101
|
Sun LY. Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:181-189. [PMID: 19943139 PMCID: PMC2464726 DOI: 10.1007/s11357-006-9009-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/28/2023]
Abstract
Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, Campus Box #7039 , 3341 MBRB, Chapel Hill, North Carolina 27599-7039, USA.
| |
Collapse
|
102
|
Tang BL. SIRT1, neuronal cell survival and the insulin/IGF-1 aging paradox. Neurobiol Aging 2006; 27:501-505. [PMID: 16464659 DOI: 10.1016/j.neurobiolaging.2005.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/25/2005] [Accepted: 02/14/2005] [Indexed: 01/26/2023]
Abstract
Signaling through the insulin/IGF-1 pro-survival pathway is widely recognized to be neuroprotective as well as important for neuronal growth and physiology. In mammals, age-associated decline in circulating IGF-1 levels has been associated with neuronal aging and symptoms of neurodegeneration. Defects in IGF-1 receptor associated signaling has, however, been shown to significantly extend lifespan in models ranging from invertebrates to mouse. At least in C. elegans, restoring such defects in neurons alone reduces lifespan to wild-type levels. As we seek to delay brain aging and age-associated neuronal degeneration via nutritional and endocrinal supplements, an understanding of the mechanistic basis of this apparent paradox is important. Recent elucidation of the role of the protein deacetylase SIRT1 in cell survival and data associating IGF-1 with the regulation of SIRT1 expression may provide a direction towards resolving this issue.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry and Programme in Neurobiology and Aging, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
103
|
Maynard SP, Miller RA. Fibroblasts from long-lived Snell dwarf mice are resistant to oxygen-induced in vitro growth arrest. Aging Cell 2006; 5:89-96. [PMID: 16441847 DOI: 10.1111/j.1474-9726.2006.00187.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Snell dwarf mice live longer than controls, and show lower age-adjusted rates of lethal neoplastic diseases. Fibroblast cells from adult dwarf mice are resistant to the lethal effects of oxidative and nonoxidative stresses, including the carcinogen methyl methanesulfonate. We now report that dwarf-derived fibroblasts are slow to enter the stage of growth arrest induced by culturing normal cells under standard culture conditions at 20% O(2). Dwarf cells cultured at 20% O(2) resemble control cells cultured at 3% O(2) not only in their delayed growth arrest, but also in their rapid growth rates and resistance to both oxidative and nonoxidative forms of cytotoxic stress. Levels of the heat-shock protein HSP-70 respond to serum withdrawal and stress only in control cells, showing that intracellular signals are blunted in dwarf-derived cells. These data suggest a model in which stable epigenetic changes induced in skin fibroblasts by the hormonal milieu of the Snell dwarf lead to resistance to multiple forms of injury, including the oxidative damage that contributes to growth arrest in vitro and neoplasia in intact mice.
Collapse
Affiliation(s)
- Scott P Maynard
- Department of Pathology and Geriatrics Center, University of Michigan, and Ann Arbor VA Medical Center, Ann Arbor, MI 48109-0940, USA
| | | |
Collapse
|
104
|
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58203, USA
| |
Collapse
|
105
|
Wolf N, Penn P, Pendergrass W, Van Remmen H, Bartke A, Rabinovitch P, Martin GM. Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res 2005; 81:276-85. [PMID: 16129095 DOI: 10.1016/j.exer.2005.01.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/23/2022]
Abstract
Five mouse models with known alterations of resistance to oxidative damage were compared by slit lamp examination for the presence and degree of advancement of age-related cataract in young adult and old animals along with wild type controls. A group of young and old normal C57BL/6Jax mice were examined first to constitute a standard, and they were found to exhibit age-related cataract development. Following this, four models on the C57BL/6 background with imposed genetic alterations affecting anti-oxidant enzyme presence or activity, and one outbred model in which a deletion blocked the growth hormone/IGF-1 axis, were similarly examined. There was no evidence of foetal or juvenile cataract development in any of these models, and an age-related severity for lens opacities was shown between young adult and old mice in all groups. Model 1, mice null for the anti-oxidant gene glutathione peroxidase-1 (GPX1) had significantly advanced cataracts in older mice vs. same age controls. In mouse model 2 hemizygous knockout of SOD2 (MnSOD) did not affect age-related cataract development. In model 3 combining the GPX1 and SOD2 deficiencies in the same animal did not advance cataract development beyond that of the GPX1 null alone. In model 4 the addition of anti-oxidant protection in the lens by transfection of human catalase targeted only to the mitochondria resulted in a significant delay in cataract development. The 5th model, growth hormone receptor knockout (GHR-/-) mice, also demonstrated a significant reduction in age-related cataract development, as well as dwarfism. These findings, in general, support the oxidative theory of age-related cataract development. The exception, the partial deletion of SOD2 in the hemizygous KO model, probably did not represent a sufficiently severe deprivation of anti-oxidant protection to produce pathologic changes in the lens.
Collapse
Affiliation(s)
- Norman Wolf
- Department of Pathology, University of Washington School of Medicine, Box 3557470, University of Washington, Seattle, WA 98195-7470, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Information obtained from animal models (mostly mice and rats) has contributed substantially to the development of treatments for human cancers. However, important interspecies differences have to be taken into account when considering the mechanisms of cancer development and extrapolating the results from mice to humans. Comparative studies of cancer in humans and animal models mostly focus on genetic factors. This review discusses the bio-epidemiological aspects of cancer manifestation in humans and rodents that have been underrepresented in the literature.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia.
| | | | | |
Collapse
|
107
|
de Magalhães JP, Church GM. Genomes optimize reproduction: aging as a consequence of the developmental program. Physiology (Bethesda) 2005; 20:252-9. [PMID: 16024513 DOI: 10.1152/physiol.00010.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural selection shapes genomes for reproduction, not for postreproductive survival. One hypothesis then is that the developmental program, optimized for reproduction, inadvertently regulates aging in mammals. Herein we review, revive, and refine the developmental theory of aging. Implications and experimental approaches for studying the progressive deterioration of physiological function that we call aging are also discussed.
Collapse
|
108
|
|
109
|
Popovich IG, Zabezhinski MA, Egormin PA, Tyndyk ML, Anikin IV, Spasov AA, Semenchenko AV, Yashin AI, Anisimov VN. Insulin in aging and cancer: antidiabetic drug Diabenol as geroprotector and anticarcinogen. Int J Biochem Cell Biol 2005; 37:1117-29. [PMID: 15743682 DOI: 10.1016/j.biocel.2004.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/20/2004] [Accepted: 08/04/2004] [Indexed: 11/30/2022]
Abstract
The effects of new antidiabetic drug Diabenol (9-beta-diethylaminoethyl-2,3-dihydroimidazo-(1,2-alpha)benzimidazol dihydrochloride) on life span and spontaneous tumor incidence in NMRI and transgenic HER-2/neu mice as well as on colon carcinogenesis induced by 1,2-dimethylhydrazine in rats are studied. It is shown that treatment with the drug failed influence body weight gain dynamics, food and water consumption and the body temperature, slowed down age-related disturbances in estrous function and increased life span of all and 10% most long-living NMRI mice. The treatment with Diabenol inhibited spontaneous tumor incidence and increased the mammary tumor latency in these mice. Diabenol treatment slowed down age-related changes in estrous function in HER-2/neu mice, failed influence survival of these mice and slightly inhibited the incidence and decreased the size of mammary adenocarcinoma metastases into the lung. In rats exposed to 1,2-dimethylhydrazine, treatment with Diabenol significantly inhibited multiplicity of all colon tumors, decreased by 2.2 times the incidence of carcinomas in ascending colon and by 3.1 times their multiplicity. Treatment with Diabenol was followed by higher incidence of exophytic and well-differentiated colon tumors as compared with the control rats exposed to the carcinogen alone (76.3% and 50%, and 47.4% and 14.7%, respectively). Thus, the drug increases survival and inhibits spontaneous carcinogenesis in mice and inhibits colon carcinogenesis in rats.
Collapse
Affiliation(s)
- Irina G Popovich
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Papaconstantinou J, Deford JH, Gerstner A, Hsieh CC, Boylston WH, Guigneaux MM, Flurkey K, Harrison DE. Hepatic gene and protein expression of primary components of the IGF-I axis in long lived Snell dwarf mice. Mech Ageing Dev 2005; 126:692-704. [PMID: 15888324 DOI: 10.1016/j.mad.2005.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/12/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence indicates that the GH/IGF-I axis plays a key role in the control of aging and longevity. To better understand this biological relationship we examined the mRNA and corresponding protein levels of primary IGF-I axis genes in the livers of young and aged long-lived Snell dwarf mice relative to their age-matched controls. We demonstrated that the level of IGF-I and ALS mRNAs is dramatically decreased in both young and aged dwarf livers, transcripts encoding IGF-IR and IGFBP-I are elevated in young dwarfs, but normalize to control levels in aged dwarf livers while transcripts encoding IGFBP-3 are elevated only in aged controls. Interestingly, regulation at the protein level of several IGF-I axis components in the Snell dwarf appears to involve both altered gene expression and post-translational regulation. In this study, we reveal both concordant and discordant relationships between mRNA and protein levels for particular components of the IGF-I axis, illustrating that some of these gene products are not solely regulated by transcriptional mechanisms. These results are consistent with a delay in the molecular maturation of the IGF-I axis in dwarf livers, suggesting the preservation of some neonatal characteristics in young adult and aged dwarf livers. Our studies provide gene expression and protein abundance profiles for components of IGF-I axis that are distinguishing characteristics of both young and aged dwarf mice, and suggest that delayed development of the IGF-I axis in the young adult Pit1(dw/dwJ) dwarf liver may play an important role in the endocrine regulation of mammalian longevity.
Collapse
Affiliation(s)
- John Papaconstantinou
- University of Texas Medical Branch, Department of Human Biological Chemistry and Genetics, Galveston, 77555-0643, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Schriner and colleagues have reported an important advance in our understanding of the mechanisms controlling lifespan in mammalian species. A transgenic mouse strain was constructed (MCAT) with a C57BL/6J background that has about a 50-fold increase in expression in cardiac mitochondria and skeletal muscle of catalase enzyme activity. The MCAT strain was found to have reduced severity of age-dependent arteriosclerosis and increased genomic stability, as indicated by a decrease in oxidative stress and mitochondrial deletions in heart and muscle tissues. Most exciting, however, is that both median and maximum lifespan were increased about 17-21% compared to wild-type controls. It was disappointing that the Gompertz plot of the MCAT strain ran parallel to the wild-type control, indicating a delay in the onset of aging rather than a decrease in aging rate. Nevertheless, these results support the notion of a role for mitochondrial oxidative stress as a determinant of both healthspan and lifespan. In addition, the relatively large increase in lifespan resulting from upregulation of a single gene suggests the possibility that similar upregulation of relatively few key longevity determinant genes may result in dramatic increases in lifespan.
Collapse
|
112
|
|
113
|
Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40:685-93. [PMID: 16125352 DOI: 10.1016/j.exger.2005.07.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/21/2005] [Accepted: 07/04/2005] [Indexed: 12/19/2022]
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include DAF-2 and InR and their homologues in mammals, and inactivation of the corresponding genes is followed by increased life span in nematodes, fruit flies and mice. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. The chronic treatment of female transgenic HER-2/neu mice with metformin (100 mg/kg in drinking water) slightly decreased the food consumption but failed in reducing the body weight or temperature, slowed down the age-related rise in blood glucose and triglycerides level, as well as the age-related switch-off of estrous function, prolonged the mean life span by 8% (p < 0.05), the mean life span of last 10% survivors by 13.1%, and the maximum life span by 1 month in comparison with control mice. The demographic aging rate represented by the estimate of respective Gompertz's parameter was decreased 2.26 times. The metformin-treatment significantly decreased the incidence and size of mammary adenocarcinomas in mice and increased the mean latency of the tumors.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N.Petrov Research Institute of Oncology, Pesochny-2, St Petersburg 197758, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 2005; 289:E23-9. [PMID: 15701676 DOI: 10.1152/ajpendo.00575.2004] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf mutant stock are resistant, in vitro, to the cytotoxic effects of H(2)O(2), cadmium, UV light, paraquat, and heat. We show here that similar resistance profiles are seen in fibroblast cells derived from a related mutant, the Ames dwarf mouse, and that cells from growth hormone receptor-null mice are resistant to H(2)O(2), paraquat, and UV but not to cadmium. Resistance to UV light, cadmium, and H(2)O(2) are similar in cells derived from 1-wk-old Snell dwarf or normal mice, and thus the resistance of cell lines derived from young adult donors reflects developmental processes, presumably hormone dependent, that take place in the first few months of life. The resistance of cells from Snell dwarf mice to these stresses does not reflect merely antioxidant defenses: dwarf-derived cells are also resistant to the DNA-alkylating agent methyl methanesulfonate. Furthermore, inhibitor studies show that fibroblast resistance to UV light is unaffected by the antioxidants ascorbic acid and N-acetyl-L-cysteine. These data suggest that postnatal exposure to altered levels of pituitary hormones leads to development of cellular resistance to oxidative and nonoxidative stressors, which are stable through many rounds of in vitro cell division and could contribute to the remarkable disease resistance of long-lived mutant mice.
Collapse
Affiliation(s)
- Adam B Salmon
- Cellular and Molecular Biology Graduate Program, University. of Michigan School of Medicine, 1500 E. Medical Center Dr., 5316 CCGC 0940, Ann Arbor, MI 48105-0940, USA
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
Recent animal studies have demonstrated evidence of the involvement of insulin and insulin-like growth factor (IGF)-I signalling in the control of ageing and longevity. Disruption of insulin/IGF-I signalling pathways significantly extends lifespan in several animal models. Similarities among these signalling pathways in animals and humans raise the possibility that modifications in the IGF-I signalling system could also extend lifespan in humans. However, in contrast to the findings in animal studies, reduced IGF-I activity in humans is not associated with longevity. In humans, low IGF-I activity is even associated with an increased risk of developing cardiovascular disease and diabetes. High IGF-I activity in humans is associated with an increased risk of developing cancer. In addition, genetic predisposition and lifestyle play a major role in determining age-associated disease. For each individual there is probably a specific optimal 'setpoint' for the insulin/growth hormone/IGF-I axis which co-determines survival.
Collapse
Affiliation(s)
- J A M J L Janssen
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | |
Collapse
|
116
|
Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005; 126:351-61. [PMID: 15621218 DOI: 10.1016/j.mad.2004.08.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we review data of recent literature on the distribution in centenarians of candidate germ-line polymorphisms that likely affect the individual chance to reach the extreme limit of human life. On the basis of previous observations on the immunology, endocrinology and cellular biology of centenarians we focused on genes that regulate immune responses and inflammation (IL-6, IL-1 cluster, IL-10), genes involved in the insulin/IGF-I signalling pathway and genes that counteract oxidative stress (PON1). On the whole, data indicate that polymorphisms of these genes likely contribute to human longevity, in accord with observations emerging from a variety of animal models, and suggest that a common core of master genes and metabolic pathways are responsible for aging and longevity across animal species. Moreover, in the concern of our plan to discover new genetic factors related to longevity, we explored the possibility to by-pass the need of an a-priori choice of candidate genes, extending the search to genes and genomic regions of still unknown function. Alu sequences may be considered as good markers of highly variable and potentially unstable loci in functionally important genomic regions. We extensively screened Alu-rich genomic sites and found a new genomic region associated with longevity.
Collapse
|
117
|
Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A. Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiol Aging 2005; 26:929-37. [PMID: 15718052 DOI: 10.1016/j.neurobiolaging.2004.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 07/19/2004] [Accepted: 07/30/2004] [Indexed: 11/19/2022]
Abstract
Beneficial effects of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) on the development and function of the central nervous system are well documented. In spite of primary deficiency of GH and secondary IGF-1 deficiency, Ames dwarf mice live considerably longer than normal animals, exhibit apparently normal cognitive functions and maintain them into advanced age. In an attempt to reconcile these findings, we have examined local expression of GH and IGF-1 in the hippocampus of normal and Ames dwarf mice. We found that both hippocampal GH and IGF-1 protein levels are increased and the corresponding mRNAs are normal in Ames dwarf as compared with normal mice. Increased phosphorylation of Akt and cyclic AMP responsive element-binding protein (CREB) were detected in the hippocampus of Ames dwarf mice. Our results suggest that increase in hippocampal GH and IGF-1 protein expression and subsequent activation of PI3K/Akt-CREB signal transduction cascade might contribute to the maintenance of cognitive function and is likely to be responsible for the integrity of neuronal structure, and maintenance of youthful levels of cognitive function in these long-lived mice during aging.
Collapse
Affiliation(s)
- Liou Y Sun
- Geriatrics Research, Department of Medicine, Southern Illinois University, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
118
|
Hsieh CC, Papaconstantinou J. Akt/PKB and p38 MAPK signaling, translational initiation and longevity in Snell dwarf mouse livers. Mech Ageing Dev 2005; 125:785-98. [PMID: 15541773 DOI: 10.1016/j.mad.2004.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin/IGF-1/GH and p38 MAPK signaling pathways play a key role in the regulation of protein synthesis. The regulation of GH and TSH secretion hormones, that affect the activity of these pathways, plays an important role in the decline of rates of protein synthesis in aged rodent tissues. Studies have indicated that longevity of the Snell dwarf (Pit-1) mouse mutant is associated with the reduction of function of the insulin/IGF-1/GH signaling pathway. We have previously shown that PI3K activity, a signaling protein that plays a key role in the regulation of translation, is also dramatically decreased in the Snell dwarf liver suggesting that the protein synthesis-signaling pathway may be attenuated in this long-lived mouse. Similarly, signaling via p38 MAPK also plays a role in the regulation of protein synthesis. In this study we examined the activities of these signaling pathways to determine if the translation-signaling pathway is altered in young versus aged Snell dwarf mouse livers. Our data indicate that the phosphorylation and kinase activities of Akt/PKB and p38 MAPK, and the levels of phosphorylation of downstream regulators of translation are decreased in dwarf mouse livers. Thus, the overall activities of major components of the translational initiation pathway are decreased in the long-lived Snell dwarf mouse livers. We propose that down-regulation of protein synthesis may be an important characteristic of the Pit-1 mutation and longevity of the Snell dwarf mouse.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | |
Collapse
|
119
|
Abstract
The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse species including C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is involved in many interrelated functions that are necessary for metabolism, growth and reproduction. Interestingly, more and more research has revealed that insulin/IGF-1 signaling pathway plays a pivotal role in the regulation of longevity. Generally, disruption of the power of this pathway will extend longevity in species ranging from C.elegans to humans. The role of insulin/IGF-1 in longevity is probably related to stress resistance. Although the underlying mechanisms of longevity are not fully understood, the Insulin/IGF-1 signaling pathway has attracted substantial attention and it will be a novel target to prevent or postpone age-related diseases and extend life span. In this review, we mainly focus on the similar constitution and role of insulin/IGF-1 signaling pathway in C.elegans, saccharomyces cerevisiae, rodents and humans.
Collapse
Affiliation(s)
- Chun-Lei Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan XiLi, Beijing 100050, China
| | | | | | | |
Collapse
|
120
|
van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RGJ. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005; 4:79-85. [PMID: 15771611 DOI: 10.1111/j.1474-9728.2005.00148.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence is accumulating that aging is hormonally regulated by an evolutionarily conserved insulin/IGF-1 signalling (IIS) pathway. Mutations in IIS components affect lifespan in Caenorhabditis elegans, Drosophila melanogaster and mice. Most long-lived IIS mutants also show increased resistance to oxidative stress. In D. melanogaster and mice, the long-lived phenotype of several IIS mutants is restricted to females. Here, we analysed the relationship between IIS signalling, body height and longevity in humans in a prospective follow-up study. Based on the expected effects (increased or decreased signalling) of the selected variants in IIS pathway components (GHRHR, GH1, IGF1, INS, IRS1), we calculated composite IIS scores to estimate IIS pathway activity. In addition, we analysed the relative impact on lifespan and body size of the separate variants in multivariate models. In women, lower IIS scores are significantly associated with lower body height and improved old age survival. Multivariate analyses showed that these results were most pronounced for the GH1 SNP, IGF1 CA repeat and IRS1 SNP. In females, for variant allele carriers of the GH1 SNP, body height was 2 cm lower (P = 0.007) and mortality 0.80-fold reduced (P = 0.019) when compared with wild-type allele carriers. Thus, in females, genetic variation causing reduced IIS activation is beneficial for old age survival. This effect was stronger for the GH1 SNP than for variation in the conserved IIS genes that were found to affect longevity in model organisms.
Collapse
Affiliation(s)
- Diana van Heemst
- Section of Gerontology and Geriatrics, Department of General Internal Medicine, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Sun LY, Evans MS, Hsieh J, Panici J, Bartke A. Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice. Endocrinology 2005; 146:1138-44. [PMID: 15564324 DOI: 10.1210/en.2004-1115] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurogenesis occurs throughout adult life in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. Multiple trophic factors including IGF-I have been demonstrated to regulate hippocampal neurogenesis. Ames dwarf mice live considerably longer than normal animals and maintain physiological function at youthful levels, including cognitive function, despite a deficiency of circulating GH and IGF-I. Here we show an increase in numbers of newly generated cells [bromodeoxyuridine (BrdU) positive] and newborn neurons (neuronal nuclear antigen and BrdU positive) in the dentate gyrus of adult dwarf mice compared with normal mice using BrdU labeling. Despite the profound suppression of hippocampal GH expression, hippocampal IGF-I protein levels are up-regulated and the corresponding mRNAs are as high in Ames dwarf as in normal mice. Our results suggest that local/hippocampal IGF-I expression may have induced the increase in hippocampal neurogenesis, and increased neurogenesis might contribute to the maintenance of youthful levels of cognitive function during aging in these long-lived animals.
Collapse
Affiliation(s)
- Liou Y Sun
- Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Room 4389, 801 North Rutledge, Springfield, Illinois 62794-9628, USA
| | | | | | | | | |
Collapse
|
122
|
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg, Russia
| |
Collapse
|
123
|
Samaras T, Elrick H. An alternative hypothesis to the obesity epidemic: Obesity is due to increased maternal body size, birth size, growth rate, and height. Med Hypotheses 2005; 65:676-82. [PMID: 16006048 DOI: 10.1016/j.mehy.2005.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 05/12/2005] [Indexed: 12/21/2022]
Abstract
A new hypothesis for dealing with the obesity epidemic is based on changing several factors normally considered desirable by the medical community. These factors include reductions in pre-pregnancy maternal weight, modest reduction of infant birthweight, slower childhood and adolescent growth and reduced caloric intake from infancy through adulthood. The underlining roots for the obesity epidemic involve raised levels of insulin, insulin-like growth factor-1 and cell proliferation which are subject to human control. The implication of this hypothesis is that current measures are inadequate unless a much more comprehensive response is implemented to deal with the obesity epidemic.
Collapse
Affiliation(s)
- Thomas Samaras
- Reventropy Associates, 11487 Madera Rosa Way, San Diego, CA 92124-2877, USA.
| | | |
Collapse
|
124
|
Satyanarayana A, Rudolph KL. p16 and ARF: activation of teenage proteins in old age. J Clin Invest 2004; 114:1237-40. [PMID: 15520854 PMCID: PMC524239 DOI: 10.1172/jci23437] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence induced by different stresses and telomere shortening appears to play an important role in the aging process. The products of the INK4a/ARF locus--p16INK4a and ARF--arrest cell proliferation at the senescence stage by exerting their effects on retinoblastoma protein- and p53-mediated responsive pathways. A study in this issue of the JCI provides experimental evidence of a specific upregulation of these cell cycle inhibitors in a variety of organs during mammalian aging.
Collapse
Affiliation(s)
- Ande Satyanarayana
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
125
|
Browner WS, Kahn AJ, Ziv E, Reiner AP, Oshima J, Cawthon RM, Hsueh WC, Cummings SR. The genetics of human longevity. Am J Med 2004; 117:851-60. [PMID: 15589490 DOI: 10.1016/j.amjmed.2004.06.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 06/01/2004] [Indexed: 11/29/2022]
Abstract
Many of the genes that affect aging and longevity in model organisms, such as mice, fruit flies, and worms, have human homologs. This article reviews several genetic pathways that may extend lifespan through effects on aging, rather than through effects on diseases such as atherosclerosis or cancer. These include some of the genes involved in the regulation of DNA repair and nuclear structure, which cause the progeroid syndromes when mutated, as well as those that may affect telomere length, since shorter telomeres have been associated with shorter survival. Other potential longevity genes, such as sirtuins, are involved in regulating the response to cellular stress, including caloric restriction. The best-studied pathway involves insulin and insulin-like growth factor 1 signaling; mutations in homologs of these genes have extended lifespan up to sixfold in model organisms. Other potential candidates include mitochondrial DNA and the genes that regulate the inflammatory response. Despite the challenges in study design and analysis that face investigators in this area, the identification of genetic pathways that regulate longevity may suggest potential targets for therapy.
Collapse
Affiliation(s)
- Warren S Browner
- California Pacific Medical Center Research Institute, San Francisco, California 94115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
The number of interactions, or connectivity, among proteins in the yeast protein interaction network follows a power law. I compare patterns of connectivity for subsets of yeast proteins associated with senescence and with five other traits. I find that proteins associated with ageing have significantly higher connectivity than expected by chance, a pattern not seen for most other datasets. The pattern holds even when controlling for other factors also associated with connectivity, such as localization of protein expression within the cell. I suggest that these observations are consistent with the antagonistic pleiotropy theory for the evolution of senescence. In further support of this argument, I find that a protein's connectivity is positively correlated with the number of traits it influences or its degree of pleiotropy, and further show that the average degree of pleiotropy is greatest for proteins associated with senescence. I explain these results with a simple mathematical model combining assumptions of the antagonistic pleiotropy theory for the evolution of senescence with data on network topology. These findings integrate molecular and evolutionary models of senescence, and should aid in the search for new ageing genes.
Collapse
|
127
|
Anisimov VN, Arbeev KG, Popovich IG, Zabezhinksi MA, Arbeeva LS, Yashin AI. Is early life body weight a predictor of longevity and tumor risk in rats? Exp Gerontol 2004; 39:807-16. [PMID: 15130675 DOI: 10.1016/j.exger.2004.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Revised: 02/10/2004] [Accepted: 02/17/2004] [Indexed: 11/22/2022]
Abstract
Heavy body weight (BW) is thought to be associated with reduced longevity and age-associated diseases, including cancer, both in laboratory rodents and humans. To further investigate the interactions between BW, longevity and spontaneous tumor development, we measured the correlations between BW in early life, BW in middle life, and parameters of life span and tumorigenesis in male and female outbred rats. The data show that BW at the ages of both 3 and 12 months are significant predictors of longevity in rats. Heavier female rats tend to live longer than the lighter female rats, while in male those who were light at 3 months but heavy at 12 month had the best longevity. BW at the age 3 months was not predictive of tumor growth but being heavier at the age of 1 year did confer an increased risk of tumor development for both male and female rats.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St Petersburg 197758, Russian Federation.
| | | | | | | | | | | |
Collapse
|
128
|
Brown-Borg HM. Antiaging supplement holds promise to halt age-related cognitive deterioration. Exp Biol Med (Maywood) 2004; 229:367-8. [PMID: 15096647 DOI: 10.1177/153537020422900503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- H M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA.
| |
Collapse
|
129
|
Anisimov VN, Arbeev KG, Popovich IG, Zabezhinksi MA, Rosenfeld SV, Piskunova TS, Arbeeva LS, Semenchenko AV, Yashin AI. Body weight is not always a good predictor of longevity in mice. Exp Gerontol 2004; 39:305-19. [PMID: 15036390 DOI: 10.1016/j.exger.2003.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 11/16/2022]
Abstract
There have been some observations that low body weight and a low level of some hormones (e.g. IGF-1) during the first half of life are predictors of longer life in mice. However, contradictions in the available data on the biomarkers of aging and predictors of longevity have shown that the research in these fields has become a controversial pursuit. In our study we addressed the following questions: (i) Can particular physiological parameters (body weight, food intake, estrus function, body temperature, incidence of chromosome aberrations in bone marrow cells) measured at the age of 3 and 12 months be a predictor of longevity and the rate of tumor development in five strains of mice? (ii) Can a heavy body weight at the age of 3 and 12 months be a predictor of longevity and high tumor risk in five strains of mice? Mice of five strains-CBA, SHR, SAMR, SAMP and transgenic HER-2/neu (FVB/N)-were under observation from the age of 2-3 months until natural death. Body weight and temperature, food consumption, and estrous cycle were longitudinally studied in all animals. Tumors discovered at autopsy were studied morphologically. We calculated the life span's parameters (mean, maximum, mortality rate, mortality rate doubling time) as well as their correlation with other parameters studied. The longest living CBA mice have the lowest body weight at the ages of 3 and 12 months, the lowest food consumption, body temperature, incidence of chromosome aberrations and spontaneous tumor incidence. In comparison with all other mouse strains they also have the latest disturbances in estrus function and highest body weight gain. The shortest living transgenic HER-2/neu mice have the lowest weight at the ages of 12 months, the lowest body weight gain, maximal body temperature, the most rapid disturbances in estrus function and the highest incidence of chromosome aberrations and tumor incidence in comparison to all other mouse strains. Our findings have shown that heavier body weight at the age of 12 months is a predictor of longevity in female CBA and SAMP mice but not in SHR, SAMR and HER-2/neu mice. Excessive body weight at the ages of 3 or 12 months is not a predictor of increased tumor risk in the strains studied. In general, the existence and direction of a significant correlation between body weight and life span depends upon the animals' age and genotype.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St Petersburg 197758, Russian Federation.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
McCarty MF. Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med Hypotheses 2004; 63:334-9. [PMID: 15236799 DOI: 10.1016/j.mehy.2004.01.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/13/2004] [Indexed: 12/25/2022]
Abstract
Caloric restriction down-regulates insulin secretion and systemic IGF-I activity, and there is reason to suspect that these effects are key mediators of caloric restriction's favorable impact on longevity. Alternative strategies for down-regulating these hormones are thus of great interest; chronic activation of AMP-activated kinase (AMPK)--clinically achievable with the drug metformin--may have utility in this regard. In the liver, AMPK slows hepatic glucose output by down-regulating expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase; in skeletal muscle, it boosts the efficiency of insulin-stimulated glucose uptake by increasing expression of GLUT-4. These effects evidently mandate a down-regulation of insulin secretion. The resulting reduction of hepatic insulin activity can be expected to suppress hepatic production of IGF-I while boosting that of IGFBP-1, thereby decreasing plasma free IGF-I. AMPK can also directly stimulate IGFBP-1 synthesis in hepatocytes, and interfere with the ras/raf/erk pathway of IGF-I signaling. In non-diabetics, metformin therapy is indeed reported to reduce plasma levels of insulin and of free IGF-I; indeed, this is thought to be the mechanism whereby metformin suppresses excess androgen production in PCOS. A pro-longevity effect of the related biguanide phenformin has already been reported in tumor-prone mice, and mouse longevity studies with metformin are currently in progress. The development of AMPK activators which do not share metformin's modest risk of inducing lactic acidosis--apparently reflecting an inhibition of mitochondrial complex 1 that is not intrinsic to AMPK activity--might aid the practical applicability of this pro-longevity strategy.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
131
|
Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003; 285:E1064-71. [PMID: 14534077 DOI: 10.1152/ajpendo.00296.2003] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although the underlying mechanisms of longevity are not fully understood, it is known that mutation in genes that share similarities with those in humans involved in the insulin/insulin-like growth factor I (IGF-I) signal response pathway can significantly extend life span in diverse species, including yeast, worms, fruit flies, and rodents. Intriguingly, the long-lived mutants, ranging from yeast to mice, share some important phenotypic characteristics, including reduced insulin signaling, enhanced sensitivity to insulin, and reduced IGF-I plasma levels. Such genetic homologies and phenotypic similarities between insulin/IGF-I pathway mutants raise the possibility that the fundamental mechanism of aging may be evolutionarily conserved from yeast to mammals. Very recent findings also provide novel and intriguing evidence for the involvement of insulin and IGF-I in the control of aging and longevity in humans. In this study, we focus on how the insulin/IGF-I pathway controls yeast, nematode, fruit fly, and rodent life spans and how it is related to the aging process in humans to outline the prospect of a unifying mechanism in the genetics of longevity.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Geriatric Medicine and Metabolic Diseases, University of Naples, 80138 Naples, Italy
| | | | | | | |
Collapse
|
132
|
Abstract
According to developmental genetics theories, aging is a genetically programmed and controlled continuum of development and maturation. Being dynamic and malleable processes, development and aging are controlled not only by genes but also by environmental and epigenetic influences that predominate in the second half of life. Genetic mutations affect many phenotypes in flies, worms, rodents, and humans which share several diseases or their equivalents, including cancer, neurodegeneration, and infectious disorders as well as their susceptibility to them. Life span and stress resistance are closely linked. Oxidative stress actually constitutes a defined hypothesis of aging in that macromolecule oxidative damage accumulates with age and tends to be associated with life expectancy. DNA methylation, a force in the regulation of gene expression, is also one of the biomarkers of genetic damage. The mitotic clock of aging is marked, if not guided, by telomeres, essential genetic elements stabilizing natural chromosomic ends. The dream of humans to live longer, healthy lives is being tested by attempts to modify longevity in animal models, frequently by dietary manipulation. The quest continues to understand the mechanisms of healthy aging, one of the most compelling areas of research in the 21st century.
Collapse
Affiliation(s)
- Pavel Hamet
- Centre de recherche, CHUM-Hôtel-Dieu, Université Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
133
|
Speakman JR, van Acker A, Harper EJ. Age-related changes in the metabolism and body composition of three dog breeds and their relationship to life expectancy. Aging Cell 2003; 2:265-75. [PMID: 14570234 DOI: 10.1046/j.1474-9728.2003.00061.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We measured body composition and resting metabolic rates (RMR) of three dog breeds (Papillons, mean body mass 3.0 kg (n = 35), Labrador retrievers, mean body mass 29.8 kg (n = 35) and Great Danes, mean body mass 62.8 kg (n = 35)) that varied between 0.6 and 14.3 years of age. In Papillons, lean body mass (LBM) increased with age but fat mass (FBM) was constant; in Labradors, both LBM and FBM were constant with age, and in Great Danes, FBM increased with age but LBM was constant. FBM averaged 14.8% and 15.7% of body mass in Papillons and Labradors, respectively. Great Danes were leaner and averaged only 10.5% FBM. Pooling the data for all individuals, the RMR was significantly and positively associated with LBM and FBM and negatively associated with age. Once these factors had been taken into account there was still a significant breed effect on RMR, which was significantly lower in Labradors than in the other two breeds. Using the predictive multiple regression equation for RMR and the temporal trends in body composition, we modelled the expenditure of energy (at rest) over the first 8 years of life, and over the entire lifespan for each breed. Over the first 8 years of life the average expenditure of energy per kg LBM were 0.985, 0.675 and 0.662 GJ for Papillons, Labradors and Great Danes, respectively. This energy expenditure was almost 60% greater for the smallest compared with the largest breed. On average, however, the life expectancy for the smallest breed was a further 6 years (i.e. 14 years in total), whereas for the largest breed it was only another 6 months (i.e. 8.5 years in total). Total lifetime expenditure of energy at rest per kg LBM averaged 1.584, 0.918 and 0.691 GJ for Papillons, Labradors and Great Danes, respectively. In Labradors, total daily energy expenditure, measured by the doubly labelled water method in eight animals, was only 16% greater than the observed RMR. High energy expenditure in dogs appears positively linked to increased life expectancy, contrary to the finding across mammal species and within exotherms, yet resembling observations in other intra-specific studies. These contrasting correlations suggest that metabolism is affecting life expectancy in different ways at these different levels of enquiry.
Collapse
Affiliation(s)
- J R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | |
Collapse
|