101
|
Ahooghalandari P, Hanke N, Thorpe M, Witte A, Messinger J, Hellman L. Mutations in Arg143 and Lys192 of the Human Mast Cell Chymase Markedly Affect the Activity of Five Potent Human Chymase Inhibitors. PLoS One 2013; 8:e65988. [PMID: 23840386 PMCID: PMC3686865 DOI: 10.1371/journal.pone.0065988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.
Collapse
Affiliation(s)
- Parvin Ahooghalandari
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Uppsala, Sweden
| | | | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Uppsala, Sweden
| | | | | | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Uppsala, Sweden
- * E-mail: (LH)
| |
Collapse
|
102
|
Abstract
Heparan sulphate (HS) polysaccharides are covalently attached to the core proteins of various proteoglycans at cell surfaces and in the extracellular matrix. They are composed of alternating units of hexuronic acid and glucosamine, with sulphate substituents in complex and variable yet cell-specific patterns. Whereas HS is produced by virtually all cells in the body, heparin, a highly sulphated HS variant, is confined to connective-tissue-type mast cells. The polysaccharides interact with a multitude of proteins, mainly through ionic binding, and thereby control key processes in development and homoeostasis. Similar interactions also implicate HS in various pathophysiological settings, including cancer, amyloid diseases, infectious diseases, inflammatory conditions and some developmental disorders. Prospects for the development of HS-based drugs, which are still largely unrealized, are discussed.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
103
|
Taketomi Y, Ueno N, Kojima T, Sato H, Murase R, Yamamoto K, Tanaka S, Sakanaka M, Nakamura M, Nishito Y, Kawana M, Kambe N, Ikeda K, Taguchi R, Nakamizo S, Kabashima K, Gelb MH, Arita M, Yokomizo T, Nakamura M, Watanabe K, Hirai H, Nakamura M, Okayama Y, Ra C, Aritake K, Urade Y, Morimoto K, Sugimoto Y, Shimizu T, Narumiya S, Hara S, Murakami M. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis. Nat Immunol 2013; 14:554-63. [PMID: 23624557 DOI: 10.1038/ni.2586] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/11/2013] [Indexed: 12/19/2022]
Abstract
Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J. Comparative glycomics of leukocyte glycosaminoglycans. FEBS J 2013; 280:2447-61. [PMID: 23480678 DOI: 10.1111/febs.12231] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans (GAGs) vary widely in disaccharide and oligosaccharide content in a tissue-specific manner. Nonetheless, there are common structural features, such as the presence of highly sulfated non-reducing end domains on heparan sulfate (HS) chains. Less clear are the patterns of expression of GAGs on specific cell types. Leukocytes are known to express GAGs primarily of the chondroitin sulfate (CS) type. However, little is known regarding the properties and structures of the GAG chains, their variability among normal subjects, and changes in structure associated with disease conditions. We isolated peripheral blood leukocyte populations from four human donors and extracted GAGs. We determined the relative and absolute disaccharide abundances for HS and CS GAGs classes using size exclusion chromatography-mass spectrometry (SEC-MS). We found that all leukocytes express HS chains with a level of sulfation that is more similar to heparin than to organ-derived HS. The levels of HS expression follows the trend T cells/B cells > monocytes/natural killer cells > polymorphonuclear leukocytes (PMNs). In addition, CS abundances were considerably higher than total HS but varied considerably in a leukocyte cell type-specific manner. Levels of CS were higher for myeloid lineage cells (PMNs and monocytes) than for lymphoid cells (B, T and natural killer (NK) cells). This information establishes the range of GAG structures expressed on normal leukocytes and is necessary for subsequent inquiry into disease conditions.
Collapse
Affiliation(s)
- Chun Shao
- Department of Biochemistry, Boston University School of Medicine, Boston University Medical Campus, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
105
|
Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydr Polym 2013; 93:38-47. [DOI: 10.1016/j.carbpol.2012.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 04/17/2012] [Indexed: 11/23/2022]
|
106
|
Anower-E-Khuda MF, Habuchi H, Nagai N, Habuchi O, Yokochi T, Kimata K. Heparan sulfate 6-O-sulfotransferase isoform-dependent regulatory effects of heparin on the activities of various proteases in mast cells and the biosynthesis of 6-O-sulfated heparin. J Biol Chem 2012; 288:3705-17. [PMID: 23223449 DOI: 10.1074/jbc.m112.416651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heparan sulfate 6-O-sulfotransferase (HS6ST) is an enzyme involved in heparan sulfate (HS) biosynthesis that transfers a sulfate residue to position 6 of the GlcNAc/GlcNSO(3) residues of HS, and it consists of three isoforms. Heparin, the highly sulfated form of HS, resides in connective tissue mast cells and is involved in the storage of mast cell proteases (MCPs). However, it is not well understood which isoform(s) of HS6ST participates in 6-O-sulfation of heparin and how the 6-O-sulfate residues in heparin affect MCPs. To investigate these issues, we prepared fetal skin-derived mast cells (FSMCs) from wild type (WT) and HS6ST-deficient mice (HS6ST-1(-/-), HS6ST-2(-/-), and HS6ST-1(-/-)/HS6ST-2(-/-)) and determined the structure of heparin, the protease activity, and the mRNA expression of each MCP in cultured FSMCs. The activities of tryptase and carboxypeptidase-A were decreased in HS6ST-2(-/-)-FSMCs in which 6-O-sulfation of heparin was decreased at 50% of WT-FSMCs and almost lost in HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs, which lacked the 6-O-sulfation in heparin nearly completely. In contrast, chymase activity was retained even in HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs. Each MCP mRNA was not decreased in any of the mutant FSMCs. Western blot analysis showed that tryptase (mMCP-6) was almost absent from HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs indicating degradation/secretion of the enzyme protein. These observations suggest that both HS6ST-1 and HS6ST-2 are involved in 6-O-sulfation of heparin and that the proper packaging and storage of tryptase, carboxypeptidase-A, and chymase may be regulated differently by the 6-O-sulfate residues in heparin. It is thus likely that 6-O-sulfation of heparin plays important roles in regulating MCP functions.
Collapse
Affiliation(s)
- Md Ferdous Anower-E-Khuda
- Research Complex for the Medicine Frontiers, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
Serglycin belongs to a family of small proteoglycans with Ser-Gly dipeptide repeats, and it is modified with different types of glycosaminoglycan side chains. Intracellular serglycin affects the retention and secretion of proteases, chemokines, or other cytokines by physically binding to these factors in secretory granules. Extracellular serglycin has been found to be released by several types of human cancer cells, and it is able to promote the metastasis of nasopharyngeal carcinoma cells. Serglycin can bind to CD44, which is another glycoprotein located in cellular membrane. Serglycin's function of promoting cancer cell metastasis depends on glycosylation of its core protein, which can be achieved by autocrine as well as paracrine secretion mechanisms. Further investigations are warranted to elucidate serglycin signaling mechanisms with the goal of targeting them to prevent cancer cell metastasis.
Collapse
Affiliation(s)
- Xin-Jian Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China. qianchn@ sysucc.org.cn
| | | |
Collapse
|
108
|
Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol 2012; 33:613-25. [PMID: 23127755 DOI: 10.1016/j.it.2012.09.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells (MCs) have been implicated in a wide variety of processes that contribute to disease or help to maintain health. Although some of these roles were first suggested by analyses of MC products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by MCs in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of MC deficiency.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
109
|
Bush KT, Crawford BE, Garner OB, Nigam KB, Esko JD, Nigam SK. N-sulfation of heparan sulfate regulates early branching events in the developing mammary gland. J Biol Chem 2012; 287:42064-70. [PMID: 23060443 DOI: 10.1074/jbc.m112.423327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Branching morphogenesis, a fundamental process in the development of epithelial organs (e.g. breast, kidney, lung, salivary gland, prostate, pancreas), is in part dependent on sulfation of heparan sulfate proteoglycans. Proper sulfation is mediated by biosynthetic enzymes, including exostosin-2 (Ext2), N-deacetylase/N-sulfotransferases and heparan sulfate O-sulfotransferases. Recent conditional knockouts indicate that whereas primary branching is dependent on heparan sulfate, other stages are dependent upon selective addition of N-sulfate and/or 2-O sulfation (Crawford, B .E., Garner, O. B., Bishop, J. R., Zhang, D. Y., Bush, K. T., Nigam, S. K., and Esko, J. D. (2010) PLoS One 5, e10691; Garner, O .B., Bush, K. T., Nigam, S .K., Yamaguchi, Y., Xu, D., Esko, J. D., and Nigam, S. K. (2011) Dev. Biol. 355, 394-403). Here, we analyzed the effect of deleting both Ndst2 and Ndst1. Whereas deletion of Ndst1 has no major effect on primary or secondary branching, deletion of Ndst2 appears to result in a mild increase in branching. When both genes were deleted, ductal growth was variably diminished (likely due to variable Cre-recombinase activity), but an overabundance of branched structures was evident irrespective of the extent of gland growth or postnatal age. "Hyperbranching" is an unusual phenotype. The effects on N-sulfation and growth factor binding were confirmed biochemically. The results indicate that N-sulfation or a factor requiring N-sulfation regulates primary and secondary branching events in the developing mammary gland. Together with previous work, the data indicate that different stages of ductal branching and lobuloalveolar formation are regulated by distinct sets of heparan sulfate biosynthetic enzymes in an appropriate growth factor context.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
110
|
Kreuger J, Kjellén L. Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem 2012; 60:898-907. [PMID: 23042481 DOI: 10.1369/0022155412464972] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
111
|
Tamm C, Kjellén L, Li JP. Heparan sulfate biosynthesis enzymes in embryonic stem cell biology. J Histochem Cytochem 2012; 60:943-9. [PMID: 23042480 DOI: 10.1369/0022155412465090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can give rise to all cell types in the body. The fate of ES cells depends on the signals they receive from their surrounding environment, which either promote self-renewal or initiate differentiation. Heparan sulfate proteoglycans are macromolecules found on the cell surface and in the extracellular matrix. Acting as low-affinity receptors on the cell surface, heparan sulfate (HS) side chains modulate the functions of numerous growth factors and morphogens, having wide impact on the extracellular information received by cells. ES cells lacking HS fail to differentiate but can be induced to do so by adding heparin. ES cells defective in various components of the HS biosynthesis machinery, thus expressing differently flawed HS, exhibit lineage-specific effects. Here we discuss recent studies on the biological functions of HS in ES cell developmental processes. Since ES cells have significant potential applications in tissue/cell engineering for cell replacement therapies, understanding the functional mechanisms of HS in manipulating ES cell growth in vitro is of utmost importance, if the stem cell regenerative medicine from scientific fiction ever will be made real.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
112
|
Abstract
Mast cells are versatile effector cells of the immune system, contributing to both innate and adaptive immunity toward pathogens but also having profound detrimental activities in the context of inflammatory disease. A hallmark morphological feature of mast cells is their large content of cytoplasmic secretory granules, filled with numerous secretory compounds, including highly negatively charged heparin or chondroitin sulfate proteoglycans of serglycin type. These anionic proteoglycans provide the basis for the strong metachromatic staining properties of mast cells seen when applying various cationic dyes. Functionally, the mast cell proteoglycans have been shown to have an essential role in promoting the storage of other granule-contained compounds, including bioactive monoamines and different mast cell-specific proteases. Moreover, granule proteoglycans have been shown to regulate the enzymatic activities of mast cell proteases and to promote apoptosis. Here, the current knowledge of mast cell proteoglycans is reviewed.
Collapse
Affiliation(s)
- Elin Rönnberg
- Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, Uppsala, Sweden
| | | | | |
Collapse
|
113
|
Kusche-Gullberg M, Nybakken K, Perrimon N, Lindahl U. Drosophila heparan sulfate, a novel design. J Biol Chem 2012; 287:21950-6. [PMID: 22556423 DOI: 10.1074/jbc.m112.350389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans play critical roles in a wide variety of biological processes such as growth factor signaling, cell adhesion, wound healing, and tumor metastasis. Functionally important interactions between HS and a variety of proteins depend on specific structural features within the HS chains. The fruit fly (Drosophila melanogaster) is frequently applied as a model organism to study HS function in development. Previous structural studies of Drosophila HS have been restricted to disaccharide composition, without regard to the arrangement of saccharide domains typically found in vertebrate HS. Here, we biochemically characterized Drosophila HS by selective depolymerization with nitrous acid. Analysis of the generated saccharide products revealed a novel HS design, involving a peripheral, extended, presumably single, N-sulfated domain linked to an N-acetylated sequence contiguous with the linkage to core protein. The N-sulfated domain may be envisaged as a heparin structure of unusually low O-sulfate content.
Collapse
|
114
|
Zehnder J, Price E, Jin J. Controversies in heparin monitoring. Am J Hematol 2012; 87 Suppl 1:S137-40. [PMID: 22495972 DOI: 10.1002/ajh.23210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/09/2022]
Affiliation(s)
- James Zehnder
- Departments of Pathology and Medicine, Hematology, Stanford University School of Medicine, California 94305, USA.
| | | | | |
Collapse
|
115
|
Gasimli L, Linhardt RJ, Dordick JS. Proteoglycans in stem cells. Biotechnol Appl Biochem 2012; 59:65-76. [PMID: 23586787 DOI: 10.1002/bab.1002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/18/2012] [Indexed: 12/18/2022]
Abstract
The remarkable promise of pluripotent and multipotent stem cells (SCs) imparts tremendous optimism for advancement of regenerative medicine, developmental biology, and drug discovery. Perhaps the greatest challenge is to finely direct, control, and command their differentiation. As those processes are managed on many levels, including genomic, transcriptomic, and epigenomic, examination of all of these components will yield powerful tools for manipulation of SCs. Carbohydrates surround all cells, including SCs as a glycocalyx. Of particular interest is the class of carbohydrates known as proteoglycans (PGs), which are a diverse group of glycoconjugates consisting of core protein with one or more glycosaminoglycan (GAG) chains attached. They are primarily located in the extracellular matrix as well as at cell surfaces, where they are bound or anchored to the membrane through their core proteins. GAG chains are linear, anionic, and highly heterogeneous carbohydrates consisting of repeating disaccharides. PGs facilitate interaction of cells with the extracellular environment by interacting with chemokines, growth factors, and other signaling molecules. Core proteins are involved in many signaling pathways, both individually, as well as through attached proteins via GAG-mediated interactions. These essential and accessible functions make PGs an excellent target for manipulating SCs and guiding their fate. Studying the role of PGs in cell development will yield valuable insight into the mechanism of SC differentiation and suggest approaches toward directing those pathways. Such studies may also help identify valuable markers for distinguishing between various cell populations during differentiation.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
116
|
Forsberg M, Holmborn K, Kundu S, Dagälv A, Kjellén L, Forsberg-Nilsson K. Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem 2012; 287:10853-62. [PMID: 22298785 PMCID: PMC3322844 DOI: 10.1074/jbc.m111.337030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate proteoglycans, present on cell surfaces and in the extracellular matrix, interact with growth factors and morphogens to influence growth and differentiation of cells. The sulfation pattern of the heparan sulfate chains formed during biosynthesis in the Golgi compartment will determine the interaction potential of the proteoglycan. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes have a key role during biosynthesis, greatly influencing total sulfation of the heparan sulfate chains. The differentiation potential of mouse embryonic stem cells lacking both NDST1 and NDST2 was studied using in vitro differentiation protocols, expression of differentiation markers, and assessment of the ability of the cells to respond to growth factors. The results show that NDST1 and NDST2 are dispensable for mesodermal differentiation into osteoblasts but necessary for induction of adipocytes and neural cells. Gene expression analysis suggested a differentiation block at the primitive ectoderm stage. Also, GATA4, a primitive endoderm marker, was expressed by these cells. The addition of FGF4 or FGF2 together with heparin rescued the differentiation potential to neural progenitors and further to mature neurons and glia. Our results suggest that the embryonic stem cells lacking both NDST1 and NDST2, expressing a very low sulfated heparan sulfate, can take the initial step toward differentiation into all three germ layers. Except for their potential for mesodermal differentiation into osteoblasts, the cells are then arrested in a primitive ectoderm and/or endoderm stage.
Collapse
Affiliation(s)
- Maud Forsberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
117
|
Prieto-García A, Zheng D, Adachi R, Xing W, Lane WS, Chung K, Anderson P, Hansbro PM, Castells M, Stevens RL. Mast cell restricted mouse and human tryptase·heparin complexes hinder thrombin-induced coagulation of plasma and the generation of fibrin by proteolytically destroying fibrinogen. J Biol Chem 2012; 287:7834-44. [PMID: 22235124 DOI: 10.1074/jbc.m111.325712] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mouse and human TPSB2 and TPSAB1 genes encode tetramer-forming tryptases stored in the secretory granules of mast cells (MCs) ionically bound to heparin-containing serglycin proteoglycans. In mice these genes encode mouse MC protease-6 (mMCP-6) and mMCP-7. The corresponding human genes encode a family of serine proteases that collectively are called hTryptase-β. We previously showed that the α chain of fibrinogen is a preferred substrate of mMCP-7. We now show that this plasma protein also is highly susceptible to degradation by hTryptase-β· and mMCP-6·heparin complexes and that Lys(575) is a preferred cleavage site in the protein α chain. Because cutaneous mouse MCs store substantial amounts of mMCP-6·heparin complexes in their secretory granules, the passive cutaneous anaphylaxis reaction was induced in the skin of mMCP-6(+)/mMCP-7(-) and mMCP-6(-)/mMCP-7(-) C57BL/6 mice. In support of the in vitro data, fibrin deposits were markedly increased in the skin of the double-deficient mice 6 h after IgE-sensitized animals were given the relevant antigen. Fibrinogen is a major constituent of the edema fluid that accumulates in tissues when MCs degranulate. Our discovery that mouse and human tetramer-forming tryptases destroy fibrinogen before this circulating protein can be converted to fibrin changes the paradigm of how MCs hinder fibrin deposition and blood coagulation internally. Because of the adverse consequences of fibrin deposits in tissues, our data explain why mice and humans lack a circulating protease inhibitor that rapidly inactivates MC tryptases and why mammals have two genes that encode tetramer-forming serine proteases that preferentially degrade fibrinogen.
Collapse
Affiliation(s)
- Alicia Prieto-García
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kolset SO, Pejler G. Serglycin: a structural and functional chameleon with wide impact on immune cells. THE JOURNAL OF IMMUNOLOGY 2012; 187:4927-33. [PMID: 22049227 DOI: 10.4049/jimmunol.1100806] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the different proteoglycans expressed by mammals, serglycin is in most immune cells the dominating species. A unique property of serglycin is its ability to adopt highly divergent structures, because of glycosylation with variable types of glycosaminoglycans when expressed by different cell types. Recent studies of serglycin-deficient animals have revealed crucial functions for serglycin in a diverse array of immunological processes. However, its exact function varies to a large extent depending on the cellular context of serglycin expression. Based on these findings, serglycin is emerging as a structural and functional chameleon, with radically different properties depending on its exact cellular and immunological context.
Collapse
Affiliation(s)
- Svein O Kolset
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway.
| | | |
Collapse
|
119
|
Abstract
Heparin and heparan sulfate share the same polysaccharide backbone structure but differ in sulfation degree and expression pattern. Whereas heparan sulfate is found in virtually all cells of the human body, heparin expression is restricted to mast cells, where it has a function in storage of granular components such as histamine and mast cell specific proteases. Although differing in charge and sulfation pattern, current knowledge indicates that the same pathway is used for synthesis of heparin and heparan sulfate, with a large number of different enzymes taking part in the process. At present, little is known about how the individual enzymes are coordinated and how biosynthesis is regulated. These questions are addressed in this chapter together with a review of the basic enzymatic steps involved in initiation, elongation, and modification of the polysaccharides.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
120
|
Abstract
Heparin has long been known to possess biological effects that are unrelated to its anticoagulant activity. In particular, much emphasis has been placed upon heparin, or novel agents based upon the heparin template, as potential anti-inflammatory agents. Moreover, heparin has been reported to possess clinical benefit in humans, including in chronic inflammatory diseases and cancer, that are over and above the expected effects on blood coagulation and which in many cases are entirely separable from this role. This chapter aims to provide an overview of the non-anticoagulant effects that have been ascribed to heparin, from those involving the binding and inhibition of specific mediators involved in the inflammatory process to effects in whole system models of disease, with reference to the effects of heparin that have been reported to date in human diseases.
Collapse
Affiliation(s)
- Rebecca Lever
- The School of Pharmacy, University of London, London, UK.
| | | |
Collapse
|
121
|
Wang B, Jia J, Zhang X, Zcharia E, Vlodavsky I, Pejler G, Li JP. Heparanase affects secretory granule homeostasis of murine mast cells through degrading heparin. J Allergy Clin Immunol 2011; 128:1310-1317.e8. [PMID: 21575986 PMCID: PMC3160500 DOI: 10.1016/j.jaci.2011.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Heparanase degradation of heparan sulfate plays important roles in a number of pathological processes, including inflammation. In vitro experiments show that heparanase is capable of degrading heparin, a polysaccharide present in mast cells (MCs), in which it has a key role in promoting the storage of secretory granule compounds. OBJECTIVE We sought to investigate the functions of heparanase in MCs. METHODS Primarily cultured fetal skin-derived mast cells (FSMCs) isolated from embryos and adult peritoneal MCs were analyzed for storage and release of granule molecules in response to MC activation. RESULTS FSMCs from heparanase-overexpressing mice contained substantially shorter heparin chains and significantly less proteases than control cells. Conversely, FSMCs lacking heparanase contained heparin of larger size and more proteases than control cells. Correspondingly, heparanase-overexpressing adult MCs exhibited reduced release of heparin-bound proteases, a finding that could be attributed to spontaneous release of granular compounds. Heparanase was found to be upregulated in MCs on activation. CONCLUSION These findings reveal a novel function of heparanase in maintaining MC homeostasis through controlled degradation of heparin present in the MC secretory granules.
Collapse
Affiliation(s)
- Bo Wang
- Dept of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Juan Jia
- Dept of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Xiao Zhang
- Dept of Public Health and Caring Sciences, Uppsala University, Sweden
| | - Eyal Zcharia
- Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - Gunnar Pejler
- Dept of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jin-Ping Li
- Dept of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| |
Collapse
|
122
|
Dagälv A, Holmborn K, Kjellén L, Abrink M. Lowered expression of heparan sulfate/heparin biosynthesis enzyme N-deacetylase/n-sulfotransferase 1 results in increased sulfation of mast cell heparin. J Biol Chem 2011; 286:44433-40. [PMID: 22049073 DOI: 10.1074/jbc.m111.303891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the heparan sulfate biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed heparan sulfate biosynthesis in all organs, whereas lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. Whereas MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs. Surprisingly, the relative amount of heparin produced in NDST1(+/-) and NDST1(-/-) MCs is higher (≈30%) than in control MCs where ≈95% of the (35)S-labeled glycosaminoglycans produced is chondroitin sulfate. Lowered expression of NDST1 also results in a higher sulfate content of the heparin synthesized and is accompanied by increased levels of stored MC proteases. A model of the GAGosome, a hypothetical Golgi enzyme complex, is used to explain the results.
Collapse
Affiliation(s)
- Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, and Biomedical Sciences and Veterinary Public Health, SLU, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
123
|
Abstract
Mast cells (MCs) promote a wide range of localized and systemic inflammatory responses. Their involvement in immediate as well as chronic inflammatory reactions at both local and distal sites points to an extraordinarily powerful immunoregulatory capacity with spatial and temporal versatility. MCs are preferentially found in close proximity to both vascular and lymphatic vessels. On activation, they undergo a biphasic secretory response involving the rapid release of prestored vasoactive mediators followed by de novo synthesized products. Many actions of MCs are related to their capacity to regulate vascular flow and permeability and to the recruitment of various inflammatory cells from the vasculature into inflammatory sites. These mediators often work in an additive fashion and achieve their inflammatory effects locally by directly acting on the vascular and lymphatic endothelia, but they also can affect distal sites. Along these lines, the lymphatic and endothelial vasculatures of the host act as a conduit for the dissemination of MC signals during inflammation. The central role of the MC-endothelial cell axis to immune homeostasis is emphasized by the fact that some of the most effective current treatments for inflammatory disorders are directed at interfering with this interaction.
Collapse
|
124
|
The procoagulant and proinflammatory plasma contact system. Semin Immunopathol 2011; 34:31-41. [DOI: 10.1007/s00281-011-0288-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
125
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1098] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
126
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
127
|
Oschatz C, Maas C, Lecher B, Jansen T, Björkqvist J, Tradler T, Sedlmeier R, Burfeind P, Cichon S, Hammerschmidt S, Müller-Esterl W, Wuillemin WA, Nilsson G, Renné T. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34:258-68. [PMID: 21349432 DOI: 10.1016/j.immuni.2011.02.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 08/16/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
Activated mast cells trigger edema in allergic and inflammatory disease. We report a paracrine mechanism by which mast cell-released heparin increases vascular permeability in vivo. Heparin activated the protease factor XII, which initiates bradykinin formation in plasma. Targeting factor XII or kinin B2 receptors abolished heparin-triggered leukocyte-endothelium adhesion and interfered with a mast cell-driven drop in blood pressure in rodents. Intravital laser scanning microscopy and tracer measurements showed heparin-driven fluid extravasation in mouse skin microvessels. Ablation of factor XII or kinin B2 receptors abolished heparin-induced skin edema and protected mice from allergen-activated mast cell-driven leakage. In contrast, heparin and activated mast cells induced excessive edema in mice deficient in the major inhibitor of factor XII, C1 esterase inhibitor. Allergen exposure triggered edema attacks in hereditary angioedema patients, lacking C1 esterase inhibitor. The data indicate that heparin-initiated bradykinin formation plays a fundamental role in mast cell-mediated diseases.
Collapse
Affiliation(s)
- Chris Oschatz
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Li XJ, Ong CK, Cao Y, Xiang YQ, Shao JY, Ooi A, Peng LX, Lu WH, Zhang Z, Petillo D, Qin L, Bao YN, Zheng FJ, Chia CS, Iyer NG, Kang TB, Zeng YX, Soo KC, Trent JM, Teh BT, Qian CN. Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res 2011; 71:3162-72. [PMID: 21289131 DOI: 10.1158/0008-5472.can-10-3557] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is known for its high-metastatic potential. Here we report the identification of the proteoglycan serglycin as a functionally significant regulator of metastasis in this setting. Comparative genomic expression profiling of NPC cell line clones with high- and low-metastatic potential revealed the serglycin gene (SRGN) as one of the most upregulated genes in highly metastatic cells. RNAi-mediated inhibition of serglycin expression blocked serglycin secretion and the invasive motility of highly metastatic cells, reducing metastatic capacity in vivo. Conversely, serglycin overexpression in poorly metastatic cells increased their motile behavior and metastatic capacity in vivo. Growth rate was not influenced by serglycin in either highly or poorly metastatic cells. Secreted but not bacterial recombinant serglycin promoted motile behavior, suggesting a critical role for glycosylation in serglycin activity. Serglycin inhibition was associated with reduced expression of vimentin but not other epithelial-mesenchymal transition proteins. In clinical specimens, serglycin expression was elevated significantly in liver metastases from NPC relative to primary NPC tumors. We evaluated the prognostic value of serglycin by immunohistochemical staining of tissue microarrays from 263 NPC patients followed by multivariate analyses. High serglycin expression in primary NPC was found to be an unfavorable independent indicator of distant metastasis-free and disease-free survival. Our findings establish that glycosylated serglycin regulates NPC metastasis via autocrine and paracrine routes, and that it serves as an independent prognostic indicator of metastasis-free survival and disease-free survival in NPC patients.
Collapse
Affiliation(s)
- Xin-Jian Li
- State Key Laboratory of Oncology in South China, Departments of Pathology and Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Shelburne CP, Abraham SN. The mast cell in innate and adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:162-85. [PMID: 21713657 DOI: 10.1007/978-1-4419-9533-9_10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) were once considered only as effector cells in pathogenic IgE- and IgG-mediated responses such as allergy. However, developments over the last 15 years have suggested that MCs have evolved in vertebrates as beneficial effector cells that are involved in the very first inflammatory responses generated during infection. This pro-inflammatory environment has been demonstrated to be important for initiating innate responses in many different models of infection and more recently, in the development of adaptive immunity as well. Interestingly this latter finding has led to the discovery that small MC-activating compounds can behave as adjuvants in vaccine formulations. Thus, our continued understanding of the MC in the context of infectious disease is likely to not only expand our scope of the MC in the normal processes of immunity, but provide new therapeutic targets to combat disease.
Collapse
|
130
|
Sawesi O, Spillmann D, Lundén A, Wernersson S, Åbrink M. Serglycin-independent release of active mast cell proteases in response to Toxoplasma gondii infection. J Biol Chem 2010; 285:38005-13. [PMID: 20864536 PMCID: PMC2992234 DOI: 10.1074/jbc.m110.118471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 08/13/2010] [Indexed: 01/05/2023] Open
Abstract
Earlier studies identified serglycin proteoglycan and its heparin chains to be important for storage and activity of mast cell proteases. However, the importance of serglycin for secretion and activity of mast cell proteases in response to parasite infection has been poorly investigated. To address this issue, we studied the effects on mast cell proteases in serglycin-deficient and wild type mice after peritoneal infection with the obligate intracellular parasite Toxoplasma gondii. In line with previous results, we found severely reduced levels of cell-bound mast cell proteases in both noninfected and infected serglycin-deficient mice. However, serglycin-deficient mice secreted mast cell proteases at wild type levels at the site of infection, and enzymatic activities associated with mast cell proteases were equally up-regulated in wild type and serglycin-deficient mice 48 h after infection. In both wild type and serglycin-deficient mice, parasite infection resulted in highly increased extracellular levels of glycosaminoglycans, including hyaluronan and chondroitin sulfate A, suggesting a role of these substances in the general defense mechanism. In contrast, heparan sulfate/heparin was almost undetectable in serglycin-deficient mice, and in wild type mice, it was mainly confined to the cellular fraction and was not increased upon infection. Furthermore, the heparan sulfate/heparin population was less sulfated in serglycin-deficient than in wild type mice indicative for the absence of heparin, which supports that heparin production is dependent on the serglycin core protein. Together, our results suggest that serglycin proteoglycan is dispensable for normal secretion and activity of mast cell proteases in response to peritoneal infection with T. gondii.
Collapse
Affiliation(s)
- Osama Sawesi
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
- Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden
| | - Dorothe Spillmann
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
| | - Anna Lundén
- the Departments of Biomedical Sciences and Veterinary Public Health, Section of Parasitology (SWEPAR), SE-75189 Uppsala, and
| | - Sara Wernersson
- Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden
| | - Magnus Åbrink
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
| |
Collapse
|
131
|
Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 2010; 5:e15071. [PMID: 21151498 PMCID: PMC2994821 DOI: 10.1371/journal.pone.0015071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/19/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. METHODOLOGY/PRINCIPAL FINDINGS Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. CONCLUSIONS/SIGNIFICANCE Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.
Collapse
|
132
|
Yoon BY, Choi BD, Bae DW, Choi YJ. Extraction of Glycosaminoglycan from Sea Hare, Aplysia kurodai, and Its Functional Properties 2. Structural Properties of Purified Glycosaminoglycan. ACTA ACUST UNITED AC 2010. [DOI: 10.3746/jkfn.2010.39.11.1647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
133
|
Zhang CY, Hu P, Fu D, Wu W, Jia CY, Zhu XC, Wu XZ. 3'-Sulfo-Le(x) is important for regulation of integrin subunit alphaV. Biochemistry 2010; 49:7811-20. [PMID: 20695481 DOI: 10.1021/bi101040k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate structures with a 3'-sulfo betaGal linkage, such as 3'-sulfo-Le(x), can be synthesized by Gal:3-O-sulfotransferase-2 (Gal3ST-2) catalysis, but little is known about their roles in many biological processes. To investigate the role of Gal3ST-2 and its product 3'-sulfo-Le(x), we depleted Gal3ST-2 via siRNA and added exogenous Lewis-x trisaccharide 3'-sulfate sodium salt in human SMMC7721 hepatoma cells. After siRNA transfection, a striking morphological change in SMMC7721 hepatoma cells from polygon to shuttle shape and a significant decrease in the level of adhesion to sL-selectin, HUVEC, fibronectin, vitronectin, and fibrinogen were observed. The expression of integrin subunit alphaV was markedly downregulated, and 3'-sulfated subunit alphaV almost disappeared in the transfectants. The level of cell surface integrin alphaVbeta3 was reduced simultaneously, although total subunit beta3 underwent almost no change. After treatment with exogenous Lewis-x 3'-sulfate, cellular integrin subunit alphaV was upregulated and the level of cell surface integrin alphaVbeta3 was elevated. Interestingly, knockdown of Gal3ST-2 expression effectively inhibited cell proliferation, and the result was significantly correlated with the decrease in the levels of ILK, phosphorylated AKT, and ERK. On the other hand, treatment with Lewis-x trisaccharide 3'-sulfate sodium salt greatly upregulated the phosphorylation of AKT and ERK. Our results also indicated that downregulation of Gal3ST-2 via siRNA transfection was associated with the decrease in the level of expression of anti-apoptotic protein, Bcl-2, with a consequent decrease in the ratios for Bcl-2 to Bax. By exposure to Lewis-x trisaccharide 3'-sulfate sodium salt, the apoptotic response of cells was inhibited. Therefore, Gal3ST-2 and its product, 3'-sulfo-Le(x), were involved in regulation of integrin subunit alphaV and might be associated with cancer cell regulation.
Collapse
Affiliation(s)
- Chun-Yi Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
134
|
Smits NC, Shworak NW, Dekhuijzen PR, van Kuppevelt TH. Heparan Sulfates in the Lung: Structure, Diversity, and Role in Pulmonary Emphysema. Anat Rec (Hoboken) 2010; 293:955-67. [DOI: 10.1002/ar.20895] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
135
|
Crawford BE, Garner OB, Bishop JR, Zhang DY, Bush KT, Nigam SK, Esko JD. Loss of the heparan sulfate sulfotransferase, Ndst1, in mammary epithelial cells selectively blocks lobuloalveolar development in mice. PLoS One 2010; 5:e10691. [PMID: 20502530 PMCID: PMC2872662 DOI: 10.1371/journal.pone.0010691] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 04/26/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Considerable evidence indicates that heparan sulfate is essential for the development of tissues consisting of branching ducts and tubules. However, there are few examples where specific sulfate residues regulate a specific stage in the formation of such tissues. METHODOLOGY/PRINCIPAL FINDINGS We examined the role of heparan sulfation in mammary gland branching morphogenesis, lactation and lobuloalveolar development by inactivation of heparan sulfate GlcNAc N-deacetylase/N-sulfotransferase genes (Ndst) in mammary epithelial cells using the Cre-loxP system. Ndst1 deficiency resulted in an overall reduction in glucosamine N-sulfation and decreased binding of FGF to mammary epithelial cells in vitro and in vivo. Mammary epithelia lacking Ndst1 underwent branching morphogenesis, filling the gland with ductal tissue by sexual maturity to the same extent as wildtype epithelia. However, lobuloalveolar expansion did not occur in Ndst1-deficient animals, resulting in insufficient milk production to nurture newly born pups. Lactational differentiation of isolated mammary epithelial cells occurred appropriately via stat5 activation, further supporting the notion that the lack of milk production was due to lack of expansion of the lobuloalveoli. CONCLUSIONS/SIGNIFICANCE These findings demonstrate a selective, highly penetrant, cell autonomous effect of Ndst1-mediated sulfation on lobuloalveolar development.
Collapse
Affiliation(s)
- Brett E. Crawford
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Omai B. Garner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Joseph R. Bishop
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Y. Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sanjay K. Nigam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
136
|
Ohtake-Niimi S, Kondo S, Ito T, Kakehi S, Ohta T, Habuchi H, Kimata K, Habuchi O. Mice deficient in N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells. J Biol Chem 2010; 285:20793-805. [PMID: 20439988 DOI: 10.1074/jbc.m109.084749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO(4))) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO(4)) residues. We here report generation of transgenic mice that lack GalNAc4S-6ST. GalNAc4S-6ST-null mice were born normally and fertile. In GalNAc4S-6ST-null mice, GalNAc(4,6-SO(4)) residues in CS and DS disappeared completely, indicating that GalNAc4S-6ST should be a sole enzyme responsible for the synthesis of GalNAc(4,6-SO(4)) residues in both CS and DS. IdoA-GalNAc(4,6-SO(4)) units that account for approximately 40% of total disaccharide units of DS in the liver of the wild-type mice disappeared in the liver DS of GalNAc4S-6ST-null mice without reduction of IdoA content. Bone marrow-derived mast cells (BMMCs) derived from GalNAc4S-6ST-null mice contained CS without GlcA-GalNAc(4,6-SO(4)) units. Tryptase and carboxypeptidase A activities of BMMCs derived from GalNAc4S-6ST-null mice were lower than those activities of BMMCs derived from wild-type mice, although mRNA expression of these mast cell proteases was not altered. Disaccharide compositions of heparan sulfate/heparin contained in the mast cells derived from BMMCs in the presence of stem cell factor were much different from those of heparan sulfate/heparin in BMMCs but did not differ significantly between wild-type mice and GalNAc4S-6ST-null mice. These observations suggest that CS containing GalNAc(4,6-SO(4)) residues in BMMCs may contribute to retain the active proteases in the granules of BMMCs but not for the maturation of BMMCs into connective tissue-type mast cells.
Collapse
Affiliation(s)
- Shiori Ohtake-Niimi
- Department of Chemistry, Aichi University of Education, Igaya-cho, Kariya, Aichi 448-8542, Japan
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Mast cells (MCs) are currently receiving increased attention among the scientific community, largely because of the recent identification of crucial functions for MCs in a variety of disorders. However, it is in many cases not clear exactly how MCs contribute in the respective settings. MCs express extraordinarily high levels of a number of proteases of chymase, tryptase, and carboxypeptidase A type, and these are stored in high amounts as active enzymes in the MC secretory granules. Hence, MC degranulation leads to the massive release of fully active MC proteases, which probably have a major impact on any condition in which MC degranulation occurs. Indeed, the recent generation and evaluation of mouse strains lacking individual MC proteases have indicated crucial contributions of these to a number of different disorders. MC proteases may thus account for many of the effects ascribed to MCs and are currently emerging as promising candidates for treatment of MC-driven disease. In this review, we discuss these findings.
Collapse
|
138
|
Lever R, Smailbegovic A, Page CP. Locally available heparin modulates inflammatory cell recruitment in a manner independent of anticoagulant activity. Eur J Pharmacol 2010; 630:137-44. [DOI: 10.1016/j.ejphar.2009.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 11/23/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
|
139
|
Lee HN, Kim CH, Song GG, Cho SW. Effects of IL-3 and SCF on Histamine Production Kinetics and Cell Phenotype in Rat Bone Marrow-derived Mast Cells. Immune Netw 2010; 10:15-25. [PMID: 20228932 PMCID: PMC2837153 DOI: 10.4110/in.2010.10.1.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rat mast cells were regarded as a good model for mast cell function in immune response. METHODS Rat bone marrow mast cells (BMMC) were prepared both by recombinant rat IL-3 (rrIL-3) and by recombinant mouse stem cell factor (rmSCF), and investigated for both proliferation and differentiation in time course. Rat BMMC was induced by culture of rat bone marrow cells (BMCs) in the presence of both rrIL-3 (5 ng/ml) and rmSCF (5 ng/ml). Culture media were changed 2 times per week with the cell number condition of 5x10(4)/ml in 6 well plate. Proliferation was analyzed by cell number and cell counting kit-8 (CCK-8) and differentiation was by rat mast cell protease (RMCP) II and histamine. RESULTS Cell proliferation rates reached a maximum at 8 or 11 days of culture and decreased thereafter. However, both RMCP II production and histamine synthesis peaked after 11 days of culture. By real time RT-PCR, the level of histidine decarboxylase mRNA was more than 500 times higher on culture day 11 than on culture day 5. By transmission electron microscopy, the cells were heterogeneous in size and contained cytoplasmic granules. Using gated flow cytometry, we showed that cultured BMCs expressed high levels of FcepsilonRI and the mast cell antigen, ganglioside, on culture day 11. CONCLUSION These results indicate that rat BMMCs were generated by culturing BMCs in the presence of rrIL-3 and rmSCF and that the BMMCs have the characteristics of mucosal mast cells.
Collapse
Affiliation(s)
- Haneul Nari Lee
- Department of Microbiology and Immunology, Korea University Graduate School, Seoul 136-705, Korea
| | | | | | | |
Collapse
|
140
|
Abstract
IMPORTANCE OF THE FIELD Accumulating evidence suggests that mast cells are involved in a wide variety of immune responses including chronic inflammation, immune tolerance and tumor immunity. Mast cells originate from hematopoietic stem cells and undergo terminal differentiation in the tissues, in which they are ultimately resident. Heterogeneity of tissue mast cells is, therefore, one of the key concepts for a better understanding of various immune responses. AREAS COVERED IN THIS REVIEW This review describes the candidate genes involved in regulation of cutaneous mast cell differentiation, with a particular attention to CD44, which is the primary receptor for hyaluronan. WHAT THE READER WILL GAIN CD44 is involved in various aspects of cutaneous inflammation. Regarding mast cells, CD44 is upregulated upon differentiation and maturation of mast cells, and plays a critical role in regulation of cutaneous mast cell number. Since both degradation and decrease of hyaluronan are often observed upon chronic inflammation, CD44 might be involved in modulation of local immune responses through regulation of cutaneous mast cell functions. TAKE HOME MESSAGE Understanding of cutaneous immune responses should require clarification of local mast cell functions, a part of which is regulated by extracellular matrix components and their membrane receptors.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Department of Immunochemistry, Okayama 700-8530, Japan.
| |
Collapse
|
141
|
Schick BP. Serglycin proteoglycan deletion in mouse platelets: physiological effects and their implications for platelet contributions to thrombosis, inflammation, atherosclerosis, and metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:235-87. [PMID: 20807648 DOI: 10.1016/s1877-1173(10)93011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Serglycin is found in all nucleated hematopoietic cells and platelets, blood vessels, various reproductive and developmental tissues, and in chondrocytes. The serglycin knockout mouse has demonstrated that this proteoglycan is required for proper generation and function of secretory granules in several hematopoietic cells. The effects on platelets are profound, and include diminishing platelet aggregation responses and formation of platelet thrombi. This chapter will review cell-specific aspects of serglycin structure, its gene regulation, cell and tissue localization, and the effects of serglycin deletion on hematopoietic cell granule structure and function. The effects of serglycin knockout on platelets are described and discussed in detail. Rationales for further investigations into the contribution of serglycin to the known roles of platelets in thrombosis, inflammation, atherosclerosis, and tumor metastasis are presented.
Collapse
Affiliation(s)
- Barbara P Schick
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
142
|
Alban S, Nowak G, Seidel H, Watzka M, Oldenburg J. Antikoagulation. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
143
|
Ringvall M, Kjellén L. Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:35-58. [PMID: 20807640 DOI: 10.1016/s1877-1173(10)93003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ndsts (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate (HS) and heparin biosynthesis. In this review, basic features of the Ndst1 enzyme are covered and a brief description of HS biosynthesis and its regulation is presented. Effects of Ndst1 deficiency on embryonic development are described. These include immature lungs, craniofacial dysplasia and eye developmental defects, branching defect during lacrimal gland development, delayed mineralization of the skeleton, and reduced pericyte recruitment during vascular development. A brief account of the effects of Ndst1 deficiency in selective cell types in adult mice is also given.
Collapse
Affiliation(s)
- Maria Ringvall
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
144
|
Duelli A, Rönnberg E, Waern I, Ringvall M, Kolset SO, Pejler G. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. THE JOURNAL OF IMMUNOLOGY 2009; 183:7073-83. [PMID: 19915053 DOI: 10.4049/jimmunol.0900309] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serglycin (SG) proteoglycan consists of a small core protein to which glycosaminoglycans of chondroitin sulfate or heparin type are attached. SG is crucial for maintaining mast cell (MC) granule homeostasis through promoting the storage of various basic granule constituents, where the degree of chondroitin sulfate/heparin sulfation is essential for optimal SG functionality. However, the regulation of the SG core protein expression and of the various chondroitin sulfate/heparin sulfotransferases during MC differentiation and activation are poorly understood. Here we addressed these issues and show that expression of the SG core protein, chondroitin 4-sulfotransferase (C4ST)-1, and GalNAc(4S)-6-O-sulfotransferase (GalNAc4S6ST) are closely linked to MC maturation. In contrast, the expression of chondroitin 6-sulfotransferase correlated negatively with MC maturation. The expression of N-deacetylase/N-sulfotransferase (NDST)-2, a key enzyme in heparin synthesis, also correlated strongly with MC maturation, whereas the expression of the NDST-1 isoform was approximately equal at all stages of maturation. MC activation by either calcium ionophore or IgE ligation caused an up-regulated expression of the SG core protein, C4ST-1, and GalNAc4S6ST, accompanied by increased secretion of chondroitin sulfate as shown by biosynthetic labeling experiments. In contrast, NDST-2 was down-regulated after MC activation, suggesting that MC activation modulates the nature of the glycosaminoglycan chains attached to the SG core protein. Taken together, these data show that MC maturation is associated with the expression of a distinct signature of genes involved in SG proteoglycan synthesis, and that MC activation modulates their expression.
Collapse
Affiliation(s)
- Annette Duelli
- Department of Anatomy, Swedish University of Agricultural Sciences, Uppsala 75123, Sweden
| | | | | | | | | | | |
Collapse
|
145
|
Glycosaminoglycan metabolism before molecular biology: reminiscences of our early work. Glycoconj J 2009; 27:201-9. [PMID: 19728084 DOI: 10.1007/s10719-009-9254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/24/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
This article concerns personal reminiscences of research on proteoglycans accomplished by Jeremiah Silbert and his co-investigators over a 25-30 year period beginning in 1961. Radiolabeled substrates were prepared and incubated with subcellular particles from mast cells and cartilage to determine pathways and organization of heparin and chondroitin glycosaminoglycan formation together with sulfation. Microsomal/Golgi fractions were examined for localization and organization of synthesis. Cell surface heparan sulfate and chondroitin were examined for preliminary information regarding potential function, and techniques were developed to alter sulfation processes.
Collapse
|
146
|
O'Donnell CD, Shukla D. A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 2009; 284:29654-65. [PMID: 19726670 DOI: 10.1074/jbc.m109.037960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Ophthalmology and Visual Sciences and the Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
147
|
Ra HJ, Harju-Baker S, Zhang F, Linhardt RJ, Wilson CL, Parks WC. Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem 2009; 284:27924-27932. [PMID: 19654318 DOI: 10.1074/jbc.m109.035147] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-alpha-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8-12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12-24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (K(D), 400 nm) and CS-E (K(D), 630 nm). Active matrilysin bound heparin (K(D), 150 nm) but less so to CS-E (K(D), 60 microm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Susanna Harju-Baker
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Carole L Wilson
- Department of Pathology, University of Washington, Seattle, Washington 98109
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington 98109.
| |
Collapse
|
148
|
Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol 2009; 30:401-8. [DOI: 10.1016/j.it.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
|
149
|
Niemann CU, Cowland JB, Ralfkiaer E, Åbrink M, Pejler G, Borregaard N. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules. Eur J Cell Biol 2009; 88:473-9. [DOI: 10.1016/j.ejcb.2009.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022] Open
|
150
|
Ren Y, Kirkpatrick CA, Rawson JM, Sun M, Selleck SB. Cell type-specific requirements for heparan sulfate biosynthesis at the Drosophila neuromuscular junction: effects on synapse function, membrane trafficking, and mitochondrial localization. J Neurosci 2009; 29:8539-50. [PMID: 19571145 PMCID: PMC3849837 DOI: 10.1523/jneurosci.5587-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/21/2009] [Accepted: 06/01/2009] [Indexed: 12/26/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are concentrated at neuromuscular synapses in many species, including Drosophila. We have established the physiological and patterning functions of HSPGs at the Drosophila neuromuscular junction by using mutations that block heparan sulfate synthesis or sulfation to compromise HSPG function. The mutant animals showed defects in synaptic physiology and morphology suggesting that HSPGs function both presynaptically and postsynaptically; these defects could be rescued by appropriate transgene expression. Of particular interest were selective disruptions of mitochondrial localization, abnormal distributions of Golgi and endoplasmic reticulum markers in the muscle, and a markedly increased level of stimulus-dependent endocytosis in the motoneuron. Our data support the emerging view that HSPG functions are not limited to the cell surface and matrix environments, but also affect a diverse set of cellular processes including membrane trafficking and organelle distributions.
Collapse
Affiliation(s)
- Yi Ren
- Developmental Biology Center, Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Catherine A. Kirkpatrick
- Developmental Biology Center, Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Joel M. Rawson
- Developmental Biology Center, Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mu Sun
- Developmental Biology Center, Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Scott B. Selleck
- Developmental Biology Center, Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|