101
|
Stuart T, Eichten SR, Cahn J, Karpievitch YV, Borevitz JO, Lister R. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. eLife 2016; 5. [PMID: 27911260 PMCID: PMC5167521 DOI: 10.7554/elife.20777] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
Abstract
Variation in the presence or absence of transposable elements (TEs) is a major source of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants associated with local extremes of gene expression and DNA methylation levels within the population. Of the common alleles identified, two thirds were not in linkage disequilibrium with nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE variants were associated with significantly altered expression of nearby genes, and a major fraction of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall, this demonstrates that TE variants are a rich source of genetic diversity that likely plays an important role in facilitating epigenomic and transcriptional differences between individuals, and indicates a strong genetic basis for epigenetic variation. DOI:http://dx.doi.org/10.7554/eLife.20777.001
Collapse
Affiliation(s)
- Tim Stuart
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Steven R Eichten
- ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australia
| | - Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Yuliya V Karpievitch
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Justin O Borevitz
- ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
102
|
Affiliation(s)
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-75005 Paris, France;
| |
Collapse
|
103
|
Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, Pecinka A. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol 2016; 17:209. [PMID: 27729060 PMCID: PMC5059998 DOI: 10.1186/s13059-016-1072-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/23/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The mobilization of transposable elements (TEs) is suppressed by host genome defense mechanisms. Recent studies showed that the cis-regulatory region of Arabidopsis thaliana COPIA78/ONSEN retrotransposons contains heat-responsive elements (HREs), which cause their activation during heat stress. However, it remains unknown whether this is a common and potentially conserved trait and how it has evolved. RESULTS We show that ONSEN, COPIA37, TERESTRA, and ROMANIAT5 are the major families of heat-responsive TEs in A. lyrata and A. thaliana. Heat-responsiveness of COPIA families is correlated with the presence of putative high affinity heat shock factor binding HREs within their long terminal repeats in seven Brassicaceae species. The strong HRE of ONSEN is conserved over millions of years and has evolved by duplication of a proto-HRE sequence, which was already present early in the evolution of the Brassicaceae. However, HREs of most families are species-specific, and in Boechera stricta, the ONSEN HRE accumulated mutations and lost heat-responsiveness. CONCLUSIONS Gain of HREs does not always provide an ultimate selective advantage for TEs, but may increase the probability of their long-term survival during the co-evolution of hosts and genomic parasites.
Collapse
Affiliation(s)
- Björn Pietzenuk
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Catarine Markus
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Hervé Gaubert
- Department of Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
- Present address: The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Navratan Bagwan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Cardiovascular proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, 28029, Spain
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Etienne Bucher
- UMR1345 IRHS, Université d'Angers, INRA, Université Bretagne Loire, SFR4207 QUASAV, 49045, Angers, France
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.
| |
Collapse
|
104
|
Testa AC, Oliver RP, Hane JK. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes. Genome Biol Evol 2016; 8:2044-64. [PMID: 27289099 PMCID: PMC4943192 DOI: 10.1093/gbe/evw121] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/03/2022] Open
Abstract
We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as "OcculterCut" (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates "two speeds" of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions.
Collapse
Affiliation(s)
- Alison C Testa
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Richard P Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - James K Hane
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
105
|
Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc Natl Acad Sci U S A 2016; 113:E2083-92. [PMID: 27001853 DOI: 10.1073/pnas.1600672113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns. Novel nonparental and heritable epialleles arise at many genic loci, including a locus that itself controls DNA methylation patterns, but with most of the changes affecting pericentromeric transposons. Although a subset of transposons show immediate resilencing, a large number display decreased DNA methylation, which is associated with de novo or enhanced transcriptional activation and can translate into transposon mobilization in the progeny. Our findings reveal that the combination of distinct epigenomes can be viewed as an epigenomic shock, which is characterized by a round of epigenetic variation creating novel patterns of gene and TE regulation.
Collapse
|
106
|
Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev 2016; 29:2183-202. [PMID: 26494791 PMCID: PMC4617981 DOI: 10.1101/gad.270876.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Yelina et al. show that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. This work demonstrates that DNA methylation plays a key role in establishing domains of meiotic recombination along chromosomes. During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Bruno Santos
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
107
|
Basenko EY, Kamei M, Ji L, Schmitz RJ, Lewis ZA. The LSH/DDM1 Homolog MUS-30 Is Required for Genome Stability, but Not for DNA Methylation in Neurospora crassa. PLoS Genet 2016; 12:e1005790. [PMID: 26771905 PMCID: PMC4714748 DOI: 10.1371/journal.pgen.1005790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes.
Collapse
Affiliation(s)
- Evelina Y. Basenko
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
108
|
Bousios A, Diez CM, Takuno S, Bystry V, Darzentas N, Gaut BS. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response. Genome Res 2015; 26:226-37. [PMID: 26631490 PMCID: PMC4728375 DOI: 10.1101/gr.193763.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023]
Abstract
Transposable elements (TEs) proliferate within the genome of their host, which responds by silencing them epigenetically. Much is known about the mechanisms of silencing in plants, particularly the role of siRNAs in guiding DNA methylation. In contrast, little is known about siRNA targeting patterns along the length of TEs, yet this information may provide crucial insights into the dynamics between hosts and TEs. By focusing on 6456 carefully annotated, full-length Sirevirus LTR retrotransposons in maize, we show that their silencing associates with underlying characteristics of the TE sequence and also uncover three features of the host–TE interaction. First, siRNA mapping varies among families and among elements, but particularly along the length of elements. Within the cis-regulatory portion of the LTRs, a complex palindrome-rich region acts as a hotspot of both siRNA matching and sequence evolution. These patterns are consistent across leaf, tassel, and immature ear libraries, but particularly emphasized for floral tissues and 21- to 22-nt siRNAs. Second, this region has the ability to form hairpins, making it a potential template for the production of miRNA-like, hairpin-derived small RNAs. Third, Sireviruses are targeted by siRNAs as a decreasing function of their age, but the oldest elements remain highly targeted, partially by siRNAs that cross-map to the youngest elements. We show that the targeting of older Sireviruses reflects their conserved palindromes. Altogether, we hypothesize that the palindromes aid the silencing of active elements and influence transposition potential, siRNA targeting levels, and ultimately the fate of an element within the genome.
Collapse
Affiliation(s)
- Alexandros Bousios
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, United Kingdom; Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Concepcion M Diez
- Department of Agronomy, University of Cordoba, 14014 Cordoba, Spain; Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, California 92697, USA
| | - Shohei Takuno
- SOKENDAI (Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Nikos Darzentas
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, California 92697, USA
| |
Collapse
|
109
|
Rathore MS, Jha B. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers. Appl Biochem Biotechnol 2015; 178:1002-14. [PMID: 26588922 DOI: 10.1007/s12010-015-1924-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
Abstract
The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.
Collapse
Affiliation(s)
- Mangal S Rathore
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Bhavanath Jha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
110
|
Hogg K, Western PS. Refurbishing the germline epigenome: Out with the old, in with the new. Semin Cell Dev Biol 2015; 45:104-13. [PMID: 26597001 DOI: 10.1016/j.semcdb.2015.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Abstract
Mammalian germline reprogramming involves the erasure and re-establishment of epigenetic information critical for germ cell function and inheritance in offspring. The bi-faceted nature of such reprogramming ensures germline repression of somatic programmes and the establishment of a carefully constructed epigenome essential for fertilisation and embryonic development in the next generation. While the majority of the germline epigenome is erased in preparation for embryonic development, certain genomic sequences remain resistant to this and may represent routes for transmission of epigenetic changes through the germline. Epigenetic reprogramming is regulated by highly conserved epigenetic modifiers, which function to establish, maintain and remove DNA methylation and chromatin modifications. In this review, we discuss recent findings from a considerable body of work illustrating the critical requirement of epigenetic modifiers that influence the epigenetic signature present in mature gametes, and have the potential to affect developmental outcomes in the offspring. We also briefly discuss the similarities of these mechanisms in the human germline and consider the potential for inheritance of epigenetically induced germline genetic errors that could impact on offspring phenotypes.
Collapse
Affiliation(s)
- Kirsten Hogg
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia.
| |
Collapse
|
111
|
Colicchio JM, Miura F, Kelly JK, Ito T, Hileman LC. DNA methylation and gene expression in Mimulus guttatus. BMC Genomics 2015; 16:507. [PMID: 26148779 PMCID: PMC4492170 DOI: 10.1186/s12864-015-1668-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
Background The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression. Results We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based on DNA methylation (R2 = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of recombination in these same regions. Conclusions The establishment here of a reference methylome will be a useful resource for the continued advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation patterns are an important predictor of variation in gene expression. This model provides a novel approach for differential methylation analysis that generates distinct and testable hypotheses regarding gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1668-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Fumihito Miura
- Department of Medical Biochemistry, Department of Biochemistry, Fukuoka 812-8581, Fukuoka 812-8582, Japan
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Takashi Ito
- Department of Medical Biochemistry, Department of Biochemistry, Fukuoka 812-8581, Fukuoka 812-8582, Japan
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
112
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
113
|
Lungu C, Muegge K, Jeltsch A, Jurkowska RZ. An ATPase-deficient variant of the SNF2 family member HELLS shows altered dynamics at pericentromeric heterochromatin. J Mol Biol 2015; 427:1903-15. [PMID: 25823553 PMCID: PMC7722765 DOI: 10.1016/j.jmb.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/04/2015] [Accepted: 03/20/2015] [Indexed: 11/15/2022]
Abstract
The HELLS (helicase, lymphoid specific, also known as lymphoid-specific helicase) protein is related to the SNF2 (sucrose non-fermentable 2) family of chromatin remodeling ATPases. It is required for efficient DNA methylation in mammals, particularly at heterochromatin-located repetitive sequences. In this study, we investigated the interaction of HELLS with chromatin and used an ATPase-deficient HELLS variant to address the role of ATP hydrolysis in this process. Chromatin fractionation experiments demonstrated that, in the absence of the ATPase activity, HELLS is retained at the nuclear matrix compartment, defined in part by lamin B1. Microscopy studies revealed a stronger association of the ATPase-deficient mutant with heterochromatin. These results were further supported by fluorescence recovery after photobleaching measurements, which showed that, at heterochromatic sites, wild-type HELLS is very dynamic, with a recovery half-time of 0.8s and a mobile protein fraction of 61%. In contrast, the ATPase-deficient mutant displayed 4.5-s recovery half-time and a reduction in the mobile fraction to 30%. We also present evidence suggesting that, in addition to the ATPase activity, a functional H3K9me3 signaling pathway contributes to an efficient release of HELLS from pericentromeric chromatin. Overall, our results show that a functional ATPase activity is not required for the recruitment of HELLS to heterochromatin, but it is important for the release of the enzyme from these sites.
Collapse
Affiliation(s)
- Cristiana Lungu
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Basic Science Program, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
114
|
Ito T, Tarutani Y, To TK, Kassam M, Duvernois-Berthet E, Cortijo S, Takashima K, Saze H, Toyoda A, Fujiyama A, Colot V, Kakutani T. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis. PLoS Genet 2015; 11:e1005154. [PMID: 25902052 PMCID: PMC4406451 DOI: 10.1371/journal.pgen.1005154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. DNA methylation is important for controlling activity of transposable elements and genes. An intriguing feature of DNA methylation in plants is that its pattern can be inherited over multiple generations at high fidelity in a Mendelian manner. However, mechanisms controlling the trans-generational DNA methylation dynamics are largely unknown. Arabidopsis mutants of a chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) show drastic reduction of DNA methylation in transposons and repeats, and also show progressive changes in developmental phenotypes during propagation through self-pollination. We now show using whole genome DNA methylation sequencing that upon repeated selfing, the ddm1 mutation induces an ectopic accumulation of DNA methylation at hundreds of loci. Remarkably, even in the wild type background, the analogous de novo increase of DNA methylation can be induced in trans by chromosomes with reduced DNA methylation. Collectively, our findings support a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback, which should be important for balanced differentiation of DNA methylation states within the genome.
Collapse
Affiliation(s)
- Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TI); (TK)
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
| | - Taiko Kim To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mohamed Kassam
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Evelyne Duvernois-Berthet
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Sandra Cortijo
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidetoshi Saze
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Asao Fujiyama
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Vincent Colot
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- * E-mail: (TI); (TK)
| |
Collapse
|
115
|
Isbel L, Whitelaw E. Commentary: Far-reaching hypothesis or a step too far: the inheritance of acquired characteristics. Int J Epidemiol 2015; 44:1109-12. [PMID: 25855714 DOI: 10.1093/ije/dyv024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Luke Isbel
- LaTrobe Institute of Molecular Science, LaTrobe University, Melbourne, VIC, Australia
| | - Emma Whitelaw
- LaTrobe Institute of Molecular Science, LaTrobe University, Melbourne, VIC, Australia
| |
Collapse
|
116
|
Clavel M, Pélissier T, Descombin J, Jean V, Picart C, Charbonel C, Saez-Vásquez J, Bousquet-Antonelli C, Deragon JM. Parallel action of AtDRB2 and RdDM in the control of transposable element expression. BMC PLANT BIOLOGY 2015; 15:70. [PMID: 25849103 PMCID: PMC4351826 DOI: 10.1186/s12870-015-0455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process. RESULTS Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19. We show that DRB2 can bind transposable element (TE) transcripts in vivo but that drb2 mutants do not have a significant variation in TE DNA methylation. CONCLUSION We propose that DRB2 is part of a repressive epigenetic regulator complex involved in a negative feedback loop, adjusting epigenetic state to transcription level at TE loci, in parallel of the RdDM pathway. Loss of DRB2 would mainly result in an increased production of TE transcripts, readily converted in p4-siRNAs by the RdDM machinery.
Collapse
Affiliation(s)
- Marion Clavel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: IBMP, UPR 2357, 12, rue du général Zimmer, 67084 Strasbourg cedex, France
| | - Thierry Pélissier
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: UMR6293 CNRS - INSERM U1103 – GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171 Aubière Cedex, France
| | - Julie Descombin
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Viviane Jean
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Claire Picart
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cyril Charbonel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Julio Saez-Vásquez
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cécile Bousquet-Antonelli
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Jean-Marc Deragon
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| |
Collapse
|
117
|
Abstract
Arabidopsis thaliana serves as a very good model organism to investigate the control of transposable elements (TEs) by genetic and genomic approaches. As TE movements are potentially deleterious to the hosts, hosts silence TEs by epigenetic mechanisms, such as DNA methylation. DNA methylation is controlled by DNA methyltransferases and other regulators, including histone modifiers and chromatin remodelers. RNAi machinery directs DNA methylation to euchromatic TEs, which is under developmental control. In addition to the epigenetic controls, some TEs are controlled by environmental factors. TEs often affect expression of nearby genes, providing evolutionary sources for epigenetic, developmental, and environmental gene controls, which could even be beneficial for the host.
Collapse
|
118
|
Springer NM. Transposable elements: Microbiomes in the genomes. NATURE PLANTS 2015; 1:15004. [PMID: 27251779 DOI: 10.1038/nplants.2015.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| |
Collapse
|
119
|
Jung CH, O'Brien M, Singh MB, Bhalla PL. Epigenetic landscape of germline specific genes in the sporophyte cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:328. [PMID: 26029228 PMCID: PMC4429549 DOI: 10.3389/fpls.2015.00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 05/15/2023]
Abstract
In plants, the germline lineages arise in later stages of life cycle as opposed to animals where both male and female germlines are set aside early in development. This developmental divergence is associated with germline specific or preferential expression of a subset of genes that are normally repressed for the rest of plant life cycle. The gene regulatory mechanisms involved in such long-term suppression and short-term activation in plant germline remain vague. Thus, we explored the nature of epigenetic marks that are likely associated with long-term gene repression in the non-germline cells. We accessed available Arabidopsis genome-wide DNA methylation and histone modification data and queried it for epigenetic marks associated with germline genes: genes preferentially expressed in sperm cells, egg cells, synergid cells, central cells, antipodal cells or embryo sac or genes that are with enriched expression in two or more of female germline tissues. The vast majority of germline genes are associated with repression-related epigenetic histone modifications in one or more non-germline tissues, among which H3K9me2 and H3K27me3 are the most widespread repression-related marks. Interestingly, we show here that the repressive epigenetic mechanisms differ between male and female germline genes. We also highlight the diverse states of epigenetic marks in different non-germline tissues. Some germline genes also have activation-related marks in non-germline tissues, and the proportion of such genes is higher for female germline genes. Germline genes include 30 transposable element (TE) loci, to which a large number of 24-nt long small interfering RNAs were mapped, suggesting that these small RNAs take a role in suppressing them in non-germline tissues. The data presented here suggest that the majority of Arabidopsis gamete-preferentially/-enriched genes bear repressive epigenetic modifications or regulated by small RNAs.
Collapse
Affiliation(s)
- Chol Hee Jung
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
- VLSCI Life Sciences Computation Centre, The University of MelbourneParkville, VIC, Australia
| | - Martin O'Brien
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
- *Correspondence: Prem L. Bhalla, Melbourne School of Land and Environment, The University of Melbourne, Building 142, Royal Parade, Parkville, VIC 3010, Australia
| |
Collapse
|
120
|
Matsunaga W, Ohama N, Tanabe N, Masuta Y, Masuda S, Mitani N, Yamaguchi-Shinozaki K, Ma JF, Kato A, Ito H. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:48. [PMID: 25709612 PMCID: PMC4321352 DOI: 10.3389/fpls.2015.00048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/17/2015] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are key elements that facilitate genome evolution of the host organism. A number of studies have assessed the functions of TEs, which change gene expression in the host genome. Activation of TEs is controlled by epigenetic modifications such as DNA methylation and histone modifications. Several recent studies have reported that TEs can also be activated by biotic or abiotic stress in some plants. We focused on a Ty1/copia retrotransposon, ONSEN, that is activated by heat stress (HS) in Arabidopsis. We found that transcriptional activation of ONSEN was regulated by a small interfering RNA (siRNA)-related pathway, and the activation could also be induced by oxidative stress. Mutants deficient in siRNA biogenesis that were exposed to HS at the initial stages of vegetative growth showed transgenerational transposition. The transposition was also detected in the progeny, which originated from tissue that had differentiated after exposure to the HS. The results indicated that in some undifferentiated cells, transpositional activity could be maintained quite long after exposure to the HS.
Collapse
Affiliation(s)
| | - Naohiko Ohama
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, TokyoJapan
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, NaraJapan
| | - Yukari Masuta
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Seiji Masuda
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Namiki Mitani
- Institute of Plant Science and Resources, Okayama University, KurashikiJapan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, TokyoJapan
| | - Jian F. Ma
- Institute of Plant Science and Resources, Okayama University, KurashikiJapan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, SapporoJapan
- PRESTO, Japan Science and Technology Agency, KawaguchiJapan
- *Correspondence: Hidetaka Ito, Faculty of Science, Hokkaido University, Kita10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan e-mail:
| |
Collapse
|
121
|
Gilly A, Etcheverry M, Madoui MA, Guy J, Quadrana L, Alberti A, Martin A, Heitkam T, Engelen S, Labadie K, Le Pen J, Wincker P, Colot V, Aury JM. TE-Tracker: systematic identification of transposition events through whole-genome resequencing. BMC Bioinformatics 2014; 15:377. [PMID: 25408240 PMCID: PMC4279814 DOI: 10.1186/s12859-014-0377-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background Transposable elements (TEs) are DNA sequences that are able to move from their location in the genome by cutting or copying themselves to another locus. As such, they are increasingly recognized as impacting all aspects of genome function. With the dramatic reduction in cost of DNA sequencing, it is now possible to resequence whole genomes in order to systematically characterize novel TE mobilization in a particular individual. However, this task is made difficult by the inherently repetitive nature of TE sequences, which in some eukaryotes compose over half of the genome sequence. Currently, only a few software tools dedicated to the detection of TE mobilization using next-generation-sequencing are described in the literature. They often target specific TEs for which annotation is available, and are only able to identify families of closely related TEs, rather than individual elements. Results We present TE-Tracker, a general and accurate computational method for the de-novo detection of germ line TE mobilization from re-sequenced genomes, as well as the identification of both their source and destination sequences. We compare our method with the two classes of existing software: specialized TE-detection tools and generic structural variant (SV) detection tools. We show that TE-Tracker, while working independently of any prior annotation, bridges the gap between these two approaches in terms of detection power. Indeed, its positive predictive value (PPV) is comparable to that of dedicated TE software while its sensitivity is typical of a generic SV detection tool. TE-Tracker demonstrates the benefit of adopting an annotation-independent, de novo approach for the detection of TE mobilization events. We use TE-Tracker to provide a comprehensive view of transposition events induced by loss of DNA methylation in Arabidopsis. TE-Tracker is freely available at http://www.genoscope.cns.fr/TE-Tracker. Conclusions We show that TE-Tracker accurately detects both the source and destination of novel transposition events in re-sequenced genomes. Moreover, TE-Tracker is able to detect all potential donor sequences for a given insertion, and can identify the correct one among them. Furthermore, TE-Tracker produces significantly fewer false positives than common SV detection programs, thus greatly facilitating the detection and analysis of TE mobilization events. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0377-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur Gilly
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France. .,Current address: The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Mathilde Etcheverry
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France.
| | - Mohammed-Amin Madoui
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Julie Guy
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France.
| | - Adriana Alberti
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Antoine Martin
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France. .,Current address: Technische Universität Dresden, Institute of Bota, ny, Plant Cell and Molecular Biology, D-01062, Dresden, Germany.
| | - Tony Heitkam
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France. .,Current address: Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060, Montpellier, Cedex, France.
| | - Stefan Engelen
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Karine Labadie
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Jeremie Le Pen
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France. .,Current address: Gurdon Institute and Department of Biochemistry, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge, CB2 1QN, UK.
| | - Patrick Wincker
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, F-75230, Paris, Cedex 05, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 8197, F-75230, Paris, Cedex 05, France. .,Institut national de la santé et de la recherche médicale (INSERM), U1024, F-75230, Paris, Cedex 05, France.
| | - Jean-Marc Aury
- Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France. .,Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France. .,Universite d'Evry, UMR 8030, CP5706, Evry, France.
| |
Collapse
|
122
|
de Meaux J, Pecinka A. The Arabidopsis genus: An emerging model to elucidate the molecular basis of interspecific differences in transposable element activity. Mob Genet Elements 2014; 2:142-144. [PMID: 23061020 PMCID: PMC3463470 DOI: 10.4161/mge.21111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Arabidopsis thaliana is a model plant species and its molecular dissection has greatly contributed to our understanding of the systems preventing genome invasion by transposable elements (TE). Recent advances suggest that A. thaliana may be more efficient than its congener A. lyrata at controlling TE expression and proliferation. The comparative analysis of TE transcription in A. thaliana and A. lyrata, which differ by 40% in genome size, may help understand how silencing mechanisms contribute to the evolution of transposition rate, an important factor controlling genome size variation in plants and animals.
Collapse
Affiliation(s)
- Juliette de Meaux
- Institute for Evolution and Biodiversity; University of Münster; Münster, Germany
| | | |
Collapse
|
123
|
Liyanage VRB, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. BIOLOGY 2014; 3:670-723. [PMID: 25340699 PMCID: PMC4280507 DOI: 10.3390/biology3040670] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.
Collapse
Affiliation(s)
- Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Nanditha Murugeshan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
124
|
Cui X, Cao X. Epigenetic regulation and functional exaptation of transposable elements in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:83-88. [PMID: 25061895 DOI: 10.1016/j.pbi.2014.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 05/06/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that can proliferate in their host genomes. Because of their robust amplification, TEs have long been considered 'selfish DNA', harmful insertions that can threaten host genome integrity. The idea of TEs as junk DNA comes from analysis of epigenetic silencing of their mobility in plants and animals. This idea contrasts with McClintock's characterization of TEs as 'controlling elements'. Emerging studies on the regulatory functions of TEs in plant genomes have updated McClintock's characterization, indicating exaptation of TEs for genetic regulation. In this review, we summarize recent progress in TE silencing, particularly in Arabidopsis and rice, and show that TEs provide an abundant, natural source of regulation for the host genome.
Collapse
Affiliation(s)
- Xiekui Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
125
|
Buchmann JP, Löytynoja A, Wicker T, Schulman AH. Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mob DNA 2014; 5:24. [PMID: 25206928 PMCID: PMC4158355 DOI: 10.1186/1759-8753-5-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023] Open
Abstract
Background CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes. Results We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries. Conclusions We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.
Collapse
Affiliation(s)
- Jan P Buchmann
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Present address: Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Center, University of Sydney, Sydney NSW 2006, Australia
| | - Ari Löytynoja
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Biotechnology and Food Research, MTT Agrifood Research Finland, Myllytie 1, FIN-31600 Jokioinen, Finland
| |
Collapse
|
126
|
Zhao M, San León D, Delgadillo MO, García JA, Simón-Mateo C. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:440-452. [PMID: 24916614 DOI: 10.1111/tpj.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas or (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
127
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
128
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
129
|
Prendergast JGD, Chambers EV, Semple CAM. Sequence-level mechanisms of human epigenome evolution. Genome Biol Evol 2014; 6:1758-71. [PMID: 24966180 PMCID: PMC4122940 DOI: 10.1093/gbe/evu142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.
Collapse
Affiliation(s)
| | - Emily V Chambers
- The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Colin A M Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom
| |
Collapse
|
130
|
Mirouze M, Vitte C. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2801-12. [PMID: 24744427 DOI: 10.1093/jxb/eru120] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the past decade, plant biologists and breeders have developed a growing interest in the field of epigenetics, which is defined as the study of heritable changes in gene expression that cannot be explained by changes in the DNA sequence. Epigenetic marks can be responsive to the environment, and evolve faster than genetic changes. Therefore, epigenetic diversity may represent an unexplored resource of natural variation that could be used in plant breeding programmes. On the other hand, crop genomes are largely populated with transposable elements (TEs) that are efficiently targeted by epigenetic marks, and part of the epigenetic diversity observed might be explained by TE polymorphisms. Characterizing the degree to which TEs influence epigenetic variation in crops is therefore a major goal to better use epigenetic variation. To date, epigenetic analyses have been mainly focused on the model plant Arabidopsis thaliana, and have provided clues on epigenome features, components that silence pathways, and effects of silencing impairment. But to what extent can Arabidopsis be used as a model for the epigenomics of crops? In this review, we discuss the similarities and differences between the epigenomes of Arabidopsis and crops. We explore the relationship between TEs and epigenomes, focusing on TE silencing control and escape, and the impact of TE mobility on epigenomic variation. Finally, we provide insights into challenges to tackle, and future directions to take in the route towards using epigenetic diversity in plant breeding programmes.
Collapse
Affiliation(s)
- Marie Mirouze
- Institut de Recherche pour le Développement, UMR232 DIADE Diversité Adaptation et Développement des Plantes, Université Montpellier 2, 911 avenue Agropolis F-34394 Montpellier, France
| | - Clémentine Vitte
- CNRS, UMR de Génétique Végétale, Chemin de Moulon, F-91190 Gif sur Yvette, France
| |
Collapse
|
131
|
Shook MS, Richards EJ. VIM proteins regulate transcription exclusively through the MET1 cytosine methylation pathway. Epigenetics 2014; 9:980-6. [PMID: 24762702 PMCID: PMC4143413 DOI: 10.4161/epi.28906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Arabidopsis, variant in methylation (VIM) proteins are required for the maintenance of DNA methylation in the CpG dinucleotide context. VIM1 acts as a cofactor of DNA methyltransferase 1 (MET1), although the mechanism for this co-regulation remains unclear. In this study, we used RNA-seq analysis to profile the transcriptomes of vim1, vim1 vim2 vim3, and met1 null mutants. Consistent with previous studies indicating functional redundancy between these VIM proteins, we found no transcripts that were significantly misregulated in vim1 mutants. However, we identified a large set of VIM protein regulatory targets through analysis of vim1 vim2 vim3 mutants, and we observed that this set is essentially identical to that regulated by MET1. Log 2 fold changes in gene expression relative to wild type are strongly correlated between vim1 vim2 vim3 and met1 mutants. While the largest subset of these transcripts is upregulated and enriched with transposable elements, we also found small subsets of downregulated genes in each mutant, which are enriched with protein-coding genes. Together, these results expand on previous studies that profiled cytosine methylation in the vim1 vim2 vim3 mutant, and show that VIM proteins function in transcriptional regulation via their roles in the MET1 DNA methylation pathway.
Collapse
Affiliation(s)
- Molly S Shook
- Boyce Thompson Institute for Plant Research; Ithaca, NY USA; Department of Molecular Biology and Genetics; Cornell University; Ithaca, NY USA
| | | |
Collapse
|
132
|
Pecinka A, Liu CH. Drugs for Plant Chromosome and Chromatin Research. Cytogenet Genome Res 2014; 143:51-9. [DOI: 10.1159/000360774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
133
|
miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 2014; 508:411-5. [PMID: 24670663 PMCID: PMC4074602 DOI: 10.1038/nature13069] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 01/22/2014] [Indexed: 11/09/2022]
Abstract
In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE1 (DCL1)-dependent miRNAs, that also trigger 21-nt secondary siRNA via RNA DEPENDENT RNA POLYMERASE6 (RDR6), DCL4, and ARGONAUTE1 (AGO1)1–3, while transcriptional gene silencing (TGS) of transposons is mediated by 24-nt heterochromatic (het)siRNA RDR2, DCL3 and AGO44. Transposons can also give rise to abundant 21-nt “epigenetically activated” small interfering RNAs (easiRNAs) in DECREASE IN DNA METHYLATION1 (ddm1) and DNA METHYLTRANSFERASE1 (met1) mutants, as well as in the vegetative nucleus of pollen grains5, and in dedifferentiated plant cell cultures6. Here we show that easiRNAs resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than fifty miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nt easiRNA, and severe infertility, but 24-nt hetsiRNA are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germline. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing, and by their hosts for genome defence.
Collapse
|
134
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
135
|
Zhang JZ, Mei L, Liu R, Khan MRG, Hu CG. Possible involvement of locus-specific methylation on expression regulation of leafy homologous gene (CiLFY) during precocious trifoliate orange phase change process. PLoS One 2014; 9:e88558. [PMID: 24523915 PMCID: PMC3921215 DOI: 10.1371/journal.pone.0088558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
DNA methylation plays an essential role in regulating plant development. Here, we described an early flowering trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf) was treated with 5-azacytidine and displayed a number of phenotypic and developmental abnormalities. These observations suggested that DNA methylation might play an important role in regulating many developmental pathways including early flowering trait, and then the expression level of five key or integrated citrus flowering genes were analyzed. Our results showed that FLOWERING LOCUS T (CiFT) relative expression level was increased with the increasing concentrations of 5-AzaC. However, LEAFY (CiLFY), APETELA1 (CiAP1), TERMINAL FLOWER1 (CiTFL1), and FLOWERING LOCUS C (CiFLC) showed highest relative expression levels at 250 µΜ treatment, while decreased sharply at higher concentrations. In order to further confirm DNA methylation affects the expression of these genes, their full-length sequences were isolated by genome-walker method, and then was analyzed by using bioinformatics tools. However, only one locus-specific methylation site was observed in CiLFY sequence. Therefore, DNA methylation level of the CiLFY was investigated both at juvenile and adult stages of precocious trifoliate orange by bisulfate sequencing PCR; it has been shown that the level of DNA methylation was altered during phase change. In addition, spatial and temporal expression patterns of CiLFY promoter and a series of 5′ deletions were investigated by driving the expression of a β-glucuronidase reporter gene in Arabidopsis. Exogenous GA3 treatment on transgenic Arabidopsis revealed that GA3 might be involved in the developmental regulation of CiLFY during flowering process of precocious trifoliate orange. These results provided insights into the molecular regulation of CiLFY gene expression, which would be helpful for studying citrus flowering.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Li Mei
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Rong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Muhammad Rehman Gul Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
136
|
Abstract
RNA interference is now a well-recognized post-transcriptional mechanism for regulation of gene expression in both animals and plants. In this process, microRNAs (miRNAs) direct silencing complexes to complementary RNA sequences, leading to either degradation or repression of translation. Plants also contain another type of small RNA, small interfering RNAs (siRNAs), that play a role in gene silencing by directing cytosine methylation activities of complementary DNA sequences and thus, differ from miRNAs. This nuclear regulation system is referred to as RNA-directed DNA methylation (RdDM). In plant genomes, transposable elements were initially thought to be regulated by DNA methylation alone. However, several recent reports have revealed that siRNAs and RdDM also play crucial roles in silencing of transposons and endogenous repeats. It is also becoming apparent that transposons are subjected to different levels of regulation in response to developmental and environmental cues. Transposons are tightly regulated in germ cells to protect the host genome from transgenerational mutagenic activity. In plants, transposons are also activated by biotic and abiotic stress. The regulation of transposons in these different situations has been associated with both the DNA methylation and siRNA-mediated regulation systems, suggesting that plants likely evolved "multi-lock" systems for transposon regulation to ensure tight control during the developmental phase and environmental changes.
Collapse
Affiliation(s)
- Hidetaka Ito
- Faculty of Science, Hokkaido University, Kita-ku, Sapporo, Japan.
| |
Collapse
|
137
|
Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet 2014; 10:e1004115. [PMID: 24497839 PMCID: PMC3907296 DOI: 10.1371/journal.pgen.1004115] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/28/2013] [Indexed: 11/18/2022] Open
Abstract
Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.
Collapse
Affiliation(s)
- Vladimir V. Cavrak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Suraj Jamge
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Agata Kosarewicz
- Research Institute of Molecular Pathology, Vienna, Austria; and Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Laura Maria Bayer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
138
|
Genomewide DNA methylation analysis identifies novel methylated genes in non-small-cell lung carcinomas. J Thorac Oncol 2013; 8:562-73. [PMID: 23524404 DOI: 10.1097/jto.0b013e3182863ed2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION DNA methylation is part of the epigenetic regulatory mechanism present in all normal cells. It is tissue-specific and stably maintained throughout development, but often abnormally changed in cancer. Non-small-cell lung carcinoma (NSCLC) is the most deadly type of cancer, involving different tumor subtypes. This heterogeneity is a challenge for correct diagnosis and patient treatment. The stability and specificity make of DNA methylation a very suitable marker for epigenetic phenotyping of tumors. METHODS To identify candidate markers for use in NSCLC diagnosis, we used genomewide DNA methylation maps that we had previously generated by MethylCap and next-generation sequencing and listed the most significant differentially methylated regions (DMRs). The 25 DMRs with highest significance in their methylation scores were selected. The methylation status of these DMRs was investigated in 61 tumors and matching control lung tissues by methylation-specific polymerase chain reaction. RESULTS We found 12 novel DMRs that showed significant differences between tumor and control lung tissues. We also identified three novel DMRs for each of the two most common NSCLC subtypes, adenocarcinomas and squamous cell carcinomas. We propose a panel of five DMRs, composed of novel and known markers that exhibit high specificity and sensitivity to distinguish tumors from control lung tissues. CONCLUSION Novel markers will aid the development of a highly specific epigenetic panel for accurate identification and subtyping of NSCLC tumors.
Collapse
|
139
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
140
|
Park KC, Park NI, Lee SI, Kim KS, Chang YS, Kim NS. A new active CACTA element and transposition activity in ecotype differentiation of Arabidopsis. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
141
|
Park KC, Son JH, Lee SII, Kim KS, Chang YS, Kim NS. Pong-like elements in Arabidopsis and Brassica rapa: its regulation of F-box protein gene in different ecotypes of Arabidopsis thaliana. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
142
|
Pecinka A, Abdelsamad A, Vu GTH. Hidden genetic nature of epigenetic natural variation in plants. TRENDS IN PLANT SCIENCE 2013; 18:625-32. [PMID: 23953885 DOI: 10.1016/j.tplants.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 05/22/2023]
Abstract
Transcriptional gene silencing (TGS) is an epigenetic mechanism that suppresses the activity of repetitive DNA elements via accumulation of repressive chromatin marks. We discuss natural variation in TGS, with a particular focus on cases that affect the function of protein-coding genes and lead to developmental or physiological changes. Comparison of the examples described has revealed that most natural variation is associated with genetic determinants, such as gene rearrangements, inverted repeats, and transposon insertions that triggered TGS. Recent technical advances have enabled the study of epigenetic natural variation at a whole-genome scale and revealed patterns of inter- and intraspecific epigenetic variation. Future studies exploring non-model species may reveal species-specific evolutionary adaptations at the level of chromatin configuration.
Collapse
Affiliation(s)
- Ales Pecinka
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
143
|
Mutations in EDM2 selectively affect silencing states of transposons and induce plant developmental plasticity. Sci Rep 2013; 3:1701. [PMID: 23609044 PMCID: PMC3632883 DOI: 10.1038/srep01701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 11/08/2022] Open
Abstract
We previously reported on the A. thaliana gene EDM2, which is required for several developmental processes and race-specific immunity. Although EDM2 encodes a nuclear protein with features commonly observed in epigenetic factors, its role in chromatin silencing remains unknown. Here we demonstrate that silencing states of several transposons in edm2 mutants are altered. Levels of their transcripts anti-correlate with those of the repressive epigenetic marks H3K27me1, H3K9me2, and DNA-methylation at CHG sites. In addition, double mutant analysis revealed epistasis between EDM2 and the major histone H3K9-methyltransferase gene KRYPTONITE/SUVH4 in the control of H3K9me2 and CHG methylation. Moreover, we found that the expressivity of several mutant edm2 phenotypes exhibits stochastic variation reminiscent of mutants of known epigenetic modifiers. We propose that EDM2 affects the expression of transposons and developmentally important genes by modulating levels of repressive chromatin marks in a locus dependent manner.
Collapse
|
144
|
Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J 2013; 32:2407-17. [PMID: 23900287 DOI: 10.1038/emboj.2013.169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/04/2013] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) have a major impact on genome evolution, but they are potentially deleterious, and most of them are silenced by epigenetic mechanisms, such as DNA methylation. Here, we report the characterization of a TE encoding an activity to counteract epigenetic silencing by the host. In Arabidopsis thaliana, we identified a mobile copy of the Mutator-like element (MULE) with degenerated terminal inverted repeats (TIRs). This TE, named Hiun (Hi), is silent in wild-type plants, but it transposes when DNA methylation is abolished. When a Hi transgene was introduced into the wild-type background, it induced excision of the endogenous Hi copy, suggesting that Hi is the autonomously mobile copy. In addition, the transgene induced loss of DNA methylation and transcriptional activation of the endogenous Hi. Most importantly, the trans-activation of Hi depends on a Hi-encoded protein different from the conserved transposase. Proteins related to this anti-silencing factor, which we named VANC, are widespread in the non-TIR MULEs and may have contributed to the recent success of these TEs in natural Arabidopsis populations.
Collapse
|
145
|
McCue AD, Nuthikattu S, Slotkin RK. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 2013; 10:1379-95. [PMID: 23863322 PMCID: PMC3817159 DOI: 10.4161/rna.25555] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repression of TEs is lost, TEs become transcriptionally active, and the host cell acts to repress mutagenic transposition by degrading TE mRNAs into siRNAs. In this study, we have performed a genome-wide analysis in the model plant Arabidopsis thaliana and found that TE siRNA-based regulation of genic mRNAs is more pervasive than the two formerly characterized proof-of-principle examples. We identified 27 candidate genic mRNAs that do not contain a TE fragment but are regulated through partial complementarity by the accumulation of TE siRNAs and are therefore influenced by TE epigenetic activation. We have experimentally confirmed several gene targets and demonstrated that they respond to the accumulation of specific 21 nucleotide TE siRNAs that are incorporated into the Arabidopsis Argonaute1 protein. Additionally, we found that one TE siRNA specifically targets and inhibits the formation of a host protein that acts to repress TE activity, suggesting that TEs harbor and potentially evolutionarily select short sequences to act as suppressors of host TE repression.
Collapse
Affiliation(s)
- Andrea D McCue
- Department of Molecular Genetics & Center for RNA Biology; The Ohio State University; Columbus, OH, USA
| | | | | |
Collapse
|
146
|
Ragupathy R, You FM, Cloutier S. Arguments for standardizing transposable element annotation in plant genomes. TRENDS IN PLANT SCIENCE 2013; 18:367-76. [PMID: 23618952 DOI: 10.1016/j.tplants.2013.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/26/2013] [Indexed: 05/26/2023]
Abstract
Whole genome sequence assemblies have been generated for many plants. Annotation of transposable elements (TEs), which constitute the major proportion of genomes and play a significant role in epigenome alterations under stress, has not been given equal importance to that of genes. In this opinion article, we argue that the lack of focus dedicated to the fine-scale characterization of repeat fractions and the absence of consistent methods for their annotation impede our ability to critically understand the influence of TEs on the epigenome with implications in gene expression and non-Mendelian inheritance. Major structural changes occur over an evolutionary time scale. However, epigenetic regulation mediated by TEs can happen in a single generation, thus emphasizing the need for their standardized annotation.
Collapse
Affiliation(s)
- Raja Ragupathy
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| | | | | |
Collapse
|
147
|
Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 2013; 4:493-501. [PMID: 23794032 DOI: 10.1007/s13238-013-3037-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), particularly, long terminal repeat retrotransposons (LTR-RTs), are the most abundant DNA components in all plant species that have been investigated, and are largely responsible for plant genome size variation. Although plant genomes have experienced periodic proliferation and/or recent burst of LTR-retrotransposons, the majority of LTR-RTs are inactivated by DNA methylation and small RNA-mediated silencing mechanisms, and/or were deleted/truncated by unequal homologous recombination and illegitimate recombination, as suppression mechanisms that counteract genome expansion caused by LTR-RT amplification. LTR-RT DNA is generally enriched in pericentromeric regions of the host genomes, which appears to be the outcomes of preferential insertions of LTR-RTs in these regions and low effectiveness of selection that purges LTR-RT DNA from these regions relative to chromosomal arms. Potential functions of various TEs in their host genomes remain blurry; nevertheless, LTR-RTs have been recognized to play important roles in maintaining chromatin structures and centromere functions and regulation of gene expressions in their host genomes.
Collapse
|
148
|
Zhu R, Shevchenko O, Ma C, Maury S, Freitag M, Strauss SH. Poplars with a PtDDM1-RNAi transgene have reduced DNA methylation and show aberrant post-dormancy morphology. PLANTA 2013; 237:1483-93. [PMID: 23455459 DOI: 10.1007/s00425-013-1858-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana DDM1 (Decreased DNA Methylation) gene is necessary for the maintenance of DNA methylation and heterochromatin assembly. In Arabidopsis, ddm1 mutants exhibit strong but delayed morphological phenotypes. We used RNA interference (RNAi) to suppress transcripts of two orthologous DDM1 paralogs in Populus trichocarpa and examined effects on whole plant phenotypes during perennial growth and seasonal dormancy. The RNAi-PtDDM1 transgenic poplars showed a wide range of DDM1 transcript suppression; the most strongly suppressed line had 37.5 % of the expression of the non-transgenic control. Genomic cytosine methylation (mC %) was 11.1 % in the non-transgenic control, compared with 9.1 % for the transgenic event with lowest mC %, a reduction of 18.1 %. An evaluation of greenhouse growth directly after acclimation of in vitro grown plants showed no developmental or growth rate abnormalities associated with the decrease in PtDDM1 expression. However, after a dormancy cycle and growth outdoors, a mottled leaf phenotype appeared in some of the transgenic insertion events that had strongly reduced PtDDM1 expression and DNA methylation. The phenotypic consequences of reduced DDM1 activity and DNA methylation appears to increase with cumulative plant propagation and growth.
Collapse
Affiliation(s)
- Ruoqing Zhu
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
149
|
Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N. Transcriptome analysis of developing ovules in rice isolated by laser microdissection. PLANT & CELL PHYSIOLOGY 2013; 54:750-65. [PMID: 23411663 DOI: 10.1093/pcp/pct029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Comprehensive genome-wide gene expression profiles during plant male gametogenesis have been thoroughly analyzed over the last decade. In contrast, gene expression profiles during female gametogenesis have been studied relatively little, and our knowledge concerning plant female gametogenesis is limited. We determined the genome-wide gene expression profiles of developing ovules containing female gametophytes from the megaspore mother cell at the pre-meiotic stage to the mature embryo sac in rice (Oryza sativa) using microarrays. In order to separate ovules from scutellum, we used a laser microdissection (LM) technique. Dynamic gene expression was revealed in developing ovules, and a major transition of the transcriptome was observed between middle and late meiotic stages, where many genes were down-regulated >10-fold. Many potential players in female gametogenesis, that showed dynamic or enriched expression, were highlighted. We identified the temporal and dramatic up-regulation of a subset of transposable elements during female meiotic stages that were not observed in males. Transcription factor genes enriched in developing ovules were also uncovered, which may play crucial roles during female gametogenesis. This is the first report of comprehensive genome-wide gene expression profiles during female gametogenesis useful for plant reproductive studies. Combined with additional experiments, our data may provide important clues to understand female gametogenesis in plants.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | |
Collapse
|
150
|
Huh I, Zeng J, Park T, Yi SV. DNA methylation and transcriptional noise. Epigenetics Chromatin 2013; 6:9. [PMID: 23618007 PMCID: PMC3641963 DOI: 10.1186/1756-8935-6-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 04/05/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND DNA methylation is one of the most phylogenetically widespread epigenetic modifications of genomic DNA. In particular, DNA methylation of transcription units ('gene bodies') is highly conserved across diverse taxa. However, the functional role of gene body methylation is not yet fully understood. A long-standing hypothesis posits that gene body methylation reduces transcriptional noise associated with spurious transcription of genes. Despite the plausibility of this hypothesis, an explicit test of this hypothesis has not been performed until now. RESULTS Using nucleotide-resolution data on genomic DNA methylation and abundant microarray data, here we investigate the relationship between DNA methylation and transcriptional noise. Transcriptional noise measured from microarrays scales down with expression abundance, confirming findings from single-cell studies. We show that gene body methylation is significantly negatively associated with transcriptional noise when examined in the context of other biological factors. CONCLUSIONS This finding supports the hypothesis that gene body methylation suppresses transcriptional noise. Heavy methylation of vertebrate genomes may have evolved as a global regulatory mechanism to control for transcriptional noise. In contrast, promoter methylation exhibits positive correlations with the level of transcriptional noise. We hypothesize that methylated promoters tend to undergo more frequent transcriptional bursts than those that avoid DNA methylation.
Collapse
Affiliation(s)
- Iksoo Huh
- School of Biology, Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332, USA.
| | | | | | | |
Collapse
|