101
|
Filer D, Thompson MA, Takhaveev V, Dobson AJ, Kotronaki I, Green JWM, Heinemann M, Tullet JMA, Alic N. RNA polymerase III limits longevity downstream of TORC1. Nature 2017; 552:263-267. [PMID: 29186112 PMCID: PMC5732570 DOI: 10.1038/nature25007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2017] [Indexed: 11/09/2022]
Abstract
Three distinct RNA polymerases (Pols) transcribe different classes of
genes in the eukaryotic nucleus1. Pol III
is the essential, evolutionarily conserved enzyme that generates short,
non-coding RNAs, including transfer RNAs (tRNAs) and 5S
ribosomal RNA (rRNA)2. Historical focus on
transcription of protein-coding genes has left the roles of Pol III in
organismal physiology relatively unexplored. The prominent regulator of Pol III
activity, Target of Rapamycin kinase Complex 1 (TORC1), is an important
longevity determinant3, raising the
question of Pol III’s involvement in ageing. Here we show that Pol III
limits lifespan downstream of TORC1. We find that a reduction in Pol III extends
chronological lifespan in yeast and organismal lifespan in worms and flies.
Inhibiting Pol III activity in the adult worm or fly gut is sufficient to extend
lifespan, and in flies, longevity can be achieved by Pol III inhibition
specifically in the intestinal stem cells (ISCs). The longevity phenotype is
associated with amelioration of age-related gut pathology and functional
decline, dampened protein synthesis and increased tolerance of proteostatic
stress. Importantly, Pol III acts downstream of TORC1 for lifespan and limiting
Pol III activity in the adult gut achieves the full longevity benefit of
systemic TORC1 inhibition. Hence, Pol III is a pivotal output of this key
nutrient signalling network for longevity; Pol III’s growth-promoting,
anabolic activity mediates the acceleration of ageing by TORC1. The evolutionary
conservation of Pol III affirms its potential as a therapeutic target.
Collapse
Affiliation(s)
- Danny Filer
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Adam J Dobson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilektra Kotronaki
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - James W M Green
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | | | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
102
|
Bottje WG, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter A, Hudson NJ, Kong BW. Proteogenomics Reveals Enriched Ribosome Assembly and Protein Translation in Pectoralis major of High Feed Efficiency Pedigree Broiler Males. Front Physiol 2017; 8:306. [PMID: 28559853 PMCID: PMC5432614 DOI: 10.3389/fphys.2017.00306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background: In production animal agriculture, the cost of feed represents 60–70% of the total cost of raising an animal to market weight. Thus, development of viable biomarkers for feed efficiency (FE, g gain/g feed) to assist in genetic selection of breeding stock remains an important goal in commercial breeding programs. Methods: Global gene (cDNA microarray, RNAseq) and protein expression (shotgun proteomics) analyses have been conducted on breast muscle samples obtained from pedigree broiler males (PedM) exhibiting high and low FE phenotypes. Using the entire datasets (i.e., no cutoffs for significance or fold difference in expression) the number of genes or proteins that were expressed numerically higher or lower in the high FE compared to the low FE phenotype for key terms or functions, e.g., ribosomal, mitochondrial ribosomal, tRNA, RNA binding motif, RNA polymerase, small nuclear ribonucleoprotein, and protein tyrosine phosphatase, were determined. Bionomial distribution analysis (exact) was then conducted on these datasets to determine significance between numerically up or down expression. Results: Processes associated with mitochondrial proteome expression (e.g., mitochondrial ribosomal proteins, mitochondrial transcription, mitochondrial tRNA, and translation) were enriched in breast muscle from the high FE compared to the low FE pedigree male broiler phenotype. Furthermore, the high FE phenotype exhibited enrichment of ribosome assembly (e.g., RNA polymerase, mitochondrial and cytosolic ribosomes, small, and heterogeneous nuclear ribonucleoproteins), as well as nuclear transport and protein translation processes compared to the low FE phenotype. Quality control processes (proteosomes and autophagy) were also enriched in the high FE phenotype. In contrast, the low FE phenotype exhibited enrichment of cytoskeletal proteins, protein tyrosine phosphatases, and tyrosine kinases compared to the high FE phenotype. These results suggest that processes of mitochondrial and cytosolic ribosomal construction, activity, and protein translation would be enhanced in high FE breast muscle, and that phosphorylation of tyrosine moieties of proteins could be prolonged in the high compared to low FE phenotype. The results indicate the presence of a proteogenomic architecture that could enhance ribosome construction, protein translation, and quality control processes and contribute to the phenotypic expression of feed efficiency in this PedM broiler model.
Collapse
Affiliation(s)
- Walter G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Alissa Piekarski-Welsher
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Antonio Reverter
- Computational and Systems Biology, Agriculture and Food (CSIRO)St. Lucia, QLD, Australia
| | - Nicholas J Hudson
- Animal Science, School of Agriculture and Food Science, University of QueenslandGatton, QLD, Australia
| | - Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| |
Collapse
|
103
|
Structural Basis of RNA Polymerase I Transcription Initiation. Cell 2017; 169:120-131.e22. [DOI: 10.1016/j.cell.2017.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022]
|
104
|
Abstract
This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there.
Collapse
Affiliation(s)
- Bernard Moss
- From the Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
105
|
Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I, Knutson BA, He Y. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. eLife 2017; 6:e27414. [PMID: 28623663 PMCID: PMC5489313 DOI: 10.7554/elife.27414] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022] Open
Abstract
Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.
Collapse
Affiliation(s)
- Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, United States,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, United States
| | | | - Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, United States,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, United States
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States, (BAK)
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, United States, (YHe)
| |
Collapse
|
106
|
Abstract
Recent years have seen a burst in the number of studies investigating tRNA biology. With the transition from a gene-centred to a genome-centred perspective, tRNAs and other RNA polymerase III transcripts surfaced as active regulators of normal cell physiology and disease. Novel strategies removing some of the hurdles that prevent quantitative tRNA profiling revealed that the differential exploitation of the tRNA pool critically affects the ability of the cell to balance protein homeostasis during normal and stress conditions. Furthermore, growing evidence indicates that the adaptation of tRNA synthesis to cellular dynamics can influence translation and mRNA stability to drive carcinogenesis and other pathological disorders. This review explores the contribution given by genomics, transcriptomics and epitranscriptomics to the discovery of emerging tRNA functions, and gives insights into some of the technical challenges that still limit our understanding of the RNA polymerase III transcriptional machinery.
Collapse
Affiliation(s)
- Andrea Orioli
- Center for Integrative Genomics, Université de Lausanne, Lausanne, VD 1015, Switzerland
| |
Collapse
|
107
|
Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 2016; 540:607-610. [PMID: 27842382 DOI: 10.1038/nature20561] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022]
Abstract
RNA polymerase I (Pol I) is a highly processive enzyme that transcribes ribosomal DNA (rDNA) and regulates growth of eukaryotic cells. Crystal structures of free Pol I from the yeast Saccharomyces cerevisiae have revealed dimers of the enzyme stabilized by a 'connector' element and an expanded cleft containing the active centre in an inactive conformation. The central bridge helix was unfolded and a Pol-I-specific 'expander' element occupied the DNA-template-binding site. The structure of Pol I in its active transcribing conformation has yet to be determined, whereas structures of Pol II and Pol III have been solved with bound DNA template and RNA transcript. Here we report structures of active transcribing Pol I from yeast solved by two different cryo-electron microscopy approaches. A single-particle structure at 3.8 Å resolution reveals a contracted active centre cleft with bound DNA and RNA, and a narrowed pore beneath the active site that no longer holds the RNA-cleavage-stimulating domain of subunit A12.2. A structure at 29 Å resolution that was determined from cryo-electron tomograms of Pol I enzymes transcribing cellular rDNA confirms contraction of the cleft and reveals that incoming and exiting rDNA enclose an angle of around 150°. The structures suggest a model for the regulation of transcription elongation in which contracted and expanded polymerase conformations are associated with active and inactive states, respectively.
Collapse
|
108
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
109
|
Abstract
The structures of RNA Polymerase (Pol) II pre-initiation complexes (PIC) have recently been determined at near-atomic resolution, elucidating unprecedented mechanistic details of promoter opening during transcription initiation. The key structural features of promoter opening are summarized here. Structural knowledge of Pol I and III PIC is also briefly discussed.
Collapse
Affiliation(s)
- Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,CONTACT Yan Han , Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
110
|
Ucuncuoglu S, Engel KL, Purohit PK, Dunlap DD, Schneider DA, Finzi L. Direct Characterization of Transcription Elongation by RNA Polymerase I. PLoS One 2016; 11:e0159527. [PMID: 27455049 PMCID: PMC4959687 DOI: 10.1371/journal.pone.0159527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo.
Collapse
Affiliation(s)
- Suleyman Ucuncuoglu
- Physics Department, Emory University, Atlanta, GA, 30322, United States of America
| | - Krysta L. Engel
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - David D. Dunlap
- Physics Department, Emory University, Atlanta, GA, 30322, United States of America
| | - David A. Schneider
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail: (LF); (DAS)
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, 30322, United States of America
- * E-mail: (LF); (DAS)
| |
Collapse
|
111
|
Abstract
Purification of RNA polymerase (Pol) I is essential for functional as well as for structural studies. The product needs to be extremely pure in order to exclude secondary effects, e.g., caused by copurified nucleic acids in subsequent experiments. For this purpose, the method presented here was originally introduced nearly a decade ago but underwent constant optimization [1]. The polymerase is extracted from its endogenous source, since no overexpression system for the entire 590 kDa, 14-subunit complex is available thus far. Following yeast cultivation, a number of standard protein purification techniques are applied and combined to a robust but elaborate procedure that takes 3 days. In brief, a yeast strain with histidine-tagged RNA polymerase I is fermented, cells are broken by bead beating, and cell debris is removed by a two-step centrifugation. The lysate is then dialyzed, the Pol-I-containing pellet resuspended, and polymerase I enriched by a His-trap affinity step, followed by sequential purification via anion and cation exchange and a final size exclusion chromatography.
Collapse
|
112
|
Appling FD, Lucius AL, Schneider DA. Transient-State Kinetic Analysis of the RNA Polymerase I Nucleotide Incorporation Mechanism. Biophys J 2015; 109:2382-93. [PMID: 26636949 PMCID: PMC4675888 DOI: 10.1016/j.bpj.2015.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022] Open
Abstract
Eukaryotes express three or more multisubunit nuclear RNA polymerases (Pols) referred to as Pols I, II, and III, each of which synthesizes a specific subset of RNAs. Consistent with the diversity of their target genes, eukaryotic cells have evolved divergent cohorts of transcription factors and enzymatic properties for each RNA polymerase system. Over the years, many trans-acting factors that orchestrate transcription by the individual Pols have been described; however, little effort has been devoted to characterizing the molecular mechanisms of Pol I activity. To begin to address this gap in our understanding of eukaryotic gene expression, here we establish transient-state kinetic approaches to characterize the nucleotide incorporation mechanism of Pol I. We collected time courses for single turnover nucleotide incorporation reactions over a range of substrate ATP concentrations that provide information on both Pol I's nucleotide addition and nuclease activities. The data were analyzed by model-independent and model-dependent approaches, resulting in, to our knowledge, the first minimal model for the nucleotide addition pathway for Pol I. Using a grid searching approach we provide rigorous bounds on estimated values of the individual elementary rate constants within the proposed model. This work reports the most detailed analysis of Pol I mechanism to date. Furthermore, in addition to their use in transient state kinetic analyses, the computational approaches applied here are broadly applicable to global optimization problems.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
113
|
Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. THE NEW PHYTOLOGIST 2015; 207:1198-212. [PMID: 25921392 DOI: 10.1111/nph.13432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/24/2015] [Indexed: 05/25/2023]
Abstract
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
114
|
Kenney SP, Meng XJ. Identification and fine mapping of nuclear and nucleolar localization signals within the human ribosomal protein S17. PLoS One 2015; 10:e0124396. [PMID: 25853866 PMCID: PMC4390217 DOI: 10.1371/journal.pone.0124396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/13/2015] [Indexed: 01/29/2023] Open
Abstract
Human ribosomal protein S17 (RPS17) is mutated in Diamond-Blackfan Anemia (DBA), a bone marrow disorder that fails to produce sufficient red blood cells leading to anemia. Recently, an RPS17 protein sequence was also found to be naturally inserted in the genome of hepatitis E virus (HEV) from patients chronically-infected by HEV. The role of RPS17 in HEV replication and pathogenesis remains unknown due to the lack of knowledge about how RPS17 functions at a molecular level. Understanding the biological function of RPS17 is critical for elucidating its role in virus infection and DBA disease processes. In this study we probed the subcellular distribution of normal and mutant RPS17 proteins in a human liver cell line (Huh7). RPS17 was primarily detected within the nucleus, and more specifically within the nucleoli. Using a transient expression system in which RPS17 or truncations were expressed as fusions with enhanced yellow fluorescent protein (eYFP), we were able to identify and map, for the first time, two separate nuclear localization signals (NLSs), one to the first 13 amino acids of the amino-terminus of RPS17 and the other within amino acids 30-60. Additionally, we mapped amino acid sequences required for nucleolar accumulation of RPS17 to amino acids 60-70. Amino acids 60-70 possess a di-RG motif that may be necessary for nucleolar retention of RPS17. The results from this study enhance our knowledge of RSP17 and will facilitate future mechanistic studies about the roles of RSP17 in hepatitis E and DBA disease processes.
Collapse
Affiliation(s)
- Scott P. Kenney
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States of America
| | - Xiang-Jin Meng
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
115
|
Ream TS, Haag JR, Pontvianne F, Nicora CD, Norbeck AD, Paša-Tolić L, Pikaard CS. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 2015; 43:4163-78. [PMID: 25813043 PMCID: PMC4417161 DOI: 10.1093/nar/gkv247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.
Collapse
Affiliation(s)
- Thomas S Ream
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jeremy R Haag
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frederic Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carrie D Nicora
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Angela D Norbeck
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
116
|
Abstract
Eukaryotic cells employ at least three nuclear, DNA-dependent RNA polymerase systems for the synthesis of cellular RNA. RNA polymerases I, II, and III primarily produce rRNA, mRNA, and tRNA, respectively. In a rapidly growing cell, most RNA synthesis is devoted to production of the translation machinery, with rRNA synthesis by RNA polymerase I representing more than half of total cellular transcription. The fundamental connection between ribosome biogenesis and cell growth is clear; furthermore, recent studies have identified transcription by RNA polymerase I as a key target for anticancer chemotherapy. Thus, efficient methods for characterizing transcription of the ribosomal DNA and its regulation are needed. In order to describe enzymatic features of an enzyme, in vitro assays are critical. Here we describe a method for purifying RNA polymerase I. This approach yields enzyme of sufficiently high quantity and activity for an array of experiments directed at describing the enzymatic properties of RNA polymerase I in detail.
Collapse
|
117
|
RNA polymerase I structure and transcription regulation. Nature 2013; 502:650-5. [DOI: 10.1038/nature12712] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/24/2013] [Indexed: 01/25/2023]
|
118
|
Viktorovskaya OV, Engel KL, French SL, Cui P, Vandeventer PJ, Pavlovic EM, Beyer AL, Kaplan CD, Schneider DA. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II. Cell Rep 2013; 4:974-84. [PMID: 23994471 DOI: 10.1016/j.celrep.2013.07.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 12/29/2022] Open
Abstract
Multisubunit RNA polymerases (msRNAPs) exhibit high sequence and structural homology, especially within their active sites, which is generally thought to result in msRNAP functional conservation. However, we show that mutations in the trigger loop (TL) in the largest subunit of RNA polymerase I (Pol I) yield phenotypes unexpected from studies of Pol II. For example, a well-characterized gain-of-function mutation in Pol II results in loss of function in Pol I (Pol II: rpb1- E1103G; Pol I: rpa190-E1224G). Studies of chimeric Pol II enzymes hosting Pol I or Pol III TLs suggest that consequences of mutations that alter TL dynamics are dictated by the greater enzymatic context and not solely the TL sequence. Although the rpa190-E1224G mutation diminishes polymerase activity, when combined with mutations that perturb Pol I catalysis, it enhances polymerase function, similar to the analogous Pol II mutation. These results suggest that Pol I and Pol II have different rate-limiting steps.
Collapse
Affiliation(s)
- Olga V Viktorovskaya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
120
|
Abstract
In this Reflections, I review a few early and very lucky events that gave me a running start for the rest of a long and wonderfully enjoyable career. For the main part, a discussion is provided of what I recall as the main illuminating results that my many dozens of students and postdoctoral fellows (approximately 140 in all) provided to our biochemical/molecular biological world.
Collapse
Affiliation(s)
- James E Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
121
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
122
|
Livyatan I, Harikumar A, Nissim-Rafinia M, Duttagupta R, Gingeras TR, Meshorer E. Non-polyadenylated transcription in embryonic stem cells reveals novel non-coding RNA related to pluripotency and differentiation. Nucleic Acids Res 2013; 41:6300-15. [PMID: 23630323 PMCID: PMC3695530 DOI: 10.1093/nar/gkt316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional landscape in embryonic stem cells (ESCs) and during ESC differentiation has received considerable attention, albeit mostly confined to the polyadenylated fraction of RNA, whereas the non-polyadenylated (NPA) fraction remained largely unexplored. Notwithstanding, the NPA RNA super-family has every potential to participate in the regulation of pluripotency and stem cell fate. We conducted a comprehensive analysis of NPA RNA in ESCs using a combination of whole-genome tiling arrays and deep sequencing technologies. In addition to identifying previously characterized and new non-coding RNA members, we describe a group of novel conserved RNAs (snacRNAs: small NPA conserved), some of which are differentially expressed between ESC and neuronal progenitor cells, providing the first evidence of a novel group of potentially functional NPA RNA involved in the regulation of pluripotency and stem cell fate. We further show that minor spliceosomal small nuclear RNAs, which are NPA, are almost completely absent in ESCs and are upregulated in differentiation. Finally, we show differential processing of the minor intron of the polycomb group gene Eed. Our data suggest that NPA RNA, both known and novel, play important roles in ESCs.
Collapse
|
123
|
Yedida GR, Nagini S, Mishra R. The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:179-88. [PMID: 23619350 DOI: 10.1016/j.oooo.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 01/03/2023]
Abstract
Oral squamous cell carcinoma is a major cause of morbidity and mortality worldwide. Current experimental evidence shows that most important risk factors for oral cancer include tobacco use and excessive alcohol consumption and less well-defined risks include viral infection and a diet deficient in antioxidants. The positive correlation between various risk/etiologic factors of oral cancer and the activation of various transcription factors (TFs) has been reported in the literature. Although initially, TFs were considered to be very difficult targets for use in clinical treatment, recent technological advances have provided the ability to control these factors of cancer progression. This review focuses on the role of oncogenic transcription factors in oral cancer, their modes of activation through various biological pathways, the promises and pitfalls in viewing them as potent oncotargets, the way they can be controlled based on the current understanding, and the future research to be done in this area.
Collapse
Affiliation(s)
- Govinda Raju Yedida
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | | | | |
Collapse
|
124
|
Darnell JE. Reflections on the history of pre-mRNA processing and highlights of current knowledge: a unified picture. RNA (NEW YORK, N.Y.) 2013; 19:443-60. [PMID: 23440351 PMCID: PMC3677254 DOI: 10.1261/rna.038596.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m(7)Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about "cotranscriptional splicing." However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3' end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm.
Collapse
Affiliation(s)
- James E Darnell
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
125
|
Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol Cell Biol 2013; 33:1571-81. [PMID: 23401852 DOI: 10.1128/mcb.01733-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.
Collapse
|
126
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
127
|
Barrero MJ, Malik S. The RNA polymerase II transcriptional machinery and its epigenetic context. Subcell Biochem 2013; 61:237-259. [PMID: 23150254 DOI: 10.1007/978-94-007-4525-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase II (Pol II) is the main engine that drives transcription of protein-encoding genes in eukaryotes. Despite its intrinsic subunit complexity, Pol II is subject to a host of factors that regulate the multistep transcription process. Indeed, the hallmark of the transcription cycle is the dynamic association of Pol II with initiation, elongation and other factors. In addition, Pol II transcription is regulated by a series of cofactors (coactivators and corepressors). Among these, the Mediator has emerged as one of the key regulatory factors for Pol II. Transcription by Pol II takes place in the context of chromatin, which is subject to numerous epigenetic modifications. This chapter mainly summarizes the various biochemical mechanisms that determine formation and function of a Pol II preinitiation complex (PIC) and those that affect its progress along the gene body (elongation). It further examines the various epigenetic modifications that the Pol II machinery encounters, especially in certain developmental contexts, and highlights newer evidence pointing to a likely close interplay between this machinery and factors responsible for the chromatin modifications.
Collapse
Affiliation(s)
- Maria J Barrero
- Center for Regenerative Medicine, Dr Aiguader 88, Barcelona, Spain,
| | | |
Collapse
|
128
|
Anderl J, Echner H, Faulstich H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology. Beilstein J Org Chem 2012; 8:2072-84. [PMID: 23209542 PMCID: PMC3511042 DOI: 10.3762/bjoc.8.233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/09/2012] [Indexed: 12/23/2022] Open
Abstract
Phallotoxins inhibit the dynamics of microfilaments in cells and lead to apoptosis. Due to poor cellular uptake these effects cannot be studied in live cells, even at millimolar toxin concentrations, nor can phalloidin be used for the elimination of tumor cells. Uptake is greatly enhanced by conjugation of phallotoxins to either lipophilic or polycationic moieties, such as oleic acid, polylysine, or Tat-peptide. These conjugates were lethally toxic for cells, e.g., mouse fibroblasts or Jurkat leukemia cells, in the micromolar range. Uptake into cells starts with the attachment of the toxin conjugates to the plasma membrane, followed by endocytosis and, in most cases, cleavage of the toxin from the carrier. Interestingly, the internalization rate of phalloidin into cells was also significantly increased by the fluorescent moiety tetramethylrhodaminyl, as well as by high molecular weight methoxy-polyethyleneglycol, two compounds unknown so far for their uptake-mediating activity. Conjugation to carriers as investigated in this work will allow the use of phallotoxins in experimental cell biology and possibly in tumor therapy. The findings obtained with phallotoxins could be applied also to the family of amatoxins, where α-amanitin, for example, when conjugated to oleic acid was more than 100-fold more toxic for cells than the native toxin. This suggests the possibility of a more general use of the moieties examined here to enhance the uptake of hydrophilic peptides, or drugs, into live cells.
Collapse
Affiliation(s)
- Jan Anderl
- Heidelberg Pharma GmbH, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
129
|
Sentenac A, Riva M. Odd RNA polymerases or the A(B)C of eukaryotic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:251-7. [PMID: 23142548 DOI: 10.1016/j.bbagrm.2012.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Pioneering studies on eukaryotic transcription were undertaken with the bacterial system in mind. Will the bacterial paradigm apply to eukaryotes? Are there promoter sites scattered in the eukaryotic genome, and sigma-like proteins? Why three forms of RNA polymerase in eukaryotic cells? Why are they structurally so complex, in particular RNA polymerases I and III, compared to the bacterial enzyme? These questions and others that were raised along the way are evoked in this short historical survey of odd RNA polymerases studies, with some emphasis on the contribution of these studies to our global understanding of eukaryotic transcription systems. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- André Sentenac
- CEA-Saclay, iBiTecS, F-91191 Gif-sur-Yvette cedex, France.
| | | |
Collapse
|
130
|
Yunlei Z, Zhe C, Yan L, Pengcheng W, Yanbo Z, Le S, Qianjin L. INMAP, a novel truncated version of POLR3B, represses AP-1 and p53 transcriptional activity. Mol Cell Biochem 2012; 374:81-9. [PMID: 23124897 DOI: 10.1007/s11010-012-1507-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Abstract
INMAP was first identified as an interphase nucleus and mitotic apparatus-associated protein that plays essential roles in the formation of the spindle and cell-cycle progression. Here, we report that INMAP might be conserved from prokaryotes to humans, is a truncated version of the RNA polymerase III subunit B POLR3B, and is up-regulated in several human cancer cell lines including HeLa, Bel-7402, HepG2 and BGC-823. Deletion analysis revealed that the 209-290 amino-acid region is necessary for the punctate distribution of INMAP in the nucleus. Furthermore, over-expression of INMAP inhibited the transcriptional activities of p53 and AP-1 in a dose-dependent manner. These results suggest that INMAP may function through the p53 and AP-1 pathways, thus providing a possible link of its activity with tumourigenesis. Integrating our data and those in previous studies, it can be concluded that INMAP plays dual functional roles in the coordination of mitotic kinetics with gene expression as well as in cell-fate determination and proliferation.
Collapse
Affiliation(s)
- Zhou Yunlei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
131
|
Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2012; 41:139-55. [PMID: 23093604 PMCID: PMC3592421 DOI: 10.1093/nar/gks985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How eukaryotic RNA polymerases switch from elongation to termination is unknown. Pol III subunits Rpc53 and Rpc37 (C53/37) form a heterodimer homologous to TFIIFβ/α. C53/37 promotes efficient termination and together with C11 also mediates pol III recycling in vitro. We previously developed Schizosaccharomyces pombe strains that report on two pol III termination activities: RNA oligo(U) 3′-end cleavage, and terminator readthrough. We randomly mutagenized C53 and C37 and isolated many C37 mutants with terminator readthrough but no comparable C53 mutants. The majority of C37 mutants have strong phenotypes with up to 40% readthrough and map to a C-terminal tract previously localized near Rpc2p in the pol III active center while a minority represent a distinct class with weaker phenotype, less readthrough and 3′-oligo(U) lengthening. Nascent pre-tRNAs released from a terminator by C37 mutants have shorter 3′-oligo(U) tracts than in cleavage-deficient C11 double mutants indicating RNA 3′-end cleavage during termination. We asked whether termination deficiency affects transcription output in the mutants in vivo both by monitoring intron-containing nascent transcript levels and 14C-uridine incorporation. Surprisingly, multiple termination mutants have no decrease in transcript output relative to controls. These data are discussed in context of current models of pol III transcription.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
132
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
133
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
134
|
Zheng S, Li Q, Zhang Y, Balluff Z, Pan YX. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16 (INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics 2012; 7:183-90. [PMID: 22395468 DOI: 10.4161/epi.7.2.18972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Maternal exposure to environmental agents throughout pregnancy and lactation may affect offspring's mammary gland growth and alter the epigenome. This may predispose the offspring's mammary glands to be more susceptible to carcinogenesis. The purpose of this study was to examine the effect of a maternal high-fat diet on the regulation of p16 (INK4a) gene expression in the mammary gland of rat offspring. Timed-pregnant Sprague-Dawley rats were fed one of the two diets, a control (C, 16% of fat) or a high fat (HF, 45% of fat) diet, throughout gestation and lactation and sacrificed at 12 weeks of age. Compared with C, HF offspring showed a decrease of p16 (INK4a) gene expression in the mammary gland at both mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assay demonstrated that the downregulation of p16 (INK4a) transcription in HF offspring was associated with reduced acetylation of histone H4 and increased recruitment of histone deacetylase 3 (HDAC3) within the p16 (INK4a) promoter region, but was not associated with acetylation of histone H3 or HDAC1. Methylated DNA immunoprecipitation (MeDIP) did not detect differences in methylation at different regions of the p16 (INK4a) gene between C and HF offspring. We conclude that maternal high fat exposure represses p16 (INK4a) gene expression in the mammary gland of offspring through changes of histone modifications and HDAC3 binding activity within the regulatory regions of the p16 (INK4a) gene.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
135
|
Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439-46. [PMID: 22365827 DOI: 10.1016/j.molcel.2012.01.023] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/24/2023]
Abstract
Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | | |
Collapse
|
136
|
Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta Gen Subj 2012; 1830:3860-6. [PMID: 22450156 DOI: 10.1016/j.bbagen.2012.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early studies on the mechanism of action of thyroid hormone (TH) measured changes in enzyme activities following the addition of l-thyroxine (T4) and 3, 3', 5-triiodothyronine (T3) to tissue extracts and purified enzymes. SCOPE OF REVIEW As techniques for isolation of mitochondria, ribosomes, nuclei and chromatin, were increasingly refined, it became possible to study complex cellular processes, such as oxidative phosphorylation, protein synthesis, transcription and chromosomal structure. Uncoupling of oxidative phosphorylation and direct action on protein synthesis as mechanisms of action of TH, proposed in the 1950s and 1960s, were found to be untenable as mechanisms of physiological action because of inappropriate experimental conditions. MAJOR CONCLUSIONS Several findings in the 1960s and 1970s, mainly 1) that near-physiological doses of T3 stimulated transcription measured in vivo or in nuclei isolated from tissues of rats and frog tadpoles, 2) the inhibition of hormone action by inhibitors of transcription and 3) the rapid and almost identical kinetics of accumulation of labelled hormone and RNA synthesis in target cell nuclei, pointed to the cell nucleus as a major site of its action. The application of technologies of recombinant DNA, gene cloning and DNA sequencing in the mid-1980s allowed the identification and understanding of the structure and function of nuclear receptors of TH. GENERAL SIGNIFICANCE This review traces the road leading to the nuclear receptors of thyroid hormone, thus explaining how the hormone influences gene expression. It also illustrates the importance of how new concepts originate from the progression of technological innovations. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Jamshed R Tata
- National Institute for Medical Research, Mill Hill, London NW7 2HA, UK.
| |
Collapse
|
137
|
A gestational low-protein diet represses p21(WAF1/Cip1) expression in the mammary gland of offspring rats through promoter histone modifications. Br J Nutr 2011; 108:998-1007. [PMID: 22152918 DOI: 10.1017/s0007114511006222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal exposure to environmental agents throughout pregnancy may change certain metabolic processes during the offspring's mammary gland development and alter the epigenome. This may predispose the offspring to breast cancer later in life. The purpose of the present study was to examine the effect of maternal protein restriction on the regulation of cyclin-dependent kinase inhibitor 1 (p21) gene expression in the mammary gland of rat offspring. Timed-mated Sprague-Dawley rats were fed one of the two isoenergetic diets, control (C, 18 % casein) or low protein (LP, 9 % casein), during gestation. Compared with the C group, LP offspring showed a decrease of p21 in the mammary gland at both the mRNA and protein levels. Chromatin immunoprecipitation assay demonstrated that the down-regulation of p21 transcription in LP offspring was associated with reduced acetylation of histone H3 and dimethylation of H3K4 within the p21 promoter region, but was not associated with acetylation of histone H4 or histone methylation. DNA methylation analysis using bisulphite sequencing did not detect differences in methylation at the p21 promoter between the offspring of the C and LP groups. We conclude that maternal protein restriction inhibits p21 gene expression in the mammary gland of offspring through histone modifications at the promoter region of the p21 gene.
Collapse
|
138
|
Abstract
RNA polymerase (Pol) III is highly specialized for the production of short non-coding RNAs. Once considered to be under relatively simple controls, recent studies using chromatin immunoprecipitation followed by sequencing (ChIP-seq) have revealed unexpected levels of complexity for Pol III regulation, including substantial cell-type selectivity and intriguing overlap with Pol II transcription. Here I describe these novel insights and consider their implications and the questions that remain.
Collapse
|
139
|
Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2010; 2011:371832. [PMID: 21151613 PMCID: PMC2997516 DOI: 10.1155/2011/371832] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 01/18/2023] Open
Abstract
The balance between protein acetylation and deacetylation controls several physiological and pathological cellular processes, and the enzymes involved in the maintenance of this equilibrium—acetyltransferases (HATs) and deacetylases (HDACs)—have been widely studied. Presently, the evidences obtained in this field suggest that the dynamic acetylation equilibrium is mostly maintained through the physical and functional interplay between HAT and HDAC activities. This model overcomes the classical vision in which the epigenetic marks of acetylation have only an activating function whereas deacetylation marks have a repressing activity. Given the existence of several players involved in the preservation of this equilibrium, the identification of these complex networks of interacting proteins will likely foster our understanding of how cells regulate intracellular processes and respond to the extracellular environment and will offer the rationale for new therapeutic approaches based on epigenetic drugs in human diseases.
Collapse
|
140
|
Zheng S, Pan YX. Histone modifications, not DNA methylation, cause transcriptional repression of p16 (CDKN2A) in the mammary glands of offspring of protein-restricted rats. J Nutr Biochem 2010; 22:567-73. [PMID: 20934317 DOI: 10.1016/j.jnutbio.2010.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/17/2009] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Maternal nutrition during pregnancy is an important intrauterine factor that results in persistent alteration of the offspring epigenome and that associates with health outcome in later life. This study examined the effect of maternal low-protein diet on the regulation of the p16 cell-cycle gene expression in the mammary gland of offspring rats. Timed-pregnant Sprague-Dawley rats were fed during gestation one of two isocaloric diets, control (18% casein) or low protein (LP, 9% casein). The expression of p16 mRNA in the mammary gland of the LP offspring was decreased by 75% vs. control. We also detected decreased p16 protein content in the mammary glands of pups gestated under the LP diet. Analysis of transcriptional and epigenetic regulation in offspring rats with maternal LP diet revealed the regulatory mechanisms underlying decreased p16 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that the altered p16 mRNA level and transcription rate in LP offspring resulted from histone code changes, including the reduced acetylation of histone H4 and the dimethylation of histone H3 at lysine 4 residues within the p16 promoter region. These results supported the hypothesis that maternal protein restriction during pregnancy programs p16 expression through histone code alterations in offspring mammary gland.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
141
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
142
|
Teichmann M, Dieci G, Pascali C, Boldina G. General transcription factors and subunits of RNA polymerase III: Paralogs for promoter- and cell type-specific transcription in multicellular eukaryotes. Transcription 2010; 1:130-135. [PMID: 21326886 DOI: 10.4161/trns.1.3.13192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022] Open
Abstract
In the course of evolution of multi-cellular eukaryotes, paralogs of general transcription factors and RNA polymerase subunits emerged. Paralogs of transcription factors and of the RPC32 subunit of RNA polymerase III play important roles in cell type- and promoter-specific transcription. Here we discuss their respective functions.
Collapse
Affiliation(s)
- Martin Teichmann
- Institut Européen de Chimie et Biologie (I.E.C.B.); Université de Bordeaux; Institut National de la Santé et de la Recherche Médicale (INSERM) U869; Pessac, France
| | | | | | | |
Collapse
|
143
|
Semancik JS, Harper KL. Optimal conditions for cell-free synthesis of citrus exocortis viroid and the question of specificity of RNA polymerase activity. Proc Natl Acad Sci U S A 2010; 81:4429-33. [PMID: 16593489 PMCID: PMC345603 DOI: 10.1073/pnas.81.14.4429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-free synthesis of citrus exocortis viroid (CEV) in nuclei-rich preparations from infected Gynura aurantiaca was optimum at 18-24 degrees C. Incubation of reaction mixtures at higher temperatures (30-36 degrees C) resulted in an increase of CEV linear molecules and the recovery of incomplete or nicked newly synthesized RNA species. Although the Mg(2+) optimum (2.5-5 mM) for CEV synthesis was lower than that for total [(32)P]CMP incorporation (10 mM), the response to Mn(2+) ion was distinctly different. Whereas maximum total activity was observed in 1 mM Mn(2+) with a pronounced reduction (80%) in 5 mM Mn(2+), CEV synthesis was maintained in 1-15 mM Mn(2+). Inhibition of alpha-amanitin-sensitive CEV synthesis in 200 mM (NH(4))(2)SO(4) resembles the reaction of RNA polymerase II on a free nucleic acid template. However, detection of trace levels of alpha-amanitin-resistant CEV synthesis activity inhibited by low (NH(4))(2)SO(4) concentrations (25 mM) suggests the possible involvement of RNA polymerase I- and/or III-like activity.
Collapse
Affiliation(s)
- J S Semancik
- Department of Plant Pathology and Cell Interaction Research Group, University of California, Riverside, CA 92521
| | | |
Collapse
|
144
|
Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, Roeder RG, Besser D, Teichmann M. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci U S A 2010; 107:4176-81. [PMID: 20154270 PMCID: PMC2840155 DOI: 10.1073/pnas.0914980107] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription in eukaryotic nuclei is carried out by DNA-dependent RNA polymerases I, II, and III. Human RNA polymerase III (Pol III) transcribes small untranslated RNAs that include tRNAs, 5S RNA, U6 RNA, and some microRNAs. Increased Pol III transcription has been reported to accompany or cause cell transformation. Here we describe a Pol III subunit (RPC32beta) that led to the demonstration of two human Pol III isoforms (Pol IIIalpha and Pol IIIbeta). RPC32beta-containing Pol IIIbeta is ubiquitously expressed and essential for growth of human cells. RPC32alpha-containing Pol IIIalpha is dispensable for cell survival, with expression being restricted to undifferentiated ES cells and to tumor cells. In this regard, and most importantly, suppression of RPC32alpha expression impedes anchorage-independent growth of HeLa cells, whereas ectopic expression of RPC32alpha in IMR90 fibroblasts enhances cell transformation and dramatically changes the expression of several tumor-related mRNAs and that of a subset of Pol III RNAs. These results identify a human Pol III isoform and isoform-specific functions in the regulation of cell growth and transformation.
Collapse
Affiliation(s)
- Valérie Haurie
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Stéphanie Durrieu-Gaillard
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Daniel Da Silva
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Christophe Rey
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Martina Prochazkova
- Institut Européen de Chimie et Biologie/Université de Bordeaux, INSERM E347, 33607 Pessac, France
| | - Robert G. Roeder
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, New York, NY 10021
| | - Daniel Besser
- Max Delbrück Center, Department of Cancer Research, Laboratory for Signaling Mechanisms in Embryonic Stem Cells, D-13125 Berlin, Germany
| | - Martin Teichmann
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| |
Collapse
|
145
|
Using Site-directed Mutagenesis to Study Carboxypeptidase A: the Work of William J. Rutter. J Biol Chem 2010. [DOI: 10.1016/s0021-9258(20)66166-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
146
|
|
147
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
148
|
Choudhuri S. Some Major Landmarks in the Path from Nuclein to Human Genome. Toxicol Mech Methods 2008; 16:137-59. [DOI: 10.1080/15376520600558606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
149
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
150
|
Devaux S, Kelly S, Lecordier L, Wickstead B, Perez-Morga D, Pays E, Vanhamme L, Gull K. Diversification of function by different isoforms of conventionally shared RNA polymerase subunits. Mol Biol Cell 2007; 18:1293-301. [PMID: 17267688 PMCID: PMC1838988 DOI: 10.1091/mbc.e06-09-0841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic nuclei contain three classes of multisubunit DNA-directed RNA polymerase. At the core of each complex is a set of 12 highly conserved subunits of which five--RPB5, RPB6, RPB8, RPB10, and RPB12--are thought to be common to all three polymerase classes. Here, we show that four distantly related eukaryotic lineages (the higher plant and three protistan) have independently expanded their repertoire of RPB5 and RPB6 subunits. Using the protozoan parasite Trypanosoma brucei as a model organism, we demonstrate that these distinct RPB5 and RPB6 subunits localize to discrete subnuclear compartments and form part of different polymerase complexes. We further show that RNA interference-mediated depletion of these discrete subunits abolishes class-specific transcription and hence demonstrates complex specialization and diversification of function by conventionally shared subunit groups.
Collapse
Affiliation(s)
- Sara Devaux
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Steven Kelly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Laurence Lecordier
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - David Perez-Morga
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Etienne Pays
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Luc Vanhamme
- *Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|