101
|
Abstract
AIM To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro. METHODS The BAL system was configured by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment. RESULTS During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly. CONCLUSION The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
Affiliation(s)
- Zhong Chen
- Department of General Surgery, Affiliated Hospital, Nantong University, Nantong 226001, Jiangsu Province, China.
| | | |
Collapse
|
102
|
Li J, Li L, Yu H, Cao H, Gao C, Gong Y. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. ASAIO J 2006; 52:321-327. [PMID: 16760723 DOI: 10.1097/01.mat.0000217794.35830.4a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatic tissue engineering offers a promising approach toward alleviating the need for donor liver, yet many challenges must be overcome including choice of scaffold, cell source, and immunologic barriers. Poly(lactic-co-glycolic acid) (PLGA) polymers are innovative biodegradable materials that have been shown to be useful as scaffolds for seeding and culturing various types of cells. In this study, a porous sponge scaffold of modified PLGA polymer with collagen was investigated for its ability to improve the growth and metabolism of human hepatocytes. We evaluated the biocompatibility of collagen-modified PLGA (C-PLGA) scaffolds with hepatocytes isolated from human liver. Cell adhesion and function (cell density, culture lifespan, albumin synthesis, urea synthesis, and ammonia elimination and diazepam clearance) were assessed during different culture periods. The number of hepatocytes cultured in C-PLGA scaffolds was higher compared with those cultured in PLGA scaffolds without collagen modification, and the lifespan of hepatocytes cultured in C-PLGA scaffolds was longer than that of cells cultured in PLGA scaffolds. Albumin and urea synthesis and ammonia elimination from attached hepatocytes were greater in C-PLGA than in PLGA scaffolds, with the exception of diazepam clearance. Collagen-modified PLGA scaffold is a promising biomaterial for hepatic tissue engineering.
Collapse
Affiliation(s)
- Jun Li
- Department of Infectious Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
103
|
Zahorsky-Reeves JL, Gregory CR, Cramer DV, Patanwala IY, Kyles AE, Borie DC, Kearns-Jonker MK. Similarities in the immunoglobulin response and VH gene usage in rhesus monkeys and humans exposed to porcine hepatocytes. BMC Immunol 2006; 7:3. [PMID: 16549031 PMCID: PMC1448184 DOI: 10.1186/1471-2172-7-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/20/2006] [Indexed: 01/13/2023] Open
Abstract
Background The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose α (1,3) galactose (αGal) present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs), composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine αGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH) immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgVH genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta) were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. Results Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the VH3 family, with a minor contribution from the VH4 family. Immunoglobulin heavy-chain gene (VH) cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, VH3-11cyno, has not been previously identified, and encodes xenoantibodies at later time points post-transplant. Sequencing of IgG clones revealed increased usage of the monkey germline progenitor most similar to human IGHV3-11 and the onset of mutations. Conclusion The small number of IGVH genes encoding xenoantibodies to porcine hepatocytes in non-human primates and humans is highly conserved. Rhesus monkeys are an appropriate preclinical model for testing novel reagents such as those developed using structure-based drug design to target and deplete antibodies to porcine xenografts.
Collapse
Affiliation(s)
- Joanne L Zahorsky-Reeves
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Clare R Gregory
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Donald V Cramer
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Insiyyah Y Patanwala
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| | - Andrew E Kyles
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Dominic C Borie
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Mary K Kearns-Jonker
- Cardiothoracic Surgery Research, The Saban Research Institute of Childrens Hospital Los Angeles, The Keck School of Medicine, University of Southern California, 4650 Sunset Blvd. MS #137, Los Angeles, CA, 90027, USA
| |
Collapse
|
104
|
Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 50:163-79. [PMID: 19003077 PMCID: PMC3476010 DOI: 10.1007/s10616-006-6336-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 12/23/2022] Open
Abstract
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems' contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.
Collapse
Affiliation(s)
- Sonja Diekmann
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Augustinus Bader
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Stephanie Schmitmeier
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
105
|
Abstract
AIM: To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro.
MEHTODS: The BAL system was configurated by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment.
RESULTS: During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly.
CONCLUSION: The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
|
106
|
Abstract
Liver failure remains a life-threatening syndrome. With the growing disparity between the number of suitable donor organs and the number of patients awaiting transplantation, efforts have been made to optimize the allocation of organs, to find alternatives to cadaveric liver transplantation, and to develop extracorporeal methods to support or replace the function of the failing organ. An extracorporeal liver support system has to provide the main functions of the liver: detoxification, synthesis, and regulation. The understanding that the critical issue of the clinical syndrome in liver failure is the accumulation of toxins not cleared by the failing liver led to the development of artificial filtration and adsorption devices (artificial liver support). Based on this hypothesis, the removal of lipophilic, albumin-bound substances, such as bilirubin, bile acids, metabolites of aromatic amino acids, medium-chain fatty acids, and cytokines, should be beneficial to the clinical course of a patient in liver failure. Artificial detoxification devices currently under clinical evaluation include the Molecular Adsorbent Recirculating System (MARS), Single-Pass Albumin Dialysis (SPAD), and the Prometheus system. The complex tasks of regulation and synthesis remain to be addressed by the use of liver cells (bioartificial liver support). The Extracorporeal Liver Assist Device (ELAD), HepatAssist, Modular Extracorporeal Liver Support system (MELS), and the Amsterdam Medical Center Bioartificial Liver (AMC-BAL) are bioartificial systems. This article gives a brief overview on these artificial and bioartificial devices and discusses remaining obstacles.
Collapse
Affiliation(s)
- G Pless
- Charité, Campus Virchow, General, Visceral and Transplantation Surgery, Berlin, Germany.
| | | |
Collapse
|
107
|
Schneider C, Aurich H, Wenkel R, Christ B. Propagation and functional characterization of serum-free cultured porcine hepatocytes for downstream applications. Cell Tissue Res 2005; 323:433-42. [PMID: 16315006 DOI: 10.1007/s00441-005-0089-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
Hepatocyte transplantation is considered an alternative to whole organ transplantation. However, the availability of human cadaveric livers for the isolation of transplantation-quality hepatocytes is increasingly restricted. Xenogeneic porcine hepatocytes may therefore serve as an alternate cell ressource. The propagation of hepatocytes is often necessary to yield a sufficient cell number for downstream applications in xenotransplantation and in, for example, bioartificial liver support or pharmacological and toxicological studies. Our goal has been to propagate primary porcine hepatocytes in vitro and to determine the functional maintenance of the propagated cells. Porcine hepatocytes were cultured under serum-free conditions in the presence of hepatocyte growth factor and epidermal growth factor and passaged several times. The viability, proliferation and maintenance of liver-specific functions were determined as culture proceeded. Total cell number increased by 12-fold during four sequential passages, although the proliferative capacity was higher in primary cells and early passages as compared with late passages. Xenobiotics metabolism and urea synthesis gradually decreased with ongoing culture but could be restored by treatment with appropriate stimuli such, as beta-naphthoflavone and cAMP. The expression of hepatocyte-specific genes was generally lower at the beginning than at later time-points of culture of individual passages. Porcine hepatocytes can thus be propagated in vitro. The partial loss of hepatocyte function may be restored in vitro by appropriate stimuli. This may also be achieved in a recipient liver after hepatocyte transplantation provided that the proper physiological environment for the maintenance of the differentiated hepatocyte phenotype is present.
Collapse
Affiliation(s)
- Christian Schneider
- Universitätsklinik und Poliklinik fuer Innere Medizin I, Martin-Luther-Universitaet Halle-Wittenberg, 06097, Halle, Germany.
| | | | | | | |
Collapse
|
108
|
Monga SPS, Hout MS, Baun MJ, Micsenyi A, Muller P, Tummalapalli L, Ranade AR, Luo JH, Strom SC, Gerlach JC. Mouse fetal liver cells in artificial capillary beds in three-dimensional four-compartment bioreactors. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:1279-92. [PMID: 16251412 PMCID: PMC1603778 DOI: 10.1016/s0002-9440(10)61215-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 01/25/2023]
Abstract
Bioreactors containing porcine or adult human hepatocytes have been used to sustain acute liver failure patients until liver transplantation. However, prolonged function of adult hepatocytes has not been achieved due to compromised proliferation and viability of adult cells in vitro. We investigated the use of fetal hepatocytes as an alternative cell source in bioreactors. Mouse fetal liver cells from gestational day 17 possessed intermediate differentiation and function based on their molecular profile. When cultured in a three-dimensional four-compartment hollow fiber-based bioreactor for 3 to 5 weeks these cells formed neo-tissues that were characterized comprehensively. Albumin liberation, testosterone metabolism, and P450 induction were demonstrated. Histology showed predominant ribbon-like three-dimensional structures composed of hepatocytes between hollow fibers. High positivity for proliferating cell nuclear antigen and Ki-67 and low positivity for terminal dUTP nick-end labeling indicated robust cell proliferation and survival. Most cells within these ribbon arrangements were albumin-positive. In addition, cells in peripheral zones were simultaneously positive for alpha-fetoprotein, cytokeratin-19, and c-kit, indicating their progenitor phenotype. Mesenchymal components including endothelial, stellate, and smooth muscle cells were also observed. Thus, fetal liver cells can survive, proliferate, differentiate, and function in a three-dimensional perfusion culture system while maintaining a progenitor pool, reflecting an important advance in hepatic tissue engineering.
Collapse
Affiliation(s)
- Satdarshan P S Monga
- Department of Pathology, McGowan Institute for Regenerative Medicine, and the Department of Pharmacy, University of Pittsburgh, SOM, S421-BST, 200 Lothrop St., Pittsburgh PA 15261, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Barshes NR, Gay AN, Williams B, Patel AJ, Awad SS. Support for the Acutely Failing Liver: A Comprehensive Review of Historic and Contemporary Strategies. J Am Coll Surg 2005; 201:458-76. [PMID: 16125082 DOI: 10.1016/j.jamcollsurg.2005.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/23/2005] [Accepted: 04/11/2005] [Indexed: 12/16/2022]
Affiliation(s)
- Neal R Barshes
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
110
|
Elvevold K, Nedredal GI, Revhaug A, Bertheussen K, Smedsrød B. Long-term preservation of high endocytic activity in primary cultures of pig liver sinusoidal endothelial cells. Eur J Cell Biol 2005; 84:749-64. [PMID: 16218189 DOI: 10.1016/j.ejcb.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Together with Kupffer cells, liver sinusoidal endothelial cells (LSECs) constitute the most powerful scavenger system in the body. However, studies on LSEC function are hampered by the fact that the cells lose their scavenger ability and start deteriorating after a few days in culture. The purpose of the present study was to improve the conditions of cultivation to prolong the survival of pig LSECs in vitro. We used the high capacity receptor-mediated endocytosis of soluble waste molecules as a marker for functionally intact cells in the cultures. Compared with two commercially-, and two other media specifically designed for use with either SECs or hepatocytes from rat, our newly developed serum-free medium, DM 110/SS, devoid of any components of animal origin, was superior in maintaining the endocytic activity. Of six growth factors studied for their effect on endocytosis, basic fibroblast, and recombinant epidermal, but not vascular endothelial growth factor, were found to be most beneficial. After 8 days in DM 110/SS, LSECs maintained endocytosis via the scavenger receptor, mannose receptor, collagen alpha-chain receptor and the Fc-gamma receptor. All endocytosed ligands, except for aggregated IgG were degraded in 8-day-old cultures. Using the new medium, the cells endocytosed ligands for up to 20 days, and survived for at least an additional 10 days, albeit without the high endocytic activity typical of intact LSECs. Importantly, DNA synthesis in prolonged cultures of LSECs was observed only when maintained in DM 110/SS medium. In conclusion, we describe a protocol for the maintenance of LSECs in culture for the longest period yet reported.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
111
|
Park J, Berthiaume F, Toner M, Yarmush ML, Tilles AW. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol Bioeng 2005; 90:632-44. [PMID: 15834948 DOI: 10.1002/bit.20463] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An extracorporeal bioartificial liver device has the potential to provide temporary hepatic support for patients with liver failure. Our goal was to optimize the flow environment for the cultured hepatocytes in a flat-plate bioreactor, specifically focusing on oxygen delivery using high medium flow rates while reducing the detrimental effects of the resulting shear stresses. We used photolithographic techniques to fabricate microgrooves onto the underlying glass substrate. The microgrooves, perpendicular to the axial flow direction, protected the hepatocytes from the shear stress induced by the flowing medium. Using finite element analysis, we found that the velocity gradient change near the cell surface (i.e., bottom of the grooves) was smaller than that near the top surface of the flow channel, indicating that the grooves would provide protection to the attached cells from the mechanical effects of the flowing medium. We also determined that the shear stress at the cell surface could be reduced by as much as 30 times (channel height of 100 microm) in the grooved-substrate (0.5 dyn/cm(2)) bioreactor compared to the flat-substrate (15 dyn/cm(2)) bioreactor for a medium flow rate of 4.0 mL/min. Albumin and urea synthesis rates of hepatocytes cocultured with 3T3-J2 fibroblasts remained stable over 5 days of perfusion in the grooved-substrate bioreactor, whereas in the flat-substrate bioreactor they decreased over the same time period. These studies indicate that under "high" flow conditions the microgrooved-substrate in the bioreactor can decrease the detrimental effects of shear stress on the hepatocytes while providing adequate oxygenation, thereby resulting in stable liver-specific function.
Collapse
Affiliation(s)
- Jaesung Park
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospitals for Children and Harvard Medical School, 51 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
112
|
Meier SM, Huebner H, Buchholz R. Single-cell-bioreactors as end of miniaturization approaches in biotechnology: progresses with characterised bioreactors and a glance into the future. Bioprocess Biosyst Eng 2005; 28:95-107. [PMID: 16096764 DOI: 10.1007/s00449-005-0003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 05/06/2005] [Indexed: 11/26/2022]
Abstract
Incidents with single cells and their genesis have not been the major focus of science up to now. This fact is supported by the difficulties one faces when wanting to monitor and cultivate small populations of cells in a defined compartment under controlled conditions, in vitro. Several approaches of up- and down-scaling have often led to poorly understood results which might be better elucidated by understanding the cellular genesis as a function of its microenvironment. This review of the approaches of scale-up and scale-down processes illustrates technical possibilities and shows up their limitations with regard to obtainable data for the characterisation of cellular genesis and impact of the cellular microenvironment. For example, stem cell research advances underline the lack of information about the impact of the microenvironment on cellular development. Finally, a proposal of future research efforts is given on how to overcome this lack of data via a novel bioreactor setup.
Collapse
Affiliation(s)
- Stephan Michael Meier
- Institute of Bioprocess Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | |
Collapse
|
113
|
Abstract
Currently, the number of patients awaiting transplantation is continuously increasing, and shortage of available deceased organ donors is the major limitation for organ and cell allotransplantation. Research to develop alternative sources of tissues is ongoing and xenogeneic organs or cells represent an attractive solution. This review focuses on recent progress achieved in this field, including the development of newly genetically modified animal donors and new immunosuppressive approaches. As xenotransplantation is moving closer to clinical application, future perspectives must establish guidelines to ensure that future clinical trials are carried out ethically and safely.
Collapse
Affiliation(s)
- Pascal Bucher
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Switzerland
| | | | | |
Collapse
|
114
|
Nishitai R, Ikai I, Shiotani T, Katsura N, Matsushita T, Yamanokuchi S, Matsuo K, Sugimoto S, Yamaoka Y. Absence of PERV infection in baboons after transgenic porcine liver perfusion. J Surg Res 2005; 124:45-51. [PMID: 15734478 DOI: 10.1016/j.jss.2004.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Indexed: 01/10/2023]
Abstract
BACKGROUND Xenotransplantation offers great promise to supplement the shortage of human organs available for transplant, but cross-species infection is a substantial concern. Porcine endogenous retrovirus (PERV), in particular, is thought to pose a risk as a potential pathogen to humans. We evaluated whether PERV is capable of infecting nonhuman primates in vivo after extracorporeal porcine liver perfusion (ECLP). METHODS Livers were harvested from six human decay-accelerating factor (h-DAF) transgenic piglets and perfused with fresh baboon blood via the portal vein and the hepatic artery. Six healthy baboons underwent direct cross-circulation with the ECLP for 13 to 24 h without immunosuppression. Peripheral blood and bone marrow of baboons were sampled periodically until the baboons were euthanized for the examination of various organ tissue samples. Genomic DNA was extracted from those samples and tested for PERV and pig-specific centromeric DNA sequences by quantitative PCR. Validation showed that the assay could detect one copy of PERV in a background of 150,000 baboon cells, and it was quantitative over a range from 10 to 10(6) copies of PERV. RESULTS PERV sequences were detected in a high number (4.4 x 10(3)-1.6 x 10(4)/1 microg) in peripheral leukocyte DNA during the initial phases of ECLP, but they disappeared within 1 week. Bone marrow DNA contained PERV sequences longer than peripheral blood, but PERV signals became negative within 1 month. No PERV DNA relapse was seen over the course of this study. Pig-specific centromeric sequences were also detected in the same manner. At 6 months or 1 year after ECLP, no PERV or pig-specific centromeric sequences were detected in the genomic DNA obtained from the following organs: skin, lymph nodes, spleen, liver, pancreas, kidney, heart, and lung. CONCLUSIONS ECLP did not result in PERV infection or pig-cell microchimerism in baboons.
Collapse
Affiliation(s)
- Ryuta Nishitai
- Department of Gastroenterological Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Zeilinger K, Holland G, Sauer IM, Efimova E, Kardassis D, Obermayer N, Liu M, Neuhaus P, Gerlach JC. Time course of primary liver cell reorganization in three-dimensional high-density bioreactors for extracorporeal liver support: an immunohistochemical and ultrastructural study. ACTA ACUST UNITED AC 2005; 10:1113-24. [PMID: 15363168 DOI: 10.1089/ten.2004.10.1113] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To enable extracorporeal liver support based on the use of primary liver cells, culture models supporting the maintenance of cell integrity and function in vitro are required. In this study the cell organization and ultrastructure of primary porcine hepatocytes cocultured with nonparenchymal cells in three-dimensional high-density bioreactors were analyzed after 10, 20, and 30 days of culture by immunohistochemistry and transmission electron microscopy. Biochemical data showed that metabolic activity of the cells in the system was relatively stable over at least 20 days. Immunohistochemical studies were performed in comparison with donor organ biopsies. They showed that hepatocytes and nonparenchymal cells reaggregated in bioreactors, forming structures partly resembling natural liver parenchyma. Bile duct-like structures characterized by cytokeratin 7 (CK-7) immunoreactivity (IR) were regularly detected. Nonparenchymal cells (vimentin IR) formed sinusoidal-like structures within parenchymal cell aggregates. Proliferative activity (Ki-67 IR) increased over time. The detection of collagen I and laminin indicated the production of extracellular matrix components within bioreactors. The results showed that primary liver cell reorganization and long-term maintenance of their differentiated state were achieved within the bioreactors The findings on cell proliferation indicated that the culture model is also of interest for further in vitro studies on cell regeneration and tissue formation.
Collapse
Affiliation(s)
- Katrin Zeilinger
- Department of Experimental Surgery, Surgical Clinic, Charité Campus Virchow, University Medicine, 11353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Garkavenko O, Croxson MC, Irgang M, Karlas A, Denner J, Elliott RB. Monitoring for presence of potentially xenotic viruses in recipients of pig islet xenotransplantation. J Clin Microbiol 2005; 42:5353-6. [PMID: 15528741 PMCID: PMC525280 DOI: 10.1128/jcm.42.11.5353-5356.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study represents a long-term follow-up of human patients receiving pig islet xenotransplantation. Eighteen patients had been monitored for up to 9 years for potentially xenotic pig viruses: pig endogenous retrovirus, pig cytomegalovirus, pig lymphotropic herpesvirus, and pig circovirus type 2. No evidence of viral infection was found.
Collapse
Affiliation(s)
- O Garkavenko
- Diatranz NZ Ltd., P.O. Box 23566, Papatoetoe, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
117
|
Nishitai R, Koch CA, Ogata K, Knudsen BE, Plummer TB, Butters KA, Platt JL. Toward the survival and function of xenogeneic hepatocyte grafts. Liver Transpl 2005; 11:39-50. [PMID: 15690535 DOI: 10.1002/lt.20305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Xenogeneic hepatocyte transplantation might offer an unobtrusive alternative to whole liver allotransplantation. Having previously found that the immune response to such grafts can be controlled by immunosuppression, we sought approaches to collection and delivery that would optimize survival and function after transplantation. Porcine hepatocytes were isolated by a 2-step collagenase technique and then: 1) used immediately; 2) stored in University of Wisconsin (UW) solution at 4 degrees C; 3) cultured in supplemented Williams E medium; or 4) cryopreserved in UW solution with 10% dimethyl sulfoxide (DMSO). The fate and function of the hepatocytes was determined after they were injected into the spleens of immunodeficient mice. Freshly isolated hepatocytes had better viability (92.2 +/- 1.9%) than hepatocytes cultured for 24 hours (78.4 +/- 6.3%), hypothermically preserved in UW solution for 24 hours (85.8 +/- 3.1%), or cryopreserved (65.0 +/- 2.6%). Freshly isolated hepatocytes secreted more albumin after transplantation than hepatocytes that were cultured, hypothermically stored, or cryopreserved. In conclusion, culture and storage profoundly compromises the function of isolated hepatocytes after transplantation. Freshly isolated hepatocytes are the preferred source for transplantation.
Collapse
Affiliation(s)
- Ryuta Nishitai
- Transplantation Biology Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004; 78:13880-90. [PMID: 15564496 PMCID: PMC533951 DOI: 10.1128/jvi.78.24.13880-13890.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.
Collapse
Affiliation(s)
- Birke Bartosch
- Wohl Virion Centre, Division of Infection of Immunity, University College London, 46 Cleveland St., London W1T 4JF, United Kingdom
| | | | | | | | | | | |
Collapse
|
119
|
Burra P, Samuel D, Wendon J, Pietrangelo A, Gupta S. Strategies for liver support: from stem cells to xenotransplantation. J Hepatol 2004; 41:1050-9. [PMID: 15582142 DOI: 10.1016/j.jhep.2004.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrizia Burra
- Department of Surgical and Gastroenterological Sciences, University Hospital, Padova, Italy.
| | | | | | | | | |
Collapse
|
120
|
Chan C, Berthiaume F, Nath BD, Tilles AW, Toner M, Yarmush ML. Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl 2004; 10:1331-42. [PMID: 15497161 DOI: 10.1002/lt.20229] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The severe donor liver shortage, high cost, and complexity of orthotopic liver transplantation have prompted the search for alternative treatment strategies for end-stage liver disease, which would require less donor material, be cheaper, and less invasive. Hepatic tissue engineering encompasses several approaches to develop adjunct internal liver support methods, such as hepatocyte transplantation and implantable hepatocyte-based devices, as well as temporary extracorporeal liver support techniques, such as bioartificial liver assist devices. Many tissue engineered liver support systems have passed the "proof of principle" test in preclinical and clinical studies; however, they have not yet been found sufficiently reliably effective for routine clinical use. In this review we describe, from an engineering perspective, the progress and remaining challenges that must be resolved in order to develop the next generation of implantable and extracorporeal devices for adjunct or temporary liver assist.
Collapse
Affiliation(s)
- Christina Chan
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
Disturbances of some partial liver functions, such as synthesis, excretion, or biotransformation of xenobiotics, are important for prognosis and ultimate survival in patients presenting with multiple organ dysfunction on the intesive care unit (ICU). The incidence of liver dysfunction is underestimated when traditional "static" measures such as serum-transaminases or bilirubin as opposed to "dynamic" tests, such as clearance tests, are used to diagnose liver dysfunction. Similar to the central role of the failing liver in MODS, extrahepatic complications, such as hepatorenal syndrome and brain edema develop in acute or fulminant hepatic failure and determine the prognosis of the patient. This is reflected in the required presence of hepatic encephalopathy in addition to hyperbilirubinemia and coagulopathy for the diagnosis of acute liver failure. In addition to these clinical signs, dynamic tests, such as indocyanine green clearance, which is available at the bed-side, are useful for the monitoring of perfusion and global liver function. In addition to specific and causal therapeutic interventions, e.g. N-acetylcysteine for paracetamol poisoning or termination of pregnancy for the HELLP-syndrome, new therapeutic measures, e.g. terlipressin/albumin or albumin dialysis are likely to improve the poor prognosis of acute-on-chronic liver failure. Nevertheless, liver transplantation remains the treatment of choice for fulminant hepatic failure when the expected survival is <20%.
Collapse
Affiliation(s)
- M Bauer
- Klinik für Anaesthesiologie und Intensivmedizin, Universität des Saarlandes, Homburg/Saar.
| | | | | |
Collapse
|
122
|
Buhler L. Xenotransplantation literature update. January-October, 2003. Xenotransplantation 2004; 11:3-10. [PMID: 14962287 DOI: 10.1046/j.1399-3089.2003.00110.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Leo Buhler
- Department of Surgery, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|
123
|
Denner J, Specke V, Thiesen U, Karlas A, Kurth R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003; 314:125-33. [PMID: 14517066 DOI: 10.1016/s0042-6822(03)00428-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human-tropic porcine endogenous retroviruses (PERV) such as PERV-A and PERV-B can infect human cells and are therefore a potential risk to recipients of xenotransplants. A similar risk is posed by recombinant viruses containing the receptor-binding site of PERV-A and large parts of the genome of the ecotropic PERV-C including its long terminal repeat (LTR). We describe here the unique organization of the PERV-C LTR and its changes during serial passage of recombinant virus in human cells. An increase in virus titer correlated with an increase in LTR length, caused by multiplication of 37-bp repeats containing nuclear factor Y binding sites. Luciferase dual reporter assays revealed a correlation between the number of repeats and the extent of expression. No alterations have been observed in the receptor-binding site, indicating that the increased titer is due to the changes in the LTR. These data indicate that recombinant PERVs generated during infection of human cells can adapt and subsequently replicate with greater efficiency.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch-Institute, Nordufer 20, D-13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
124
|
Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, Goetz M, Neuhaus P, Gerlach JC. Extracorporeal liver support based on primary human liver cells and albumin dialysis--treatment of a patient with primary graft non-function. J Hepatol 2003; 39:649-53. [PMID: 12971979 DOI: 10.1016/s0168-8278(03)00348-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
METHODS Following liver transplantation, a 26-year old female suffered from primary non-function of the transplant. The patient was subsequently treated with a modular extracorporeal liver support concept until a suitable organ became available. A bioreactor was charged with human liver cells, obtained from a discarded cadaveric graft (470 g, viability: 60%). The bioreactor was integrated into an extracorporeal circuit with continuous single pass albumin dialysis and continuous veno-venuous hemodiafiltration for detoxification and fluid reduction. RESULTS Over the total system application time of 79 h, a significant reduction of the plasma levels of total bilirubin (21.1 mg/dl at start, 10.1 mg/dl at end of therapy) and ammonia (100 versus 22.7 micromol/l) was achieved. During treatment the patient's neurological status significantly improved from coma stage IV to I permitting extubation. Recovery of kidney function with a urine output of 1325 ml/24 h compared to 45 ml/24 h prior to system application, was noted. Over the treatment period, an improvement of coagulation status was observed. Adverse events were absent. CONCLUSIONS This first successful clinical treatment of a patient with liver failure suggests that a modular approach combining both primary human liver cell bioreactor technology and detoxification methods is promising.
Collapse
Affiliation(s)
- Igor M Sauer
- Charité--Campus Virchow, Klinik für Allgemein-, Visceral- und Transplantationschirurgie, Medical Faculty of the Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Gerlach JC, Zeilinger K, Sauer IM, Mieder T, Naumann G, Grünwald A, Pless G, Holland G, Mas A, Vienken J, Neuhaus P. Extracorporeal liver support: porcine or human cell based systems? Int J Artif Organs 2002; 25:1013-8. [PMID: 12456044 DOI: 10.1177/039139880202501017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Initial results of the clinical use of primary porcine liver cells for extracorporeal liver support are being reviewed as the cell source is controversial. According to Eurotransplant data 20-25% of explanted donor livers are not transplanted, due to factors such as steatosis or cirrhosis. This number corresponds to the number of patients with acute liver failure who require bridging therapy to transplantation. Primary human liver cells from transplant discards can be isolated, purified and maintained in bioreactors and provide an alternative for cell-based extracorporeal liver support therapy. A four-compartment bioreactor enables recovery from preservation and isolation injury in a three-dimensional network of interwoven capillary membranes with integrated oxygenation, rendering the liver cells from these discarded donor organs viable for clinical utilization. Patient contact with additional animal-derived biomatrix and fetal calf serum can be avoided. The initiation of an in vitro cultivation phase allows cell stabilization, quality control, and immediate availability of a characterized system without cryopreservation. The hypothesis of this paper is that with appropriate logistics and four-compartment bioreactor technology, cells from human liver transplant discards can serve the demand for cell-based therapy, including extracorporeal liver support.
Collapse
Affiliation(s)
- J C Gerlach
- Department of Surgery, Charité, Campus Virchow, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|