurements with Large Dynamic Range via Brownian Trapping with Drift. J Am Chem Soc 2014; 136:14662-5. [DOI: 10.1021/ja507849b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shencheng Ge
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| | - Weishan Liu
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| | - Travis Schlappi
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| | - Rustem F. Ismagilov
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
140
|
Enzyme molecules in solitary confinement. Molecules 2014; 19:14417-45. [PMID: 25221867 PMCID: PMC6271441 DOI: 10.3390/molecules190914417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.
Collapse
|
141
|
Abstract
Nanofluidics is generally described as the study of liquid flow in or around structures of 100 nm or smaller, and its use for lab on a chip devices has now been actively studied for two decades. Here a brief review is given of the impact that this nanofluidics research has had on point of care applications. Four areas are identified where nanofluidics has brought the largest contributions: single nanopores, nanoporous membranes, nanoconfinement and the use of concentration polarization. The sometimes revolutionary developments in these areas are briefly treated and finally challenges and future perspectives are described.
Collapse
Affiliation(s)
- L I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands.
| | | |
Collapse
|
142
|
Garcia-Cordero JL, Maerkl SJ. A 1024-sample serum analyzer chip for cancer diagnostics. LAB ON A CHIP 2014; 14:2642-50. [PMID: 24345965 DOI: 10.1039/c3lc51153g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a platform that combines microarrays and microfluidic techniques to measure four protein biomarkers in 1024 serum samples for a total of 4096 assays per device. Detection is based on a surface fluorescence sandwich immunoassay with a limit of detection of ~1 pM for most of the proteins measured: PSA, TNF-α, IL-1β, and IL-6. To validate the utility of our platform, we measured these four biomarkers in 20 clinical human serum samples, 10 from prostate cancer patients and 10 female and male controls. We compared the results of our platform to a conventional ELISA and found a good correlation between them. However, compared to a classical ELISA, our device reduces the total cost of reagents by 4 orders of magnitude while increasing throughput by 2 orders of magnitude. Overall, we demonstrate an integrated approach to perform low-cost and rapid quantification of protein biomarkers from over one thousand serum samples. This new high-throughput technology will have a significant impact on disease diagnosis and management.
Collapse
Affiliation(s)
- Jose L Garcia-Cordero
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | |
Collapse
|
143
|
Kang DK, Monsur Ali M, Zhang K, Pone EJ, Zhao W. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
144
|
Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F. One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 2014; 86:2526-33. [PMID: 24517505 PMCID: PMC3952496 DOI: 10.1021/ac403585p] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/22/2014] [Indexed: 12/25/2022]
Abstract
Directed evolution relies on iterative cycles of randomization and selection. The outcome of an artificial evolution experiment is crucially dependent on (i) the numbers of variants that can be screened and (ii) the quality of the assessment of each clone that forms the basis for selection. Compartmentalization of screening assays in water-in-oil emulsion droplets provides an opportunity to screen vast numbers of individual assays with good signal quality. Microfluidic systems have been developed to make and sort droplets, but the operator skill required precludes their ready implementation in nonspecialist settings. We now establish a protocol for the creation of monodisperse double-emulsion droplets in two steps in microfluidic devices with different surface characteristics (first hydrophobic, then hydrophilic). The resulting double-emulsion droplets are suitable for quantitative analysis and sorting in a commercial flow cytometer. The power of this approach is demonstrated in a series of enrichment experiments, culminating in the successful recovery of catalytically active clones from a sea of 1 000 000-fold as many low-activity variants. The modular workflow allows integration of additional steps: the encapsulated lysate assay reactions can be stopped by heat inactivation (enabling ready control of selection stringency), the droplet size can be contracted (to concentrate its contents), and storage (at -80 °C) is possible for discontinuous workflows. The control that can be thus exerted on screening conditions will facilitate exploitation of the potential of protein libraries compartmentalized in droplets in a straightforward protocol that can be readily implemented and used by protein engineers.
Collapse
Affiliation(s)
- Anastasia Zinchenko
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Sean R.
A. Devenish
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Balint Kintses
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Pierre-Yves Colin
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Martin Fischlechner
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
- Institute
for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| |
Collapse
|
145
|
Guan Z, Zou Y, Zhang M, Lv J, Shen H, Yang P, Zhang H, Zhu Z, James Yang C. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. BIOMICROFLUIDICS 2014; 8:014110. [PMID: 24753730 PMCID: PMC3977795 DOI: 10.1063/1.4866766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/12/2014] [Indexed: 05/07/2023]
Abstract
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.
Collapse
Affiliation(s)
- Zhichao Guan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiangquan Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
146
|
Muluneh M, Issadore D. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. LAB ON A CHIP 2013; 13:4750-4. [PMID: 24166156 PMCID: PMC4420024 DOI: 10.1039/c3lc50979f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic chips have been developed to generate droplets and microparticles with control over size, shape, and composition not possible using conventional methods. However, it has remained a challenge to scale-up production for practical applications due to the inherently limited throughput of micro-scale devices. To address this problem, we have developed a self-contained microchip that integrates many (N = 512) micro-scale droplet makers. This 3 × 3 cm(2) PDMS microchip consists of a two-dimensional array of 32 × 16 flow-focusing droplet makers, a network of flow channels that connect them, and only two inputs and one output. The key innovation of this technology is the hybrid use of both soft-lithography and direct laser-micromachining. The microscale resolution of soft lithography is used to fabricate flow-focusing droplet makers that can produce small and precisely defined droplets. Deeply engraved (h ≈ 500 μm) laser-machined channels are utilized to supply each of the droplet makers with its oil phase, aqueous phase, and access to an output channel. The engraved channels' low hydrodynamic resistance ensures that each droplet maker is driven with the same flow rates for highly uniform droplet formation. To demonstrate the utility of this approach, water droplets (d ≈ 80 μm) were generated in hexadecane on both 8 × 1 and 32 × 16 geometries.
Collapse
Affiliation(s)
- M. Muluneh
- Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Issadore
- Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|