101
|
van der Munnik NP, Moss MA, Uline MJ. Obstacles to translating the promise of nanoparticles into viable amyloid disease therapeutics. Phys Biol 2019; 16:021002. [PMID: 30620933 DOI: 10.1088/1478-3975/aafc66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticles (NPs) constitute a powerful therapeutic platform with exciting prospects as potential inhibitors of amyloid-[Formula: see text] (Aβ) aggregation, a process associated with Alzheimer's disease (AD). Researchers have synthesized and tested a large collection of NPs with disparate sizes, shapes, electrostatic properties and surface ligands that evoke a variety of responses on Aβ aggregation. In spite of a decade of research on the NP-Aβ system and many promising experimental results, NPs have failed to progress to any level of clinical trials for AD. A theoretical framework with which to approach this physical system is presented featuring two simple metrics, (1) the extent to which NPs adsorb Aβ, and (2) the degree to which interaction with a NP alters Aβ conformation relative to aggregation propensity. Most of our current understanding of these two interactions has been gained through experimentation, and many of these studies are reviewed herein. We also provide a potential roadmap for studies that we believe could produce viable NPs as an effective AD therapeutic platform.
Collapse
Affiliation(s)
- N P van der Munnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States of America. Chemical Engineering Department, University of South Carolina, Columbia, SC 29208, United States of America
| | | | | |
Collapse
|
102
|
Kong B, Moon S, Kim Y, Heo P, Jung Y, Yu SH, Chung J, Ban C, Kim YH, Kim P, Hwang BJ, Chung WJ, Shin YK, Seong BL, Kweon DH. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nat Commun 2019; 10:185. [PMID: 30643128 PMCID: PMC6331592 DOI: 10.1038/s41467-018-08138-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Membrane-disrupting agents that selectively target virus versus host membranes could potentially inhibit a broad-spectrum of enveloped viruses, but currently such antivirals are lacking. Here, we develop a nanodisc incorporated with a decoy virus receptor that inhibits virus infection. Mechanistically, nanodiscs carrying the viral receptor sialic acid bind to influenza virions and are co-endocytosed into host cells. At low pH in the endosome, the nanodiscs rupture the viral envelope, trapping viral RNAs inside the endolysosome for enzymatic decomposition. In contrast, liposomes containing a decoy receptor show weak antiviral activity due to the lack of membrane disruption. The nanodiscs inhibit influenza virus infection and reduce morbidity and mortality in a mouse model. Our results suggest a new class of antivirals applicable to other enveloped viruses that cause irreversible physical damage specifically to virus envelope by viruses' own fusion machine. In conclusion, the lipid nanostructure provides another dimension for antiviral activity of decoy molecules.
Collapse
Affiliation(s)
- Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yuna Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Paul Heo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Hyeon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choongjin Ban
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Iowa, IA, 50011, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
103
|
Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, Ramassamy C. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? NANOSCALE 2019; 11:383-406. [PMID: 30560970 DOI: 10.1039/c8nr04916e] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drug nanocarriers' surface chemistry is often presumed to be uniform. For instance, the polymer surface coverage and distribution of ligands on nanoparticles are described with averaged values obtained from quantification techniques based on particle populations. However, these averaged values may conceal heterogeneities at different levels, either because of the presence of particle sub-populations or because of surface inhomogeneities, such as patchy surfaces on individual particles. The characterization and quantification of chemical surface heterogeneities are tedious tasks, which are rather limited by the currently available instruments and research protocols. However, heterogeneities may contribute to some non-linear effects observed during the nanoformulation optimization process, cause problems related to nanocarrier production scale-up and correlate with unexpected biological outcomes. On the other hand, heterogeneities, while usually unintended and detrimental to nanocarrier performance, may, in some cases, be sought as adjustable properties that provide NPs with unique functionality. In this review, results and processes related to this issue are compiled, and perspectives and possible analytical developments are discussed.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Vahid Adibnia
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Soudeh F Tehrani
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Steven Sanche
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Charles Ramassamy
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
104
|
Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer's disease. Biomaterials 2018; 197:417-431. [PMID: 30638753 DOI: 10.1016/j.biomaterials.2018.12.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis. Controlled release, target ability, and multi-channel synergistic treatment are key factors associated with the success of AD drugs. Herein, we report a novel mesoporous nano-selenium (MSe) release delivery system (MSe-Res/Fc-β-CD/Bor) based on the borneol (Bor) target, β-cyclodextrin nanovalves (Fc-β-CD) with loaded resveratrol (Res). Previous experiments have shown that MSe-Res/Fc-β-CD/Bor first releases Bor by interacting with blood or intracellular esterases, allowing the nanosystem to pass through the blood-brain barrier (BBB). Subsequently, the Fc-β-CD is opened by the redox (H2O2) response to the release of Res at the lesion site. We demonstrated that MSe-Res/Fc-β-CD/Bor inhibited aggregation of β-amyloid proteins (Aβ), mitigated oxidative stress, and suppressed tau hyperphosphorylation, while protecting nerve cells and successfully improving memory impairment in APP/PS1 mice. Interestingly, compared with rivastigmine (Riv) positive drugs alone, the MSe/Fc-β-CD/Bor loaded with Riv had a better pharmacokinetic index. These results indicate that MSe-Res/Fc-β-CD/Bor could be a prospective drug for treating AD.
Collapse
|
105
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
106
|
Sahoo BR, Genjo T, Bekier M, Cox SJ, Stoddard AK, Ivanova M, Yasuhara K, Fierke CA, Wang Y, Ramamoorthy A. Alzheimer's amyloid-beta intermediates generated using polymer-nanodiscs. Chem Commun (Camb) 2018; 54:12883-12886. [PMID: 30379172 PMCID: PMC6247814 DOI: 10.1039/c8cc07921h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymethacrylate-copolymer (PMA) encased lipid-nanodiscs (∼10 nm) and macro-nanodiscs (>15 nm) are used to study Aβ1-40 aggregation. We demonstrate that PMA-nanodiscs form a ternary association with Aβ and regulate its aggregation kinetics by trapping intermediates. Results demonstrating the reduced neurotoxicity of nanodisc-bound Aβ oligomers are also reported.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Takuya Genjo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Michael Bekier
- Department of Neurology, Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sarah J. Cox
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Andrea K. Stoddard
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Magdalena Ivanova
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 6300192, Japan
| | - Carol A. Fierke
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
- Texas A&M University, College Station, TX 77843, USA
| | - Yanzhuang Wang
- Department of Neurology, Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
107
|
Tsujita M, Wolska A, Gutmann DAP, Remaley AT. Reconstituted Discoidal High-Density Lipoproteins: Bioinspired Nanodiscs with Many Unexpected Applications. Curr Atheroscler Rep 2018; 20:59. [PMID: 30397748 DOI: 10.1007/s11883-018-0759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Summarize the initial discovery of discoidal high-density lipoprotein (HDL) in human plasma and review more recent innovations that span the use of reconstituted nanodisc HDL for membrane protein characterization to its use as a drug carrier and a novel therapeutic agent for cardiovascular disease. RECENT FINDINGS Using a wide variety of biophysical techniques, the structure and composition of endogenous discoidal HDL have now largely been solved. This has led to the development of new methods for the in vitro reconstitution of nanodisc HDL, which have proven to have a wide variety of biomedical applications. Nanodisc HDL has been used as a platform for mimicking the plasma membrane for the reconstitution and investigation of the structures of several plasma membrane proteins, such as cytochrome P450s and ABC transporters. Nanodisc HDL has also been designed as drug carriers to transport amphipathic, as well as hydrophobic small molecules, and has potential therapeutic applications for several diseases. Finally, nanodisc HDL itself like native discoidal HDL can mediate cholesterol efflux from cells and are currently being tested in late-stage clinical trials for cardiovascular disease. The discovery of the characterization of native discoidal HDL has inspired a new field of synthetic nanodisc HDL, which has offered a growing number of unanticipated biomedical applications.
Collapse
Affiliation(s)
- Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
108
|
Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug Deliv 2018; 25:307-320. [PMID: 29350055 PMCID: PMC6058502 DOI: 10.1080/10717544.2018.1428243] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023] Open
Abstract
In recent years, the incidental rate of neurodegenerative disorders has increased proportionately with the aging population. Alzheimer's disease (AD) is one of the most commonly reported neurodegenerative disorders, and it is estimated to increase by roughly 30% among the aged population. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates - such as acetylcholinesterase inhibitors are currently utilized as an effective clinical therapy. However, targeted drug delivery of these drugs to the central nervous system (CNS) exhibits several limitations including meager solubility, low bioavailability, and reduced efficiency due to the impediments of the blood-brain barrier (BBB). Current advances in nanotechnology present opportunities to overcome such limitations in delivering active drug candidates. Nanodrug delivery systems are promising in targeting several therapeutic moieties by easing the penetration of drug molecules across the CNS and improving their bioavailability. Recently, a wide range of nano-carriers, such as polymers, emulsions, lipo-carriers, solid lipid carriers, carbon nanotubes, metal based carriers etc., have been adapted to develop successful therapeutics with sustained release and improved efficacy. Here, we discuss few recently updated nano-drug delivery applications that have been adapted in the field of AD therapeutics, and future prospects on potential molecular targets for nano-drug delivery systems.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
- Nanotechnology research center, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| | - Joon-Soo Kim
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases Konkuk University, Chungju, Republic of Korea
- Department of Applied Life Science, Graduate school of Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
109
|
Dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 2018; 286:264-278. [PMID: 30071253 PMCID: PMC6138570 DOI: 10.1016/j.jconrel.2018.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a promising approach for neurodegenerative disease treatment, however there is an urgent need to develop an efficient gene carrier to transport gene across the blood brain barrier (BBB). In this study, we strategically designed dual functionalized liposomes for efficient neuronal transfection by combining transferrin (Tf) receptor targeting and enhanced cell penetration utilizing penetratin (Pen). A triple cell co-culture model of BBB confirmed the ability of the liposomes to cross the barrier layer and transfect primary neuronal cells. In vivo quantification of PenTf-liposomes demonstrated expressive accumulation in the brain (12%), without any detectable cellular damage or morphological change. The efficacy of these nanoparticles containing plasmid β-galactosidase in modulating transfection was assessed by β-galactosidase expression in vivo. As a consequence of accumulation in the brain, PenTf-liposomes significantly induced gene expression in mice. Immunofluorescence studies of brain sections of mice after tail vein injection of liposomes encapsulating pDNA encoding GFP (pGFP) illustrate the superior ability of dual-functionalized liposomes to accumulate in the brain and transfect neurons. Taken together, the multifunctional liposomes provide an excellent gene delivery platform for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
110
|
Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer's disease. J Neurol Sci 2018; 395:62-70. [PMID: 30292965 DOI: 10.1016/j.jns.2018.09.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common age-related neurodegenerative diseases in the developed world. Treatment of AD is particularly challenging as the drug must overcome the blood brain barrier (BBB) before it can reach its target. Mitochondria are recognized as one of the most important targets for neurological drugs as the organelle is known to play a critical role in diverse cellular processes such as energy production and apoptosis regulation. Mitochondrial targeting was originally developed to study mitochondrial dysfunction and the organelles interaction with other sub-cellular organelles. The purpose of this review is to provide an overview of mitochondrial dysfunction and its role in late onset AD pathology. We then highlight recent antioxidant and enzymatic treatments used to alleviate mitochondrial dysfunction. Finally, we describe current applications of targeted mitochondrial delivery in the treatment of AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| | - John P Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| |
Collapse
|
111
|
Götz A, Lehti M, Donelan E, Striese C, Cucuruz S, Sachs S, Yi CX, Woods SC, Wright SD, Müller TD, Tschöp MH, Gao Y, Hofmann SM. Circulating HDL levels control hypothalamic astrogliosis via apoA-I. J Lipid Res 2018; 59:1649-1659. [PMID: 29991652 PMCID: PMC6121940 DOI: 10.1194/jlr.m085456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.
Collapse
Affiliation(s)
- Anna Götz
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Elizabeth Donelan
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Cynthia Striese
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sebastian Cucuruz
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephan Sachs
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen C Woods
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Timo D Müller
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Matthias H Tschöp
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuanqing Gao
- Nanjing Medical University, College of Pharmacy, Nanjing, China.
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität, Munich, Germany.
| |
Collapse
|
112
|
Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond) 2018; 13:2341-2371. [PMID: 30088440 DOI: 10.2217/nnm-2018-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease, Parkinson's disease and stroke are the most common CNS diseases, all characterized by progressive cellular dysfunction and death in specific areas of the nervous system. Therapeutic development for these diseases has lagged behind other disease areas due to difficulties in early diagnosis, long disease courses and drug delivery challenges, not least due to the blood-brain barrier. Over recent decades, nanotechnology has been explored as a potential tool for the diagnosis, treatment and monitoring of CNS diseases. In this review, we describe the application of nanotechnology to common CNS diseases, highlighting disease pathogenesis and the underlying mechanisms and promising functional outcomes that make nanomaterials ideal candidates for early diagnosis and therapy. Moreover, we discuss the limitations of nanotechnology, and possible solutions.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China
| | - Wenyue Wang
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - David X Yu
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhicheng Xiao
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China.,Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| |
Collapse
|
113
|
You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, Liu Q, Chang YZ, Lou X, Nie G. Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice. ACS NANO 2018; 12:4123-4139. [PMID: 29617109 DOI: 10.1021/acsnano.7b08172] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Excess iron deposition in the brain often causes oxidative stress-related damage and necrosis of dopaminergic neurons in the substantia nigra and has been reported to be one of the major vulnerability factors in Parkinson's disease (PD). Iron chelation therapy using deferoxamine (DFO) may inhibit this nigrostriatal degeneration and prevent the progress of PD. However, DFO shows very short half-life in vivo and hardly penetrates the blood brain barrier (BBB). Hence, it is of great interest to develop DFO formulations for safe and efficient intracerebral drug delivery. Herein, we report a polymeric nanoparticle system modified with brain-targeting peptide rabies virus glycoprotein (RVG) 29 that can intracerebrally deliver DFO. The nanoparticle system penetrates the BBB possibly through specific receptor-mediated endocytosis triggered by the RVG29 peptide. Administration of these nanoparticles significantly decreased iron content and oxidative stress levels in the substantia nigra and striatum of PD mice and effectively reduced their dopaminergic neuron damage and as reversed their neurobehavioral deficits, without causing any overt adverse effects in the brain or other organs. This DFO-based nanoformulation holds great promise for delivery of DFO into the brain and for realizing iron chelation therapy in PD treatment.
Collapse
Affiliation(s)
- Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Pharmaceutical Science , Jilin University , Changchun 130021 , China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ting Wang
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Shanshan Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianyu Dong
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Xin Lou
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
114
|
Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, Wang H. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 2018; 9:1802. [PMID: 29728565 PMCID: PMC5935695 DOI: 10.1038/s41467-018-04255-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/18/2018] [Indexed: 01/31/2023] Open
Abstract
Cerebral amyloid β-peptide (Aβ) accumulation resulting from an imbalance between Aβ production and clearance is one of the most important causes in the formation of Alzheimer's disease (AD). In order to preserve the maintenance of Aβ homeostasis and have a notable AD therapy, achieving a method to clear up Aβ plaques becomes an emerging task. Herein, we describe a self-destructive nanosweeper based on multifunctional peptide-polymers that is capable of capturing and clearing Aβ for the effective treatment of AD. The nanosweeper recognize and bind Aβ via co-assembly through hydrogen bonding interactions. The Aβ-loaded nanosweeper enters cells and upregulates autophagy thus promoting the degradation of Aβ. As a result, the nanosweeper decreases the cytotoxicity of Aβ and rescues memory deficits of AD transgenic mice. We believe that this resourceful and synergistic approach has valuable potential as an AD treatment strategy.
Collapse
Affiliation(s)
- Qiang Luo
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Bing-Nan Li
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Kuo Zhang
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
115
|
Sun J, Xie W, Zhu X, Xu M, Liu J. Sulfur Nanoparticles with Novel Morphologies Coupled with Brain-Targeting Peptides RVG as a New Type of Inhibitor Against Metal-Induced Aβ Aggregation. ACS Chem Neurosci 2018; 9:749-761. [PMID: 29192759 DOI: 10.1021/acschemneuro.7b00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Functionalized nanomaterials, which have been applied widely to inhibit amyloid-β protein (Aβ) aggregation, show enormous potential in the field of prevention and treatment of Alzheimer's disease (AD). A significant body of data has demonstrated that the morphology and size of nanomaterials have remarkable effects on their biological behaviors. In this work, we proposed and designed three kinds of brain-targeting sulfur nanoparticles (RVG@Met@SNPs) with novel morphologies (volute-like, tadpole-like, and sphere-like) and investigated the effect of different RVG@Met@SNPs on Aβ-Cu2+ complex aggregation and their corresponding neurotoxicity. Among them, the sphere-like nanoparticles (RVG@Met@SS) exhibited the most effective inhibitory activity, due to their unique mini size effect, and they reduced 61.6% the Aβ-Cu2+ complex aggregation and increased 92.4% SH-SY5Y cell viability in a dose of 10 μg/mL. In vitro and in vivo, the abilities of different morphologies of RVG@Met@SNPs to cross the blood-brain barrier (BBB) and target brain parenchymal cells were significantly different. Moreover, improvements in learning disability and cognitive loss were shown in the transgenic AD mice model using the Morris water maze test after multiple doses of RVG@Met@SNPs treatment. In general, the purpose of this research is to develop a biological application of sulfur nanoparticles and to provide a novel functionalized nanomaterial to treat AD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wenjie Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xufeng Zhu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Mengmeng Xu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
116
|
Ran W, Xue X. Theranostical application of nanomedicine for treating central nervous system disorders. SCIENCE CHINA-LIFE SCIENCES 2018; 61:392-399. [DOI: 10.1007/s11427-017-9292-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023]
|
117
|
Lipoproteins for therapeutic delivery: recent advances and future opportunities. Ther Deliv 2018; 9:257-268. [DOI: 10.4155/tde-2017-0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological role(s) of mammalian plasma lipoproteins is to transport hydrophobic molecules (primarily cholesterol and triacylglycerols) to their respective destinations. Lipoproteins have also been studied as drug-delivery agents due to their advantageous payload capacity, long residence time in the circulation and biocompatibility. The purpose of this review is to briefly discuss current findings with the focus on each type of formulation's potential for clinical applications. Regarding utilizing lipoprotein type formulation for cancer therapeutics, their potential for tumor-selective delivery is also discussed.
Collapse
|
118
|
Chen Q, Du Y, Zhang K, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F, Sun J, Zhou M, He Q, Sun X, Zhang H, Tian M, Ling D. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer's Disease. ACS NANO 2018; 12:1321-1338. [PMID: 29364648 DOI: 10.1021/acsnano.7b07625] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alzheimer's disease (AD) remains an incurable disease and lacks efficient diagnostic methods. Most AD treatments have focused on amyloid-β (Aβ) targeted therapy; however, it is time to consider the alternative theranostics due to accumulated findings of weak correlation between Aβ deposition and cognition, as well as the failures of Phase III clinical trial on Aβ targeted therapy. Recent studies have shown that the tau pathway is closely associated with clinical development of AD symptoms, which might be a potential therapeutic target. We herein construct a methylene blue (MB, a tau aggregation inhibitor) loaded nanocomposite (CeNC/IONC/MSN-T807), which not only possesses high binding affinity to hyperphosphorylated tau but also inhibits multiple key pathways of tau-associated AD pathogenesis. We demonstrate that these nanocomposites can relieve the AD symptoms by mitigating mitochondrial oxidative stress, suppressing tau hyperphosphorylation, and preventing neuronal death both in vitro and in vivo. The memory deficits of AD rats are significantly rescued upon treatment with MB loaded CeNC/IONC/MSN-T807. Our results indicate that hyperphosphorylated tau-targeted multifunctional nanocomposites could be a promising therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Chen
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Yang Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Kai Zhang
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Jinquan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Hao Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Rong Ren
- College of Chemical & Biological Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P.R. China
| | - Jin Feng
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Zhiming Jin
- Jiangsu Huayi Technology Limited Company , Changshu, Jiangsu 215522, P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou, Zhejiang 310058, P.R. China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310016, P.R. China
| | - Min Zhou
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Qinggang He
- College of Chemical & Biological Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P.R. China
| | - Xiaolian Sun
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Hong Zhang
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
- Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, P.R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
- Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
119
|
Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. Trends Biotechnol 2018; 36:562-575. [PMID: 29422412 DOI: 10.1016/j.tibtech.2018.01.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy.
Collapse
Affiliation(s)
- Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Zou
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
120
|
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8:51-63. [PMID: 29872622 PMCID: PMC5985628 DOI: 10.1016/j.apsb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
High-density lipoproteins (HDL) are naturally-occurring nanoparticles that are biocompatible, non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and microRNA from donor cells to recipient cells. Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins (rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative, promising avenue for efficient targeting transport of nanomedicine.
Collapse
Affiliation(s)
| | | | - Xiaoling Gao
- Corresponding author. Tel.: +86 21 63846590 776945.
| |
Collapse
|
121
|
Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 2018; 65:327-338. [PMID: 29111371 DOI: 10.1016/j.actbio.2017.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The accumulation of the extracellular β-amyloid (Aβ) aggregates with metal ions in conjunction with reactive oxygen species (ROS) is closely related to the pathogenesis of Alzheimer's disease (AD). Accounting on Cu ions chelating of our previously designed bifunctional peptide GGHRYYAAFFARR (GR) as well as Aβ-Cu fibrils (fAβ-Cu) dissociation potentials, we report herein an efficient route to synthetically minimize ROS toxicity and degrade fAβ-Cu. It is worth mentioning that GR combines the metal chelating agent GGH and β-sheet breaker RYYAAFFARR (RR). The in vitro results have showed that GR disassociates fAβ-Cu into smaller fragments (sAβ-Cu, 150-200 nm), easily assimilated by PC12 cell and subsequently degraded in the lysosomes; GR can also suppress the ROS generated by fAβ-Cu. The viability of PC12 cell treated with fAβ-Cu has increased, from 38% to about 70% after administration of GR, overwhelming the GGH chelator (46%) and single functional peptide RR (48%). The in vivo results indicated that GR has efficiently reduced Aβ deposition, ameliorated neurologic changes and rescued memory loss, thus, enhancing the cognitive and spatial memory in a AD rat model. This study confirms the superior effect of GR and paves the way toward its future employment in large scale AD treatment. STATEMENT OF SIGNIFICANCE We have focused on accelerating the degradation of fAβ-Cu as well as synthetically reducing the ROS toxicity by GR, and, consequently, its benefits in vivo. The bifunctional peptide GR can not only disaggregate fAβ-Cu into smaller fragments to facilitate uptake and degradation by PC12 cell, but also suppresses the ROS generated by fAβ-Cu. Thus, the viability of PC12 cell treated with fAβ-Cu has increased from 38% to 70% after GR administration, overwhelming GGH (46%) and RR (48%). The in vivo studies have revealed that GR improves the spatial memory ability and reduce the amount of senile plaques within brain of AD model rats. Thus, we suppose the bifunctional inhibitor GR has good application prospects in the treatment of AD treatment.
Collapse
|
122
|
Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordoñez-Gutierrez L, Wandosell F, Masserini M, Couvreur P, Nicolas J, Andrieux K. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:609-618. [PMID: 29248676 DOI: 10.1016/j.nano.2017.12.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder related, in part, to the accumulation of amyloid-β peptide (Aβ) and especially the Aβ peptide 1-42 (Aβ1-42). The aim of this study was to design nanocarriers able to: (i) interact with the Aβ1-42 in the blood and promote its elimination through the "sink effect" and (ii) correct the memory defect observed in AD-like transgenic mice. To do so, biodegradable, PEGylated nanoparticles were surface-functionalized with an antibody directed against Aβ1-42. Treatment of AD-like transgenic mice with anti-Aβ1-42-functionalized nanoparticles led to: (i) complete correction of the memory defect; (ii) significant reduction of the Aβ soluble peptide and its oligomer level in the brain and (iii) significant increase of the Aβ levels in plasma. This study represents the first example of Aβ1-42 monoclonal antibody-decorated nanoparticle-based therapy against AD leading to complete correction of the memory defect in an experimental model of AD.
Collapse
Affiliation(s)
- Dario Carradori
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | | | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Davide Brambilla
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Benjamin Le Droumaguet
- Université Paris-Est, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320, Thiais, France
| | - Orfeu Flores
- Stab Vida, Madan Parque, Rua dos Inventores, Caparica, Portugal
| | - Alice Gaudin
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | | | | | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa CSIC-UAM & CIBERNED, Madrid, Spain
| | - Massimo Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Patrick Couvreur
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France.
| | - Karine Andrieux
- Faculté de Pharmacie de Paris, UTCBS, CNRS UMR 8258, Inserm U1022, Univ. Paris Descartes, Univ. Sorbonne Paris Cité, Paris, France
| |
Collapse
|
123
|
Fernández-de-Retana S, Cano-Sarabia M, Marazuela P, Sánchez-Quesada JL, Garcia-Leon A, Montañola A, Montaner J, Maspoch D, Hernández-Guillamon M. Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci Rep 2017; 7:14637. [PMID: 29116115 PMCID: PMC5677083 DOI: 10.1038/s41598-017-15215-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral β-amyloidosis is a major feature of Alzheimer’s disease (AD), characterized by the accumulation of β-amyloid protein (Aβ) in the brain. Several studies have implicated lipid/lipoprotein metabolism in the regulation of β-amyloidosis. In this regard, HDL (High Density Lipoprotein)-based therapies could ameliorate pathological features associated with AD. As apolipoprotein J (ApoJ) is a natural chaperone that interacts with Aβ, avoiding its aggregation and toxicity, in this study we propose to prepare reconstituted rHDL-rApoJ nanoparticles by assembling phospholipids with recombinant human ApoJ (rApoJ). Hence, rHDL particles were prepared using the cholate dialysis method and characterized by N-PAGE, dynamic light scattering, circular dichroism and electron transmission microscopy. The preparation of rHDL particles showed two-sized populations with discoidal shape. Functionally, rHDL-rApoJ maintained the ability to prevent the Aβ fibrillization and mediated a higher cholesterol efflux from cultured macrophages. Fluorescently-labelled rHDL-rApoJ nanoparticles were intravenously administrated in mice and their distribution over time was determined using an IVIS Xenogen® imager. It was confirmed that rHDL-rApoJ accumulated in the cranial region, especially in old transgenic mice presenting a high cerebral Aβ load. In conclusion, we have standardized a reproducible protocol to produce rHDL-rApoJ nanoparticles, which may be potentially considered as a therapeutic option for β-amyloid-related pathologies.
Collapse
Affiliation(s)
- Sofía Fernández-de-Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Annabel Garcia-Leon
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
124
|
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264:306-332. [PMID: 28844756 PMCID: PMC6701993 DOI: 10.1016/j.jconrel.2017.08.033] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) comprise a category of versatile drug delivery systems that have been used in the biomedical field for >25years. SLNs and NLCs have been used for the treatment of various diseases including cardiovascular and cerebrovascular, and are considered a standard treatment for the latter, due to their inherent ability to cross the blood brain barrier (BBB). In this review, a presentation of the most important brain diseases (brain cancer, ischemic stroke, Alzheimer's disease, Parkinson's disease and multiple sclerosis) is approached, followed by the basic fabrication techniques of SLNs and NLCs. A detailed description of the reported studies of the last seven years, of active and passive targeting SLNs and NLCs for the treatment of glioblastoma multiforme and of other brain cancers, as well as for the treatment of neurodegenerative diseases is also carried out. Finally, a brief description of the advantages, the disadvantages, and the future perspectives in the use of these nanocarriers is reported, aiming at giving an insight of the limitations that have to be overcome in order to result in a delivery system with high therapeutic efficacy and without the limitations of the existing nano-systems.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
125
|
Sharma A, Vaghasiya K, Ray E, Verma RK. Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions. J Drug Target 2017; 26:208-221. [DOI: 10.1080/1061186x.2017.1374390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase 10, Mohali, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase 10, Mohali, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase 10, Mohali, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase 10, Mohali, India
| |
Collapse
|
126
|
Zhang N, Huang H, Tan B, Wei Y, Xiong Q, Yan Y, Hou L, Wu N, Siwko S, Cimarelli A, Xu J, Han H, Qian M, Liu M, Du B. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein. J Biol Chem 2017; 292:16527-16538. [PMID: 28842478 DOI: 10.1074/jbc.m117.802090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics.
Collapse
Affiliation(s)
- Na Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongjun Huang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Binghe Tan
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglei Wei
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qingqing Xiong
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Yan
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lili Hou
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Nannan Wu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Stefan Siwko
- the Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, Texas 77030
| | - Andrea Cimarelli
- the CIRI, Centre International de Recherche en Infectiologie, Lyon F69364, France.,the INSERM, U1111, 46 Allée d'Italie, Lyon, F69364, France.,the Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon F69364, France.,the CNRS, UMR5308, 46 Allée d'Italie, Lyon F69364, France.,the University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon F69364, France
| | - Jianrong Xu
- the Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, and
| | - Honghui Han
- Shanghai Bioray Laboratories Inc., Shanghai 200241, China
| | - Min Qian
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China, .,the Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, Texas 77030
| | - Bing Du
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,
| |
Collapse
|
127
|
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. Trends Biotechnol 2017; 35:937-953. [PMID: 28666544 DOI: 10.1016/j.tibtech.2017.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a type of dementia that causes major issues for patients' memory, thinking, and behavior. Despite efforts to advance AD diagnostic and therapeutic tools, AD remains incurable due to its complex and multifactorial nature and lack of effective diagnostics/therapeutics. Nanoparticles (NPs) have demonstrated the potential to overcome the challenges and limitations associated with traditional diagnostics/therapeutics. Nanotechnology is now offering new tools and insights to advance our understanding of AD and eventually may offer new hope to AD patients. Here, we review the key roles of nanotechnologies in the recent literature, in both diagnostic and therapeutic aspects of AD, and discuss how these achievements may improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Michelle R Santoso
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Farhad Rezaee
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - George Perry
- Neurosciences Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
128
|
Zheng X, Zhang C, Guo Q, Wan X, Shao X, Liu Q, Zhang Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int J Pharm 2017; 525:237-248. [DOI: 10.1016/j.ijpharm.2017.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
129
|
Rajora MA, Ding L, Valic M, Jiang W, Overchuk M, Chen J, Zheng G. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem Sci 2017; 8:5371-5384. [PMID: 28970916 PMCID: PMC5609152 DOI: 10.1039/c7sc00732a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Size-controlled discoidal and cholesteryl oleated-loaded spherical, intrinsically multimodal porphyrin-lipid nanoparticles targeted glioblastoma via apoE3 and LDLR.
The development of curative glioblastoma treatments and tumour-specific contrast agents that can overcome the blood–brain barrier (BBB) and infiltrative tumour morphology remains a challenge. Apolipoprotein E3 (apoE3) is a high density lipoprotein apolipoprotein that chaperones the transcytosis of nanoparticles across the BBB, and displays high-affinity binding with the low density lipoprotein receptor (LDLR), a cell-surface receptor overexpressed by glioblastoma cells. This LDLR overexpression and apoE3 binding capacity was exploited for the development of glioblastoma-targeted porphyrin-lipid apoE3 lipid nanoparticles (pyE-LNs) with intrinsic theranostic properties. Size-controlled discoidal and cholesteryl oleate (CO)-loaded spherical pyE-LNs were synthesized through the systematic variation of particle composition, which dictated nanoparticle size and morphology. Composition optimization yielded 30 nm pyE-LNs with stable loading of apoE3 and porphyrin-lipid that simultaneously conferred the nanoparticles with glioblastoma targeting and activatable near-infrared fluorescence imaging functionalities. A 4-fold higher uptake of pyE-LNs by LDLR-expressing U87 glioblastomas cells relative to minimally expressing ldlA7 cells was observed in vitro. This uptake was a result of receptor-mediated endocytosis, which could be inhibited through LDL competition and acetylation of particle apoE3 moieties. ApoE3-dependent delivery of pyE-LN to glioblastomas was also demonstrated in orthotopic U87-GFP tumour-bearing animals. Quantification of CO-loaded pyE-LN biodistribution demonstrated successful selective uptake of porphyrin by malignant tissue, with a 4 : 1 tumour : healthy tissue particle specificity. This allowed for the detection of strong, tumour-localized porphyrin fluorescence, which was diminished when apoE3-devoid py-LN particles were administered. Furthermore, this selective uptake yielded cell-specific potent PDT sensitization in vitro, resulting in an 83% reduction in glioblastoma cell viability. These results highlight the promising capacity of pyE-LNs to target porphyrin delivery to glioblastoma tumours for theranostic applications.
Collapse
Affiliation(s)
- M A Rajora
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - L Ding
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - M Valic
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - W Jiang
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - M Overchuk
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - J Chen
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - G Zheng
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada.,Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| |
Collapse
|
130
|
Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, Song HH, Chen LP, Lin YY, Jiang D, Chen J, Feng JF, Qiu YM, Jiang JY, Jiang XG, Chen HZ, Gao XL. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis. Nat Commun 2017; 8:15144. [PMID: 28489075 PMCID: PMC5436231 DOI: 10.1038/ncomms15144] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to 'drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.
Collapse
Affiliation(s)
- Jia-Lin Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qing-Xiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao-Lin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hua-Hua Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Le-Pei Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Ying Lin
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Di Jiang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education &PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education &PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jun-Feng Feng
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Yong-Ming Qiu
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Ji-Yao Jiang
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Xin-Guo Jiang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education &PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao-Ling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
131
|
Martins PAT, Alsaiari S, Julfakyan K, Nie Z, Khashab NM. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates. Chem Commun (Camb) 2017; 53:2102-2105. [DOI: 10.1039/c6cc09085k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin loaded lipoprotein based NPs with an ApoE3 shell and an AuNP core are synthesized for the detection and light-triggered disaggregation of Aβ oligomers.
Collapse
Affiliation(s)
- P. A. T. Martins
- Smart Hybrid Materials (SHMs) Laboratory
- Advanced Membranes and Porous Materials Center
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - S. Alsaiari
- Smart Hybrid Materials (SHMs) Laboratory
- Advanced Membranes and Porous Materials Center
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - K. Julfakyan
- Smart Hybrid Materials (SHMs) Laboratory
- Advanced Membranes and Porous Materials Center
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Z. Nie
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - N. M. Khashab
- Smart Hybrid Materials (SHMs) Laboratory
- Advanced Membranes and Porous Materials Center
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| |
Collapse
|
132
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
133
|
Jin P, Wei P, Zhang Y, Lin J, Sha R, Hu Y, Zhang J, Zhou W, Yao H, Ren L, Yang JY, Liu Y, Wen L. Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. NANOSCALE 2016; 8:18740-18750. [PMID: 27790650 DOI: 10.1039/c6nr07255k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many of the neurodegenerative disorders such as Huntington's disease (HD) are caused by the accumulation of intracytoplasmic aggregate-prone proteins. These toxic protein aggregates are mainly degraded by autophagy, thus elevating the autophagy level to enhance the degradation of these proteins representing an emerging viable approach for the treatment of neurodegenerative diseases. In this report we showed that graphene oxide (GO), an engineered nanomaterial with enormous potential in biomedical applications, effectively enhanced the clearance of mutant huntingtin (Htt), the aggregate-prone protein underlying the pathogenesis of HD. This enhancing effect of GO was autophagy-mediated, as blocking autophagy by chemical inhibitors at either the autophagosome formation stage or the autophagosome-lysosome fusion stage, or more specifically by knocking-down an essential autophagy gene, led to a significant reduction in the ability of GO to elicit Htt degradation. Interestingly, the autophagy induced by GO had the normal capacity to degrade its cargo including LC3-II and Htt, but not p62/SQSTM1 (p62), and was dependent on the activation of class III phosphatidylinositol 3-kinase (PtdIns3K) and MEK/ERK1/2 signaling pathways, without mTOR involvement. GO also increased ubiquitination of Htt, an event necessary for Htt's clearance. Furthermore, ubiquitinated huntingtin protein preferentially binds to GO, and abundant GO was found in autophagosomes and autolysosomes, thus raising the possibility that GO may directly deliver the bound protein to autophagosomes for degradation. Our results revealed a novel biological function of GO and may have implications for developing nanomaterial-based therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Peipei Jin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Pengfei Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yunjiao Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jun Lin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Rui Sha
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yi Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Anhui, China
| | - Wei Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Han Yao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China.
| | - James Y Yang
- School of Life Science, Xiamen University, Xiamen, China
| | - Yanchun Liu
- The Key Laboratory of Energy-Efficient Functional Ceramics and Applied Technology of Guangdong Province, Guangzhou Redsun Gas Applications Co., LTD, Guangzhou 510435, China
| | - Longping Wen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
134
|
Song Q, Song H, Xu J, Huang J, Hu M, Gu X, Chen J, Zheng G, Chen H, Gao X. Biomimetic ApoE-Reconstituted High Density Lipoprotein Nanocarrier for Blood–Brain Barrier Penetration and Amyloid Beta-Targeting Drug Delivery. Mol Pharm 2016; 13:3976-3987. [DOI: 10.1021/acs.molpharmaceut.6b00781] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qingxiang Song
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Huahua Song
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Jianrong Xu
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Jialin Huang
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Meng Hu
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Xiao Gu
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Juan Chen
- Princess Margaret
Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Gang Zheng
- Princess Margaret
Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of
Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280
South Chongqing Road, Shanghai 200025, PR China
| |
Collapse
|
135
|
Xu B, Jin Q, Zeng J, Yu T, Chen Y, Li S, Gong D, He L, Tan X, Yang L, He G, Wu J, Song X. Combined Tumor- and Neovascular-“Dual Targeting” Gene/Chemo-Therapy Suppresses Tumor Growth and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25753-25769. [PMID: 27615739 DOI: 10.1021/acsami.6b08603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Quansheng Jin
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jun Zeng
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Yu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shuangzhi Li
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daoqiong Gong
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lili He
- College
of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Li Yang
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Gu He
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiangrong Song
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
136
|
Prathipati P, Zhu J, Dong X. Development of novel HDL-mimicking α-tocopherol-coated nanoparticles to encapsulate nerve growth factor and evaluation of biodistribution. Eur J Pharm Biopharm 2016; 108:126-135. [PMID: 27531623 DOI: 10.1016/j.ejpb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Nerve Growth Factor (NGF) is one of the members of the neurotrophin family with multifaceted functions. However, clinical application of NGF is hurdled by the challenge on formulation development. The objective of this study was to develop novel high-density lipoproteins (HDL)-mimicking nanoparticles (NPs) coated with α-tocopherol to incorporate NGF by a self-assembly approach. The NPs were prepared by an optimized self-assembly method that is simple and scalable. The composition of HDL-mimicking NPs was optimized. The prototype of the HDL-mimicking α-tocopherol-coated NPs contained phosphatidylserine (a negative charged phospholipid) and d-α-Tocopheryl polyethylene glycol succinate (a source of vitamin E) to enhance the entrapment efficiency of apolipoprotein A-I in the NPs. The entrapment efficiency of apolipoprotein A-I was about 30%. The NPs had particle size about 200nm with a relatively narrow size distribution. Finally, cationic ion-pair agents were optimized to form ion-pairs with NGF to facilitate the incorporation of NGF into the NPs. Protamine sodium salt USP formed an optimal ion-pair complex with NGF. The results showed that the novel HDL-mimicking α-tocopherol-coated NPs successfully encapsulated NGF with over 65% entrapment efficiency by using this ion-pair strategy. In vitro release studies demonstrated a slow release of NGF from NGF NPs in PBS containing 5% BSA at 37°C for 72 h. Further biodistribution studies showed that intravenously injected NGF NPs significantly increased NGF concentration in plasma and decreased the uptake in liver, spleen and kidney, compared to free NGF in mice.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA(1)
| | - Jing Zhu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
137
|
Yin T, Xie W, Sun J, Yang L, Liu J. Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer's Disease Using Ultralow Irradiance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19291-302. [PMID: 27411476 DOI: 10.1021/acsami.6b05089] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structural changes of amyloid-beta (Aβ) from nontoxic monomers into neurotoxic aggregates are implicated with pathogenesis of Alzheimer's disease (AD). Over the past decades, weak disaggregation ability and low permeability to the blood-brain barrier (BBB) may be the main obstacles for major Aβ aggregation blockers. Here, we synthesized penetratin (Pen) peptide loaded poly(ethylene glycol) (PEG)-stabilized gold nanostars (AuNS) modified with ruthenium complex (Ru@Pen@PEG-AuNS), and Ru(II) complex as luminescent probes for tracking drug delivery. We revealed that Ru@Pen@PEG-AuNS could obviously inhibit the formation of Aβ fibrils as well as dissociate preformed fibrous Aβ under the irradiation of near-infrared (NIR) due to the NIR absorption characteristic of AuNS. More importantly, this novel design could be applied in medicine as an appropriate nanovehicle, being highly biocompatible and hemocompatible. In addition, Ru@Pen@PEG-AuNS had excellent neuroprotective effect on the Aβ-induced cellular toxicity by applying NIR irradiation. Meanwhile, Pen peptide could effectively improve the delivery of nanoparticles to the brain in vitro and in vivo, which overcame the major limitation of Aβ aggregation blockers. These consequences illustrated that the enhanced BBB permeability and efficient photothermolysis of Ru@Pen@PEG-AuNS are promising agents in AD therapy.
Collapse
Affiliation(s)
- Tiantian Yin
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Wenjie Xie
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Jing Sun
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Licong Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| |
Collapse
|
138
|
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47. [DOI: 10.1016/j.jconrel.2016.05.044] [Citation(s) in RCA: 813] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
|
139
|
Wang R, Gu X, Zhou J, Shen L, Yin L, Hua P, Ding Y. Green design “bioinspired disassembly-reassembly strategy” applied for improved tumor-targeted anticancer drug delivery. J Control Release 2016; 235:134-146. [DOI: 10.1016/j.jconrel.2016.05.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
|
140
|
Kondo H, Ikeda K, Nakano M. Formation of size-controlled, denaturation-resistant lipid nanodiscs by an amphiphilic self-polymerizing peptide. Colloids Surf B Biointerfaces 2016; 146:423-30. [PMID: 27393815 DOI: 10.1016/j.colsurfb.2016.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Nanodiscs are discoidal particles with a planar phospholipid bilayer enwrapped by proteins such as apolipoprotein A-I. Nanodiscs have been widely used for analyzing structures and functions of membrane proteins by dispersing them in solution. They are expected to be used as drug carriers and therapeutic agents. Amphiphilic peptides are known to form nanodiscs. However, the lipid-peptide nanodiscs are relatively unstable in solution, making them unsuitable for many applications. Here, we report the synthesis of an amphiphilic self-polymerizing peptide termed ASPP1, which polymerizes by intermolecular native chemical ligation reactions. ASPP1 spontaneously formed nanodiscs when added to phospholipid vesicles without using detergents. The diameter of the planar lipid bilayer in the nanodiscs was controlled by the lipid:peptide molar ratio. ASPP1-nanodiscs exhibited greater stability at high temperatures or in the presence of urea than nanodiscs formed by the non-polymerizing amphiphilic peptide or apolipoprotein A-I. Average and maximal degrees of ASPP1 polymerization were 2.4 and 12, respectively. Self-polymerization of the peptide appears to be responsible for stabilization of the nanodiscs. Our results open a new avenue for the development of nanodisc technology.
Collapse
Affiliation(s)
- Hiroaki Kondo
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
141
|
Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS NANO 2016; 10:3015-41. [PMID: 26889958 PMCID: PMC4918468 DOI: 10.1021/acsnano.5b07522] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles,
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| |
Collapse
|
142
|
Friedrich RP, Pöttler M, Cicha I, Lyer S, Janko C, Alexiou C. Novel nanoparticulate drug delivery systems. Nanomedicine (Lond) 2016; 11:573-6. [DOI: 10.2217/nnm.16.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ralf P Friedrich
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| | - Marina Pöttler
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| | - Iwona Cicha
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| | - Stefan Lyer
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| | - Christina Janko
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, Glueckstr. 10a, 91054 Erlangen, Germany
| |
Collapse
|
143
|
Xu B, Xia S, Wang F, Jin Q, Yu T, He L, Chen Y, Liu Y, Li S, Tan X, Ren K, Yao S, Zeng J, Song X. Polymeric Nanomedicine for Combined Gene/Chemotherapy Elicits Enhanced Tumor Suppression. Mol Pharm 2016; 13:663-76. [PMID: 26695934 DOI: 10.1021/acs.molpharmaceut.5b00922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shan Xia
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan 610041, China
| | - Fazhan Wang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Quansheng Jin
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ting Yu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lili He
- College of Chemistry and Environment Protection
Engineering, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
| | - Yan Chen
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yongmei Liu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shuangzhi Li
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Ke Ren
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shaohua Yao
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jun Zeng
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiangrong Song
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
144
|
Huang M, Hu M, Song Q, Song H, Huang J, Gu X, Wang X, Chen J, Kang T, Feng X, Jiang D, Zheng G, Chen H, Gao X. GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease. ACS NANO 2015; 9:10801-16. [PMID: 26440073 DOI: 10.1021/acsnano.5b03124] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular β-amyloid (Aβ) is crucial in AD pathogenesis, and Aβ-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aβ clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aβ, facilitates Aβ degradation by microglia, and Aβ efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aβ(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aβ deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Huahua Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jialin Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaolin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Ting Kang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xingye Feng
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Di Jiang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Gang Zheng
- Department of Medical Biophysics and Ontario Cancer Institute, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| |
Collapse
|
145
|
Hu B, Dai F, Fan Z, Ma G, Tang Q, Zhang X. Nanotheranostics: Congo Red/Rutin-MNPs with Enhanced Magnetic Resonance Imaging and H2O2-Responsive Therapy of Alzheimer's Disease in APPswe/PS1dE9 Transgenic Mice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5499-5505. [PMID: 26270904 DOI: 10.1002/adma.201502227] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/08/2015] [Indexed: 06/04/2023]
Abstract
As nanotheranostics, Congo red/Rutin-MNPs combine the abilities of diagnosis and treatment of Alzheimer's disease (AD). The biocompatible nanotheranostics system based on iron oxide magnetic nanoparticles, with ultrasmall size and excellent magnetic properties, can specifically detect amyloid plaques by magnetic resonance imaging, realize targeted delivery of AD therapeutic agents, achieve drug controlled release by H2O2 response, and prevent oxidative stress.
Collapse
Affiliation(s)
- Bingbing Hu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Fengying Dai
- Beijing Center for Physical and Chemical Analysis, Beijing, 100084, P. R. China
| | - Zhanming Fan
- Department of Radioloy, Beijing Anzhen Hospital, Capital University, Beijing, 100029, P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qunwei Tang
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
146
|
Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, Meng W, Ping Q, Xiao Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf B Biointerfaces 2015; 134:88-97. [DOI: 10.1016/j.colsurfb.2015.06.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 11/25/2022]
|
147
|
Bhowmik D, Mote KR, MacLaughlin CM, Biswas N, Chandra B, Basu JK, Walker GC, Madhu PK, Maiti S. Cell-Membrane-Mimicking Lipid-Coated Nanoparticles Confer Raman Enhancement to Membrane Proteins and Reveal Membrane-Attached Amyloid-β Conformation. ACS NANO 2015; 9:9070-7. [PMID: 26391443 DOI: 10.1021/acsnano.5b03175] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-β40 (Aβ40), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a β-turn, flanked by two β-sheet regions. We use solid-state NMR data to confirm the presence of the β-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic Aβ fibrils. Significantly, this allows a "porin" like β-barrel structure, providing a structural basis for proposed mechanisms of Aβ oligomer toxicity.
Collapse
Affiliation(s)
- Debanjan Bhowmik
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences , 21 Brundavan Colony, Narsinghi, Hyderabad 500075, India
| | - Christina M MacLaughlin
- Department of Chemistry, Lash Miller Laboratories, University of Toronto , Toronto, ON M5S 3H6, Canada
| | - Nupur Biswas
- Department of Physics, Indian Institute of Science , Bengaluru 560012, India
| | - Bappaditya Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science , Bengaluru 560012, India
| | - Gilbert C Walker
- Department of Chemistry, Lash Miller Laboratories, University of Toronto , Toronto, ON M5S 3H6, Canada
| | - Perunthiruthy K Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
- TIFR Centre for Interdisciplinary Sciences , 21 Brundavan Colony, Narsinghi, Hyderabad 500075, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
148
|
Wei PF, Jin PP, Barui AK, Hu Y, Zhang L, Zhang JQ, Shi SS, Zhang HR, Lin J, Zhou W, Zhang YJ, Ruan RQ, Patra CR, Wen LP. Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: Maximum clearance of huntingtin aggregates through combined treatment. Biomaterials 2015; 73:160-74. [PMID: 26409001 DOI: 10.1016/j.biomaterials.2015.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
Accelerating the clearance of intracellular protein aggregates through elevation of autophagy represents a viable approach for the treatment of neurodegenerative diseases. In our earlier report, we have demonstrated the enhanced degradation of mutant huntingtin protein aggregates through autophagy process induced by europium hydroxide nanorods [EHNs: Eu(III)(OH)3], but the underlying molecular mechanism of EHNs mediated autophagy was unclear. The present report reveals that EHNs induced autophagy does not follow the classical AKT-mTOR and AMPK signaling pathways. The inhibition of ERK1/2 phosphorylation using the specific MEK inhibitor U0126 partially abrogates the autophagy as well as the clearance of mutant huntingtin protein aggregates mediated by EHNs suggesting that nanorods stimulate the activation of MEK/ERK1/2 signaling pathway during autophagy process. In contrast, another mTOR-independent autophagy inducer trehalose has been found to induce autophagy without activating ERK1/2 signaling pathway. Interestingly, the combined treatment of EHNs and trehalose leads to more degradation of mutant huntingtin protein aggregates than that obtained with single treatment of either nanorods or trehalose. Our results demonstrate the rational that further enhanced clearance of intracellular protein aggregates, needed for diverse neurodegenerative diseases, may be achieved through the combined treatment of two or more autophagy inducers, which stimulate autophagy through different signaling pathways.
Collapse
Affiliation(s)
- Peng-Fei Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Pei-Pei Jin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ayan Kumar Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Yi Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, 230022 Hefei, China
| | - Ji-Qian Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shan-Shan Shi
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hou-Rui Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Lin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Wei Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Yun-Jiao Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Ren-Quan Ruan
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Chitta Ranjan Patra
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India.
| | - Long-Ping Wen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
149
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest unmet medical needs. However, no effective treatment is now available to impede the progression of AD or delay its onset. There are two major challenges for the development of effective therapy for AD. First, the exact cause for AD onset is still unknown. Second, brain drug delivery is significantly hindered by the blood-brain barrier (BBB). In this review, we will summarize the pathological understanding about AD and the related treatments, compare BBB and its effect on brain drug delivery under normal and AD conditions and review the nanotherapeutic strategies that have been developed for AD therapy in recent years.
Collapse
|
150
|
Huang H, Cruz W, Chen J, Zheng G. Learning from biology: synthetic lipoproteins for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:298-314. [PMID: 25346461 PMCID: PMC4397116 DOI: 10.1002/wnan.1308] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022]
Abstract
Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (<30 nm), high biocompatibility, favorable circulation half-life, and natural ability to bind specific lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles.
Collapse
Affiliation(s)
- Huang Huang
- DLVR Therapeutics Inc., Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - William Cruz
- DLVR Therapeutics Inc., Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Juan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Gang Zheng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada M5G 1L7
| |
Collapse
|