101
|
Dmitrović S, Pajčin I, Lukić N, Vlajkov V, Grahovac M, Grahovac J, Jokić A. Taguchi Grey Relational Analysis for Multi-Response Optimization of Bacillus Bacteria Flocculation Recovery from Fermented Broth by Chitosan to Enhance Biocontrol Efficiency. Polymers (Basel) 2022; 14:polym14163282. [PMID: 36015554 PMCID: PMC9413004 DOI: 10.3390/polym14163282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Degradation of environment is a challenge to crop production around the world. Biological control of various plant diseases using antagonistic bacteria is an encouraging alternative to traditionally used chemical control strategies. Chitosan as a well-known natural flocculation agent also exhibits antimicrobial activity. The goal of this study was to investigate a dual nature of chitosan in flocculation of Bacillus sp. BioSol021 cultivation broth intended for biocontrol applications. Experiments were performed based on L18 standard Taguchi orthogonal array design with five input parameters (chitosan type and dosage, pH value, rapid and slow mixing rates). In this study, the grey relational analysis was used to perform multi-objective optimization of the chosen responses, i.e., flocculation efficiency and four inhibition zone diameters against the selected phytopathogens. The results have indicated a great potential of a highly efficient method for removal of the Bacillus bacteria from the cultivation broth using chitosan. The good flocculation efficiency and high precipitate antimicrobial activity against the selected phytopathogens were achieved. It has been shown that multiple flocculation performance parameters were improved, resulting in slightly improved response values.
Collapse
Affiliation(s)
- Selena Dmitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Nataša Lukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
102
|
Helfrich M, Entian KD, Stein T. Antibiotic profiling of wild-type bacilli led to the discovery of new lanthipeptide subtilin-producing Bacillus spizizenii strains whose 16S rDNA sequences differ from the B. spizizenii typing strain. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:839-850. [PMID: 35902452 PMCID: PMC9526687 DOI: 10.1007/s10123-022-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/12/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Two dozen field-collected Bacillus and a dozen Bacillus spizizenii wild-type strains from strain collections were selected on the basis of their antagonistic properties against the Gram-positive strain Micrococcus luteus. Based on their genetic and antibiotic profiles, they were characterized (subtilin encoding spaS gene sequences, mass spectrometric, and quantitative-reversed phase liquid chromatographic analyses, as well as the presence of the lanthionine cyclase protein SpaC by western blotting), seven novel producers of the lanthipeptide subtilin. Phylogenetic analyses of the subtilin-producing wild-type strains based on their 16S rRNA sequences showed that all seven strains could be classified as B. spizizenii: The field-collected strains HS and N5, as well as strains DSM 618, 1087, 6395, 6405, and 8439 from the German Collection of Microorganisms and Cell Cultures. To the best of our knowledge, all B. spizizenii strains described so far are characterized by the fact that they can produce a lanthipeptide of the subtilin family. Both the lanthipeptide structures and the organization and sequences of the 16S rRNA-encoding genes suggest a subdivision of B. spizizenii into subspecies: The subtilin-producing B. spizizenii strains are distinctly different from the entianin-producing B. spizizenii typing strain TU-B-10 T (DSM 15029 T).
Collapse
Affiliation(s)
- Markus Helfrich
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619, Rheinbreitbach, Germany
| | - Karl-Dieter Entian
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
| | - Torsten Stein
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany.
- Chemistry & Molecular Biotechnology, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
103
|
Comparative Insights into the Antimicrobial, Antioxidant, and Nutritional Potential of the Solanum nigrum Complex. Processes (Basel) 2022. [DOI: 10.3390/pr10081455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum nigrum is a traditional medicinal plant renowned as a cure for many diseases due to the presence of bioactive compounds. The Solanum nigrum complex refers to a group of more than 30 closely related but morphologically distinct taxa. Five indigenous taxa of this complex were investigated for their medicinal potential by using methanolic extracts. The efficacy of each plant was different for each of the seven bacteria studied. On comparing the MIC values, S. americanum was found to be most potent against Bacillus licheniformis (34 µg/mL), S. chenopodioides against Escherichia coli (78 µg/mL), S. nigrum against Bacillus licheniformis (49 µg/mL) and Escherichia coli (49 µg/mL), S. retroflexum against Escherichia coli (30 µg/mL), and S. villosum against Proteus mirabilis (45 µg/mL). The extracts were also subjected to six antioxidant assays. Moderate scavenging activity was observed by all plants in the DPPH free radical assay, but S. chenopodioides was the most effective. The total phenolic contents of the five plants were comparable, but the gallic acid equivalents of S. americanum and S. nigrum were the highest (26.58 mg/100 g GAE). The highest Trolox equivalent antioxidant capacity was observed for S. retroflexum, with the ABTS assay giving a TEAC value of 33.88 mM/100 g of dry weight. Metal-chelating activity against Fe2+ was observed to be highest for S. chenopodioides (70.37%). The FRAP value of S. nigrum was the highest (8.5 mM FeSO4·7H2O) among all taxa. The lipid peroxidation trend was very similar for all five samples. The results suggest the specified medicinal use of different members of the Solanum nigrum complex, which will also have significant nutritional value.
Collapse
|
104
|
Fehler AO, Kallehauge TB, Geissler AS, González-Tortuero E, Seemann SE, Gorodkin J, Vinther J. Flagella disruption in Bacillus subtilis increases amylase production yield. Microb Cell Fact 2022; 21:131. [PMID: 35780132 PMCID: PMC9250202 DOI: 10.1186/s12934-022-01861-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus subtilis is a Gram-positive bacterium used as a cell factory for protein production. Over the last decades, the continued optimization of production strains has increased yields of enzymes, such as amylases, and made commercial applications feasible. However, current yields are still significantly lower than the theoretically possible yield based on the available carbon sources. In its natural environment, B. subtilis can respond to unfavorable growth conditions by differentiating into motile cells that use flagella to swim towards available nutrients. RESULTS In this study, we analyze existing transcriptome data from a B. subtilis α-amylase production strain at different time points during a 5-day fermentation. We observe that genes of the fla/che operon, essential for flagella assembly and motility, are differentially expressed over time. To investigate whether expression of the flagella operon affects yield, we performed CRISPR-dCas9 based knockdown of the fla/che operon with sgRNA target against the genes flgE, fliR, and flhG, respectively. The knockdown resulted in inhibition of mobility and a striking 2-threefold increase in α-amylase production yield. Moreover, replacing flgE (required for flagella hook assembly) with an erythromycin resistance gene followed by a transcription terminator increased α-amylase yield by about 30%. Transcript levels of the α-amylase were unaltered in the CRISPR-dCas9 knockdowns as well as the flgE deletion strain, but all manipulations disrupted the ability of cells to swim on agar. CONCLUSIONS We demonstrate that the disruption of flagella in a B. subtilis α-amylase production strain, either by CRISPR-dCas9-based knockdown of the operon or by replacing flgE with an erythromycin resistance gene followed by a transcription terminator, increases the production of α-amylase in small-scale fermentation.
Collapse
Affiliation(s)
- Annaleigh Ohrt Fehler
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Adrian Sven Geissler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Enrique González-Tortuero
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Ernst Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
105
|
Classification of antimicrobial mechanism of action using dynamic bacterial morphology imaging. Sci Rep 2022; 12:11162. [PMID: 35778598 PMCID: PMC9249789 DOI: 10.1038/s41598-022-15405-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance is a major threat to human health. Basic knowledge of antimicrobial mechanism of action (MoA) is imperative for patient care and for identification of novel antimicrobials. However, the process of antimicrobial MoA identification is relatively laborious. Here, we developed a simple, quantitative time-lapse fluorescence imaging method, Dynamic Bacterial Morphology Imaging (DBMI), to facilitate this process. It uses a membrane dye and a nucleoid dye to track the morphological changes of single Bacillus subtilis cells in response to antimicrobials for up to 60 min. DBMI of bacterial cells facilitated assignment of the MoAs of 14 distinct, known antimicrobial compounds to the five main classes. We conclude that DBMI is a simple method, which facilitates rapid classification of the MoA of antimicrobials in functionally distinct classes.
Collapse
|
106
|
Tišma M, Panoukidou M, Antar H, Soh YM, Barth R, Pradhan B, Barth A, van der Torre J, Michieletto D, Gruber S, Dekker C. ParB proteins can bypass DNA-bound roadblocks via dimer-dimer recruitment. SCIENCE ADVANCES 2022; 8:eabn3299. [PMID: 35767606 PMCID: PMC9242446 DOI: 10.1126/sciadv.abn3299] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can occur along DNA loaded with hundreds of proteins. Using in vitro single-molecule fluorescence imaging, we show that ParB from Bacillus subtilis can load onto DNA distantly of parS, as loaded ParB molecules themselves are found to be able to recruit additional ParB proteins from bulk. Notably, this recruitment can occur in cis but also in trans, where, at low tensions within the DNA, newly recruited ParB can bypass roadblocks as it gets loaded to spatially proximal but genomically distant DNA regions. The data are supported by molecular dynamics simulations, which show that cooperative ParB-ParB recruitment can enhance spreading. ParS-independent recruitment explains how ParB can cover substantial genomic distance during chromosome segregation, which is vital for the bacterial cell cycle.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Maria Panoukidou
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Young-Min Soh
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Biswajit Pradhan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- Corresponding author.
| |
Collapse
|
107
|
Patlán-Vázquez AG, Ayala-García VM, Vallin C, Cortés J, Vásquez-Morales SG, Robleto EA, Nudler E, Pedraza-Reyes M. Dynamics of Mismatch and Alternative Excision-Dependent Repair in Replicating Bacillus subtilis DNA Examined Under Conditions of Neutral Selection. Front Microbiol 2022; 13:866089. [PMID: 35847079 PMCID: PMC9280176 DOI: 10.3389/fmicb.2022.866089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous DNA deamination is a potential source of transition mutations. In Bacillus subtilis, EndoV, a component of the alternative excision repair pathway (AER), counteracts the mutagenicity of base deamination-induced mispairs. Here, we report that the mismatch repair (MMR) system, MutSL, prevents the harmful effects of HNO2, a deaminating agent of Cytosine (C), Adenine (A), and Guanine (G). Using Maximum Depth Sequencing (MDS), which measures mutagenesis under conditions of neutral selection, in B. subtilis strains proficient or deficient in MutSL and/or EndoV, revealed asymmetric and heterogeneous patterns of mutations in both DNA template strands. While the lagging template strand showed a higher frequency of C → T substitutions; G → A mutations, occurred more frequently in the leading template strand in different genetic backgrounds. In summary, our results unveiled a role for MutSL in preventing the deleterious effects of base deamination and uncovered differential patterns of base deamination processing by the AER and MMR systems that are influenced by the sequence context and the replicating DNA strand.
Collapse
Affiliation(s)
- Adriana G. Patlán-Vázquez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | | | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jonathan Cortés
- Biological Research Center, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Suria G. Vásquez-Morales
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Evgeny Nudler
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
108
|
Sato J, Tomita A, Sonoda T, Miyamoto T. Theaflavin and its derivatives exert antibacterial action against Bacillus coagulans through adsorption to cell surface phospholipids. J Appl Microbiol 2022; 133:1781-1790. [PMID: 35751484 DOI: 10.1111/jam.15690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the antibacterial effects of tea theaflavins and catechins against Bacillus coagulans and the underlying mechanism of antibacterial action. METHODS AND RESULTS Bactericidal activities of theaflavin and its analogs were evaluated and compared with that of epigallocatechin gallate. Theaflavin derivatives exhibited high bactericidal activity at 50 μmol L-1 , whereas epigallocatechin gallate did not, even at 500 μmol L-1 . Further, we investigated the adsorption of theaflavins to model phospholipid membranes and corresponding effects on membrane fluidity to reveal their effects on the B. coagulans cell surface. Cell membrane fluidity was decreased after treatment with theaflavin derivatives with one or more galloyl moieties. Quartz-crystal microbalance analysis showed strong affinity of the membrane phosphatidyl glycerol (PG) bilayers for theaflavin derivatives, correlating their bactericidal activity. CONCLUSION These findings suggest that theaflavins could effectively inhibit B. coagulans by decreasing cell membrane fluidity. SIGNIFICANCE AND IMPACT B. coagulans is a spore-forming heat-resistant bacterium responsible for spoilage in low-acidic beverages. Natural antimicrobial components in tea-based beverages are central to reducing microbial contamination and product quality deterioration, although mechanisms underlying their antimicrobial action remain obscure. This study highlights the inhibitory action of theaflavins on B. coagulans and their potential application in food and beverage industries.
Collapse
Affiliation(s)
- Jun Sato
- Safety Science Research, R&D, Kao Corporation, Ichikai-machi,Haga-gun Tochigi, 321-3497, Japan.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Ayumi Tomita
- Safety Science Research, R&D, Kao Corporation, Ichikai-machi,Haga-gun Tochigi, 321-3497, Japan
| | - Takumi Sonoda
- Safety Science Research, R&D, Kao Corporation, Ichikai-machi,Haga-gun Tochigi, 321-3497, Japan
| | - Takahisa Miyamoto
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
109
|
Isolation and characterization of a mycosubtilin homologue antagonizing Verticillium dahliae produced by Bacillus subtilis strain Z15. PLoS One 2022; 17:e0269861. [PMID: 35696380 PMCID: PMC9191732 DOI: 10.1371/journal.pone.0269861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Bacillus subtilis strain Z15 (BS-Z15) was isolated from the cotton field of Xinjiang, China, and characterized as an effective biocontrol agent antagonizing plant pathogen Verticillium dahliae 991 (VD-991). However, the chemical substance produced by BS-Z15 for resistance to VD-991 remains elusive. Here, a serial purification methods including HCl precipitation, organic solvent extraction, and separation by semi-preparative High-Performance Liquid Chromatography were performed to obtain a single compound about 3.5 mg/L from the fermentation broth of BS-Z15, which has an antifungal activity against VD-991. Moreover, Fourier Transform Infrared spectrum, Nuclear Magnetic Resonance Spectroscopy, and Tandem Mass Spectrometry analyses were carried out to finally confirm that the active compound from BS-Z15 is a mycosubtilin homologue with C17 fatty acid chain. Genomic sequence prediction and PCR verification further showed that the BS-Z15 genome contains the whole mycosubtilin operon comprising four ORFs: fenF, mycA, mycB, and mycC, and the expression levels of mycA-N, mycB-Y and mycC-N reached a peak at 32-h fermentation. Although mycosubtilin homologue at 1 μg/mL promoted the germination of cotton seed, that with high concentration at 10 μg/mL had no significant effect on seed germination, plant height and dry weight. Furthermore, mycosubtilin homologue sprayed at 10 μg/mL on two-week-old cotton leaves promotes the expression of pathogen-associated genes and gossypol accumulation, and greatly decreases VD-991 infection in cotton with disease index statistics. This study provides an efficient purification strategy for mycosubtilin homologue from BS-Z15, which can potentially be used as a biocontrol agent for controlling verticillium wilt in cotton.
Collapse
|
110
|
A combined de novo assembly approach increases the quality of prokaryotic draft genomes. Folia Microbiol (Praha) 2022; 67:801-810. [DOI: 10.1007/s12223-022-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
111
|
Consistent Clustering Pattern of Prokaryotic Genes Based on Base Frequency at the Second Codon Position and its Association with Functional Category Preference. Interdiscip Sci 2022; 14:349-357. [PMID: 34817803 PMCID: PMC9124167 DOI: 10.1007/s12539-021-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 10/26/2022]
Abstract
AbstractIn 2002, our research group observed a gene clustering pattern based on the base frequency of A versus T at the second codon position in the genome of Vibrio cholera and found that the functional category distribution of genes in the two clusters was different. With the availability of a large number of sequenced genomes, we performed a systematic investigation of A2–T2 distribution and found that 2694 out of 2764 prokaryotic genomes have an optimal clustering number of two, indicating a consistent pattern. Analysis of the functional categories of the coding genes in each cluster in 1483 prokaryotic genomes indicated, that 99.33% of the genomes exhibited a significant difference (p < 0.01) in function distribution between the two clusters. Specifically, functional category P was overrepresented in the small cluster of 98.65% of genomes, whereas categories J, K, and L were overrepresented in the larger cluster of over 98.52% of genomes. Lineage analysis uncovered that these preferences appear consistently across all phyla. Overall, our work revealed an almost universal clustering pattern based on the relative frequency of A2 versus T2 and its role in functional category preference. These findings will promote the understanding of the rationality of theoretical prediction of functional classes of genes from their nucleotide sequences and how protein function is determined by DNA sequence.
Graphical abstract
Collapse
|
112
|
Scarduelli M, Guizelini D, Alves Cardos RL, Ceccon DM, Donatti L, de Baura VA, de Oliveira Pedrosa F, Huergo LF, de Souza EM. The Complete Genome Sequence of Bacillus safensis BRM1 Isolated from Brazilian Mangrove Sediment: A Potential Source of Biomass Converting Enzymes. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2203180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Bacillus safensis BRM1 was isolated from Brazilian mangrove sediment and selected for its ability to grow in xylan as the sole carbon source. To identify genes encoding biomass conversion enzymes, the genome of this bacterium was sequenced.
Methods:
Genome wide analysis revealed 99% nucleotide identity to the Bacillus safensis genome. The isolated strain was named B. safensis BRM1, and its genome consists of a circular chromosome of 3.74 Mb with a GC content of 41.8%. Genes encoding a plethora of hydrolytic enzymes are present in the BRM1 genome but absent from the other B. safensis genomes.
Results:
A total of 23 genes encoding putative cellulases or hemicellulases were identified.
Conclusion:
These data support that B. safensis BRM1 is an interesting candidate for the prospection of enzymes that can be applied in the conversion of cellulosic biomass to biofuel.
Collapse
|
113
|
Zhang Y, Pham TM, Kayrouz C, Ju KS. Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N ε-Hydroxyarginine Containing Natural Products. J Am Chem Soc 2022; 144:9634-9644. [PMID: 35616638 DOI: 10.1021/jacs.2c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.,Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.,Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
114
|
Li X, Kouzounis D, Kabel MA, de Vries RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus. N Biotechnol 2022; 70:84-92. [PMID: 35597447 DOI: 10.1016/j.nbt.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Penicillium subrubescens has an expanded set of genes encoding putative endoxylanases (PsXLNs) compared to most other Penicillia and other fungi. In this study, all GH10 and GH11 PsXLNs were produced heterologously in Pichia pastoris and characterized. They were active towards beech wood xylan (BWX) and wheat flour arabinoxylan (WAX), and showed stability over a wide pH range. Additionally, PsXLNs released distinct oligosaccharides from WAX, and showed significant cooperative action with P. subrubescens α-L-arabinofuranosidases (PsABFs) from GH51 or GH54 for WAX degradation, giving insight into a more diverse XLN and ABF system for the efficient degradation of complex hemicelluloses. Homology modelling analysis pointed out differences in the catalytic center of PsXLNs, which are discussed in view of the different modes of action observed. These findings facilitate understanding of structural requirements for substrate recognition to contribute to recombinant XLN engineering for biotechnological applications.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
115
|
Abstract
Nucleoid-associated proteins (NAPs) help structure bacterial genomes and function in an array of DNA transactions, including transcription, recombination, and repair. In most bacteria, NAPs are nonessential in part due to functional redundancy. In contrast, in Bacillus subtilis the HU homolog HBsu is essential for cell viability. HBsu helps compact the B. subtilis chromosome and participates in homologous recombination and DNA repair. However, none of these activities explain HBsu's essentiality. Here, using two complementary conditional HBsu alleles, we investigated the terminal phenotype of the mutants. Our analysis revealed that cells without functional HBsu fail to initiate DNA replication. Importantly, when the chromosomal replication origin (oriC) was replaced with a plasmid origin (oriN) whose replication does not require the initiator DnaA, cells without HBsu initiated DNA replication normally. However, HBsu was still essential in this oriN-containing strain. We conclude that HBsu plays an essential role in the initiation of DNA replication, likely acting to promote origin melting by DnaA, but also has a second essential function that remains to be discovered. IMPORTANCE While it is common for a bacterial species to express multiple nucleoid-associated proteins (NAPs), NAPs are seldomly essential for cell survival. In B. subtilis, HBsu is a NAP essential for cell viability. Here, using conditional alleles to rapidly remove or inactivate HBsu, we show that the absence of HBsu abolishes the initiation of DNA replication in vivo. Understanding HBsu's function can provide new insights into the regulation of DNA replication initiation in bacteria.
Collapse
|
116
|
Xu WJ, Wan Q, Wang WF, Wang Y, Feng FY, Cheng JJ, Yuan JJ, Yu XY. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2 under in-vitro and in-vivo conditions. ENVIRONMENTAL TECHNOLOGY 2022; 43:1917-1926. [PMID: 33251967 DOI: 10.1080/09593330.2020.1858181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The environmental prevalence and potential toxicity of dibutyl phthalate (DBP) motivate the attempt to develop feasible strategies to deal with DBP contamination. In this study, a strain of endphytic bacteria HB-T2 was isolated from sorrel roots and identified as Bacillus sp. by analysing its morphology, physiology, biochemistry and 16S rDNA sequence. The degradation efficiency of DBP by HB-T2 was almost identical under the temperature of 30∼40°C, but was significantly enhanced as the culture pH and inoculum size increases from 6.0 to 8.0, and 1% to 5% respectively. The degradation kinetics of DBP could be well described by the first-order kinetic model, with the degradation half-life ranging from 1.59 to 7.61 h when the initial concentrations of DBP were in the range of 5-20 mg/L. LC-MS analysis of the culture samples taken at varying intervals revealed monobutyl phthalate, phthalic acid and protocatechuic acid as the major metabolic intermediates during the degradation process. HB-T2 exhibited an excellent capability to degrade a wide range of phthalate esters (PAEs), especially butyl benzyl phthalate (BBP), dipentyl phthalate (DPP), and diisobutyl phthalate (DIBP). Inoculation of HB-T2 into Chinese cabbage (Brassica chinensis L.) growing in DBP-contaminated soils could significantly reduce the DBP levels in plant tissues and relieve the phytotoxic effects of DBP. Results of this study highlighted the great potential of this novel endophytic Bacillus subtilis strain HB-T2 for bioremediation of PAEs contamination and improvement of agricultural product safety by reducing PAEs accumulation in edible crops.
Collapse
Affiliation(s)
- Wen-Jun Xu
- College of Oceanology and Food Science, Quanzhou Normal University/Key Laboratory of Inshore Resources Biotechnology, Quanzhou, People's Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
| | - Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Wen-Feng Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Fa-Yun Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jin-Jin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jian-Jun Yuan
- College of Oceanology and Food Science, Quanzhou Normal University/Key Laboratory of Inshore Resources Biotechnology, Quanzhou, People's Republic of China
| | - Xiang-Yang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, People's Republic of China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| |
Collapse
|
117
|
Tian J, Xing B, Li M, Xu C, Huo YX, Guo S. Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of Bacillus subtilis Biofuel Overproducers. Int J Mol Sci 2022; 23:ijms23094853. [PMID: 35563243 PMCID: PMC9099979 DOI: 10.3390/ijms23094853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis is a versatile microbial cell factory that can produce valuable proteins and value-added chemicals. Long fragment editing techniques are of great importance for accelerating bacterial genome engineering to obtain desirable and genetically stable host strains. Herein, we develop an efficient CRISPR-Cas9 method for large-scale and scarless genome engineering in the Bacillus subtilis genome, which can delete up to 134.3 kb DNA fragments, 3.5 times as long as the previous report, with a positivity rate of 100%. The effects of using a heterologous NHEJ system, linear donor DNA, and various donor DNA length on the engineering efficiencies were also investigated. The CRISPR-Cas9 method was then utilized for Bacillus subtilis genome simplification and construction of a series of individual and cumulative deletion mutants, which are further screened for overproducer of isobutanol, a new generation biofuel. These results suggest that the method is a powerful genome engineering tool for constructing and screening engineered host strains with enhanced capabilities, highlighting the potential for synthetic biology and metabolic engineering.
Collapse
|
118
|
Strittmatter CS, Eggers J, Biesgen V, Pauels I, Becker F, Steinbüchel A. The reliance of glycerol utilization by Cupriavidus necator on CO 2 fixation and improved glycerol catabolism. Appl Microbiol Biotechnol 2022; 106:2541-2555. [PMID: 35325274 DOI: 10.1007/s00253-022-11842-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.
Collapse
Affiliation(s)
- Carl Simon Strittmatter
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Jessica Eggers
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Vanessa Biesgen
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Inga Pauels
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Florian Becker
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany. .,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
119
|
Network Reconstruction and Modelling Made Reproducible with moped. Metabolites 2022; 12:metabo12040275. [PMID: 35448462 PMCID: PMC9032245 DOI: 10.3390/metabo12040275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Mathematical modeling of metabolic networks is a powerful approach to investigate the underlying principles of metabolism and growth. Such approaches include, among others, differential-equation-based modeling of metabolic systems, constraint-based modeling and metabolic network expansion of metabolic networks. Most of these methods are well established and are implemented in numerous software packages, but these are scattered between different programming languages, packages and syntaxes. This complicates establishing straight forward pipelines integrating model construction and simulation. We present a Python package moped that serves as an integrative hub for reproducible construction, modification, curation and analysis of metabolic models. moped supports draft reconstruction of models directly from genome/proteome sequences and pathway/genome databases utilizing GPR annotations, providing a completely reproducible model construction and curation process within executable Python scripts. Alternatively, existing models published in SBML format can be easily imported. Models are represented as Python objects, for which a wide spectrum of easy-to-use modification and analysis methods exist. The model structure can be manually altered by adding, removing or modifying reactions, and gap-filling reactions can be found and inspected. This greatly supports the development of draft models, as well as the curation and testing of models. Moreover, moped provides several analysis methods, in particular including the calculation of biosynthetic capacities using metabolic network expansion. The integration with other Python-based tools is facilitated through various model export options. For example, a model can be directly converted into a CobraPy object for constraint-based analyses. moped is a fully documented and expandable Python package. We demonstrate the capability to serve as a hub for integrating reproducible model construction and curation, database import, metabolic network expansion and export for constraint-based analyses.
Collapse
|
120
|
Kohm K, Floccari VA, Lutz VT, Nordmann B, Mittelstädt C, Poehlein A, Dragoš A, Commichau FM, Hertel R. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components. Environ Microbiol 2022; 24:2098-2118. [PMID: 35293111 DOI: 10.1111/1462-2920.15964] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
The Bacillus phage SPβ has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPβ-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPβ-like phages. We extracted 55 SPβ-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPβ-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPβ transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | | | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Birthe Nordmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Anna Dragoš
- Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
121
|
Bacterial Homologs of Progestin and AdipoQ Receptors (PAQRs) Affect Membrane Energetics Homeostasis but Not Fluidity. J Bacteriol 2022; 204:e0058321. [PMID: 35285724 PMCID: PMC9017321 DOI: 10.1128/jb.00583-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane potential homeostasis is essential for cell survival. Defects in membrane potential lead to pleiotropic phenotypes, consistent with the central role of membrane energetics in cell physiology. Homologs of the progestin and AdipoQ receptors (PAQRs) are conserved in multiple phyla of Bacteria and Eukarya. In eukaryotes, PAQRs are proposed to modulate membrane fluidity and fatty acid (FA) metabolism. The role of bacterial homologs has not been elucidated. Here, we use Escherichia coli and Bacillus subtilis to show that bacterial PAQR homologs, which we name “TrhA,” have a role in membrane energetics homeostasis. Using transcriptional fusions, we show that E. coli TrhA (encoded by yqfA) is part of the unsaturated fatty acid biosynthesis regulon. Fatty acid analyses and physiological assays show that a lack of TrhA in both E. coli and B. subtilis (encoded by yplQ) provokes subtle but consistent changes in membrane fatty acid profiles that do not translate to control of membrane fluidity. Instead, membrane proteomics in E. coli suggested a disrupted energy metabolism and dysregulated membrane energetics in the mutant, though it grew similarly to its parent. These changes translated into a disturbed membrane potential in the mutant relative to its parent under various growth conditions. Similar dysregulation of membrane energetics was observed in a different E. coli strain and in the distantly related B. subtilis. Together, our findings are consistent with a role for TrhA in membrane energetics homeostasis, through a mechanism that remains to be elucidated. IMPORTANCE Eukaryotic homologs of the progestin and AdipoQ receptor family (PAQR) have been shown to regulate membrane fluidity by affecting, through unknown mechanisms, unsaturated fatty acid (FA) metabolism. The bacterial homologs studied here mediate small and consistent changes in unsaturated FA metabolism that do not seem to impact membrane fluidity but, rather, alter membrane energetics homeostasis. Together, the findings here suggest that bacterial and eukaryotic PAQRs share functions in maintaining membrane homeostasis (fluidity in eukaryotes and energetics for bacteria with TrhA homologs).
Collapse
|
122
|
Forrest D, Warman EA, Erkelens AM, Dame RT, Grainger DC. Xenogeneic silencing strategies in bacteria are dictated by RNA polymerase promiscuity. Nat Commun 2022; 13:1149. [PMID: 35241653 PMCID: PMC8894471 DOI: 10.1038/s41467-022-28747-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Horizontal gene transfer facilitates dissemination of favourable traits among bacteria. However, foreign DNA can also reduce host fitness: incoming sequences with a higher AT content than the host genome can misdirect transcription. Xenogeneic silencing proteins counteract this by modulating RNA polymerase binding. In this work, we compare xenogeneic silencing strategies of two distantly related model organisms: Escherichia coli and Bacillus subtilis. In E. coli, silencing is mediated by the H-NS protein that binds extensively across horizontally acquired genes. This prevents spurious non-coding transcription, mostly intragenic in origin. By contrast, binding of the B. subtilis Rok protein is more targeted and mostly silences expression of functional mRNAs. The difference reflects contrasting transcriptional promiscuity in E. coli and B. subtilis, largely attributable to housekeeping RNA polymerase σ factors. Thus, whilst RNA polymerase specificity is key to the xenogeneic silencing strategy of B. subtilis, transcriptional promiscuity must be overcome to silence horizontally acquired DNA in E. coli. Bacteria use specific silencing proteins to prevent spurious transcription of horizontally acquired DNA. Here, Forrest et al. describe differences in silencing strategies between E. coli and Bacillus subtilis, driven by the respective specificities of the silencing protein and the RNA polymerase in each organism.
Collapse
Affiliation(s)
- David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Emily A Warman
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
123
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
124
|
Influence of extracellular protein isolated from fish gut associated bacteria as an enhancer of growth and innate immune system in Mugil cephalus. Sci Rep 2022; 12:3217. [PMID: 35217708 PMCID: PMC8881613 DOI: 10.1038/s41598-022-05779-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cultural microbiomes of 27 bacteria colonies were isolated from Mugil cephalus for analysis of the antibacterial and antagonistic activities. A potent probiotic bacterium was characterized using16S r RNA sequencing. The potent strain was added to fish diet to perform the challenge test and to study the growth and immunological parameter. The extracellular proteins from the probiotic were collected and characterized using MALDI TOF/TOF. Out of G27, G9 strain inhibited all the five pathogenic strains. An isolated bacterium was identified as Bacillus subtilis PRBD09 with accession number KF765648. After 35 days of feeding period B. subtilis PRBD09 enhance the both cellular and humoral immune responses, which responsible for survive of the Mugil cephalus against Aeromonas hydrophila infection. The MALDI TOF sample 08 and 09 were recognized as hypothetical proteins based on the MALDI TOF sample. A cytidinedeaminase was found in samples 10, 11, and 12. Extracellular proteins may be involved for the immunological increase in Mugil cephalus against Aeromonas hydrophila, according to the current research.
Collapse
|
125
|
High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022; 10:e0204521. [PMID: 35171018 PMCID: PMC8849057 DOI: 10.1128/spectrum.02045-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating phenotypic heterogeneity in clonal bacterial populations is important for both the fundamental understanding of bacterial behavior and the synthetic engineering of bacteria in biotechnology. In this study, we present and validate a high-throughput and high-resolution time-lapse fluorescence microscopy-based strategy to easily and systematically screen for heterogeneously expressed genes in the Bacillus subtilis model bacterium. This screen allows detection of expression patterns at high spatial and temporal resolution, which often escape detection by other approaches, and can readily be extrapolated to other bacteria. A proof-of-concept screening in B. subtilis revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating the approach. IMPORTANCE Differential gene expression among isogenic siblings often leads to phenotypic heterogeneity and the emergence of complex social behavior and functional capacities within clonal bacterial populations. Despite the importance of such features for both the fundamental understanding and synthetic engineering of bacterial behavior, approaches to systematically map such population heterogeneity are scarce. In this context, we have elaborated a new time-lapse fluorescence microscopy-based strategy to easily and systematically screen for such heterogeneously expressed genes in bacteria with high resolution and throughput. A proof-of-concept screening in the Bacillus subtilis model bacterium revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating our approach.
Collapse
|
126
|
Sporicidal mechanism of the combination of ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride as a disinfectant against the Bacillus subtilis spores. Braz J Microbiol 2022; 53:547-556. [PMID: 35143017 PMCID: PMC9151947 DOI: 10.1007/s42770-022-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that the combination disinfectant, Ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride (ODB), can effectively kill a variety of microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. To observe the sporicidal ability and mechanism of ODB for spores, Bacillus subtilis spores were used as the research object in this experiment. TEM images revealed that ODB destroyed the integrity of the coat, cortex, and inner membrane of the spores after 0.5-h treatment, and the nuclear material was also broken and exuded after 4-h treatment. The broken structure led to the release of dipicolinic acid (DPA) in large amount. The results show that B. subtilis spores can be effetely killed by ODB through destroying the structure of the spores.
Collapse
|
127
|
Chen B, Zhou FJ, Yang F, Lian JJ, Ye TR, Wu HY, Wang LM, Song N, Liu YY, Hui AY. Enhanced sequestration of molybdenum(VI) using composite constructed wetlands and responses of microbial communities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1065-1078. [PMID: 35228354 DOI: 10.2166/wst.2022.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The molybdenum (Mo) non-point source pollution in the mining area has an irreversible impact on the surrounding water and soil ecosystems. Herein, three integrated vertical subsurface flow constructed wetlands (CWs) were constructed to assess the effects of combination substrates and plant on the removal of Mo(VI). Results showed that CW1 with combination substrates and cattail exhibited a favorable removal performance for Mo(VI) at 80.90%. Moreover, most Mo(VI) retained in the CWs was retained in the substrate (58.13-88.04%), and the largest fraction of Mo(VI) retained was the water-soluble fraction on the surface of the combination substrates. Mo(VI) removal was also influenced by the microbial community composition in substrate, especially their co-occurrence networks. The species that showed significant positive correlation with Mo(VI) removal were Planctomycetes, Latescibacteria, Armatimonadetes, and Gemmatimonadetes. Moreover, CWs added plants showed that more co-occurrences interaction between taxa occurs, which means that the wetlands efficiently select recruitment of potential microbial consortia and change the co-occurrences to remove pollution in the substrate. These results could be useful in providing an ecology-based solution for the treatment of Mo(VI) in wastewater, especially in adjusting the microbial communities for Mo(VI) removal at the genetic level.
Collapse
Affiliation(s)
- B Chen
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, Ma'anshan 243002, China; College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - F J Zhou
- College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - F Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - J J Lian
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, Ma'anshan 243002, China; College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - T R Ye
- College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - H Y Wu
- College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - L M Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - N Song
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China E-mail:
| | - Y Y Liu
- College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| | - A Y Hui
- College of Energy and Environment, Anhui University of Technology, Anhui 243002, China
| |
Collapse
|
128
|
Johnson CM, Harden MM, Grossman AD. Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet 2022; 18:e1010065. [PMID: 35157704 PMCID: PMC8880864 DOI: 10.1371/journal.pgen.1010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Most bacterial genomes contain horizontally acquired and transmissible mobile genetic elements, including temperate bacteriophages and integrative and conjugative elements. Little is known about how these elements interact and co-evolved as parts of their host genomes. In many cases, it is not known what advantages, if any, these elements provide to their bacterial hosts. Most strains of Bacillus subtilis contain the temperate phage SPß and the integrative and conjugative element ICEBs1. Here we show that the presence of ICEBs1 in cells protects populations of B. subtilis from predation by SPß, likely providing selective pressure for the maintenance of ICEBs1 in B. subtilis. A single gene in ICEBs1 (yddK, now called spbK for SPß killing) was both necessary and sufficient for this protection. spbK inhibited production of SPß, during both activation of a lysogen and following de novo infection. We found that expression spbK, together with the SPß gene yonE constitutes an abortive infection system that leads to cell death. spbK encodes a TIR (Toll-interleukin-1 receptor)-domain protein with similarity to some plant antiviral proteins and animal innate immune signaling proteins. We postulate that many uncharacterized cargo genes in ICEs may confer selective advantage to cells by protecting against other mobile elements. Chromosomes from virtually all organisms contain genes that were horizontally acquired. In bacteria, many of the horizontally acquired genes are located in mobile genetic elements, elements that promote their own transfer from one cell to another. These elements include viruses and conjugative elements that are parts of the host genome and they can contain genes involved in metabolism, pathogenesis, symbiosis, and antibiotic resistances. Interactions between these elements are poorly understood. Furthermore, the majority of these elements confer no obvious benefit to host cells. We found that the presence of an integrative and conjugative element (ICE) in a bacterial genome protects host cells from predation by a bacteriophage (virus). There is a single gene in the integrative and conjugative element that confers this protection, and one gene in the bacteriophage that likely works together with the ICE gene. When expressed at the same time, these two genes cause cell death, before functional viruses can be made and released to kill other cells. We postulate that other ICEs may confer selective advantage to their host cells by protecting against other mobile elements.
Collapse
Affiliation(s)
- Christopher M. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - M. Michael Harden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
129
|
Vasileva D, Streich J, Burdick L, Klingeman D, Chhetri HB, Brelsford C, Ellis JC, Close DM, Jacobson D, Michener J. Protoplast fusion in Bacillus species produces frequent, unbiased, genome-wide homologous recombination. Nucleic Acids Res 2022; 50:6211-6223. [PMID: 35061904 PMCID: PMC9226520 DOI: 10.1093/nar/gkac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Collapse
Affiliation(s)
| | | | | | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J Christopher Ellis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dan M Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel A Jacobson
- Correspondence may also be addressed to Daniel A. Jacobson. Tel: +1 865 574 6134; Fax: +1 865 241 2869;
| | - Joshua K Michener
- To whom correspondence should be addressed. Tel: +1 865 576 7957; Fax: +1 865 576 8646;
| |
Collapse
|
130
|
Coles VE, Darveau P, Zhang X, Harvey H, Henriksbo BD, Yang A, Schertzer JD, Magolan J, Burrows LL. Exploration of BAY 11-7082 as a Potential Antibiotic. ACS Infect Dis 2022; 8:170-182. [PMID: 34860493 DOI: 10.1021/acsinfecdis.1c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exposure of the Gram-negative pathogen Pseudomonas aeruginosa to subinhibitory concentrations of antibiotics increases the formation of biofilms. We exploited this phenotype to identify molecules with potential antimicrobial activity in a biofilm-based high-throughput screen. The anti-inflammatory compound BAY 11-7082 induced dose-dependent biofilm stimulation, indicative of antibacterial activity. We confirmed that BAY 11-7082 inhibits the growth of P. aeruginosa and other priority pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We synthesized 27 structural analogues, including a series based on the related scaffold 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC), 10 of which displayed increased anti-Staphylococcal activity. Because the parent molecule inhibits the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome, we measured the ability of select analogues to reduce interleukin-1β (IL-1β) production in mammalian macrophages, identifying minor differences in the structure-activity relationship for the anti-inflammatory and antibacterial properties of this scaffold. Although we could evolve stably resistant MRSA mutants with cross-resistance to BAY 11-7082 and PSPC, their lack of shared mutations suggested that the two molecules could have multiple targets. Finally, we showed that BAY 11-7082 and its analogues synergize with penicillin G against MRSA, suggesting that this scaffold may serve as an interesting starting point for the development of antibiotic adjuvants.
Collapse
Affiliation(s)
- Victoria E. Coles
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Patrick Darveau
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - Xiong Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Hanjeong Harvey
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Brandyn D. Henriksbo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Angela Yang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L8, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
131
|
Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:57-90. [DOI: 10.1007/10_2021_199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
132
|
Tan W, Yin Y, Wen J. Increasing fengycin production by strengthening the fatty acid synthesis pathway and optimizing fermentation conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
133
|
Hioki T, Yamashita D, Tohata M, Endo K, Kawahara A, Okuda M. Heterologous production of active form of beta-lytic protease by Bacillus subtilis and improvement of staphylolytic activity by protein engineering. Microb Cell Fact 2021; 20:231. [PMID: 34963446 PMCID: PMC8715609 DOI: 10.1186/s12934-021-01724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Most of the proteases classified into the M23 family in the MEROPS database exhibit staphylolytic activity and have potential as antibacterial agents. The M23 family is further classified into two subfamilies, M23A and M23B. Proteases of the M23A subfamily are thought to lack the capacity for self-maturation by auto-processing of a propeptide, which has been a challenge in heterologous production and application research. In this study, we investigated the heterologous expression, in Bacillus subtilis, of the Lysobacter enzymogenes beta-lytic protease (BLP), a member of the M23A subfamily. Results We found that B. subtilis can produce BLP in its active form. Two points were shown to be important for the production of BLP in B. subtilis. The first was that the extracellular proteases produced by the B. subtilis host are essential for BLP maturation. When the host strain was deficient in nine extracellular proteases, pro-BLP accumulated in the supernatant. This observation suggested that BLP lacks the capacity for self-maturation and that some protease from B. subtilis contributes to the cleavage of the propeptide of BLP. The second point was that the thiol-disulfide oxidoreductases BdbDC of the B. subtilis host are required for efficient secretory production of BLP. We infer that intramolecular disulfide bonds play an important role in the formation of the correct BLP conformation during secretion. We also achieved efficient protein engineering of BLP by utilizing the secretory expression system in B. subtilis. Saturation mutagenesis of Gln116 resulted in a Q116H mutant with enhanced staphylolytic activity. The minimum bactericidal concentration (MBC) of the wild-type BLP and the Q116H mutant against Staphylococcus aureus NCTC8325 was 0.75 μg/mL and 0.375 μg/mL, respectively, and the MBC against Staphylococcus aureus ATCC43300 was 6 μg/mL and 3 μg/mL, respectively. Conclusions In this study, we succeeded in the secretory production of BLP in B. subtilis. To our knowledge, this work is the first report of the successful heterologous production of BLP in its active form, which opens up the possibility of industrial use of BLP. In addition, this study proposes a new strategy of using the extracellular proteases of B. subtilis for the maturation of heterologous proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01724-x.
Collapse
Affiliation(s)
- Takahiro Hioki
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Daichi Yamashita
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| | - Masatoshi Tohata
- Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Keiji Endo
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| | - Akihito Kawahara
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Mitsuyoshi Okuda
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| |
Collapse
|
134
|
Redirected Stress Responses in a Genome-Minimized 'midi Bacillus' Strain with Enhanced Capacity for Protein Secretion. mSystems 2021; 6:e0065521. [PMID: 34904864 PMCID: PMC8670375 DOI: 10.1128/msystems.00655-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome engineering offers the possibility to create completely novel cell factories with enhanced properties for biotechnological applications. In recent years, genome minimization was extensively explored in the Gram-positive bacterial cell factory Bacillus subtilis, where up to 42% of the genome encoding dispensable functions was removed. Such studies showed that some strains with minimized genomes gained beneficial features, especially for secretory protein production. However, strains with the most minimal genomes displayed growth defects. This focused our attention on strains with less extensive genomic deletions that display close-to-wild-type growth properties while retaining the acquired beneficial traits in secretory protein production. A strain of this category is B. subtilis IIG-Bs27-47-24, here referred to as midiBacillus, which lacks 30.95% of the parental genome. To date, it was unknown how the altered genomic configuration of midiBacillus impacts cell physiology in general, and protein secretion in particular. The present study bridges this knowledge gap through comparative quantitative proteome analyses with focus on protein secretion. Interestingly, the results show that the secretion stress responses of midiBacillus, as elicited by high-level expression of the immunodominant staphylococcal antigen A, are completely different from secretion stress responses that occur in the parental strain 168. We further show that midiBacillus has an increased capacity for translation and that a variety of critical Sec secretion machinery components is present at elevated levels. Altogether, our observations demonstrate that high-level protein secretion has different consequences for wild-type and genome-engineered Bacillus strains, dictated by the altered genomic and proteomic configurations. IMPORTANCE Our present study showcases a genome-minimized nonpathogenic bacterium, the so-called midiBacillus, as a chassis for the development of future industrial strains that serve in the production of high-value difficult-to-produce proteins. In particular, we explain how midiBacillus, which lacks about one-third of the original genome, effectively secretes a protein of the major human pathogen Staphylococcus aureus that cannot be produced by the parental Bacillus subtilis strain. This is important, because the secreted S. aureus protein is exemplary for a range of targets that can be implemented in future antistaphylococcal immunotherapies. Accordingly, we anticipate that midiBacillus chassis will contribute to the development of vaccines that protect both humans and livestock against diseases caused by S. aureus, a bacterial pathogen that is increasingly difficult to fight with antibiotics, because it has accumulated resistances to essentially all antibiotics that are currently in clinical practice.
Collapse
|
135
|
Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination. Appl Environ Microbiol 2021; 88:e0240621. [PMID: 34910565 PMCID: PMC8863042 DOI: 10.1128/aem.02406-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some “superdormant” spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. IMPORTANCE Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.
Collapse
|
136
|
Yamazawa R, Kuwana R, Takeuchi K, Takamatsu H, Nakajima Y, Ito K. Identification of the active site and characterization of a novel sporulation-specific cysteine protease YabG from Bacillus subtilis. J Biochem 2021; 171:315-324. [PMID: 34865059 DOI: 10.1093/jb/mvab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022] Open
Abstract
In order to characterize the probable protease gene yabG found in the genomes of spore-forming bacteria, Bacillus subtilis yabG was expressed as a 35 kDa His-tagged protein (BsYabG) in Escherichia coli cells. During purification using Ni-affinity chromatography, the 35 kDa protein was degraded via several intermediates to form a 24 kDa protein. Furthermore, it was degraded after an extended incubation period. The effect of protease inhibitors, including certain chemical modification reagents, on the conversion of the 35 kDa protein to the 24 kDa protein was investigated. Reagents reacting with sulfhydryl groups exerted significant effects, strongly suggesting that the yabG gene product is a cysteine protease with autolytic activity. Site-directed mutagenesis of the conserved Cys and His residues indicated that Cys218 and His172 are active site residues. No degradation was observed in the C218A/S and H172A mutants. In addition to the chemical modification reagents, benzamidine inhibited the degradation of the 24 kDa protein. Determination of the N-terminal amino acid sequences of the intermediates revealed trypsin-like specificity for YabG protease. Based on the relative positions of His172 and Cys218 and their surrounding sequences, we propose the classification of YabG as a new family of clan CD in the Merops peptidase database.
Collapse
Affiliation(s)
- Ryuji Yamazawa
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kenji Takeuchi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yoshitaka Nakajima
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, 17-8 Ikeda-nakamachi, Neyagawa, Osaka 572-8508, Japan
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
137
|
Singh SS, Sharma D, Baindara P, Choksket S, Harshvardhan, Mandal SM, Grover V, Korpole S. Characterization and Antimicrobial Studies of Iturin-Like and Bogorol-Like Lipopeptides From Brevibacillus spp. Strains GI9 and SKDU10. Front Microbiol 2021; 12:729026. [PMID: 34782829 PMCID: PMC8589628 DOI: 10.3389/fmicb.2021.729026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Accession numbers for whole-genome sequence of Brevibacillus sp. strain GI9 and SKDU10 are CAGD01000001 to CAGD01000061 and LSSO00000000, respectively. Members of the genus Brevibacillus have been demonstrated to produce a variety of bioactive compounds including polyketides, lipopeptides and bacteriocins. Lipopeptides are non-ribosomally synthesized surface-active compounds with antimicrobial, antitumor, and immune-stimulatory activities. They usually exhibit strong antifungal and antibacterial activities and are considered as promising compounds in controlling fungal diseases. In this study, we have characterized two lipopeptides from Brevibacillus sp. strains GI9 and SKDU10. The corresponding lipopeptides were purified by reverse-phase high-performance liquid chromatography. Mass analysis and characterization by MALDI-TOF-MS (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry) analysis revealed production of an iturin-like lipopeptide by strain GI9 and bogorol-like lipopeptide by strain SKDU10. Both lipopeptides exhibited broad spectrum antibacterial activity and inhibited the growth of various fungi. They showed minimum inhibitory concentration (MIC) values between 90 and 300 μg/ml against indicator strains of bacteria and drug-resistant Candida indicator strains. The lipopeptides did not show phytotoxic effect in seed germination experiments but caused hemolysis. Further, both lipopeptides inhibited the growth of fungi on fruits and vegetables in in vitro experiments, thereby exhibited potential use in biotechnological industry as effective biocontrol agents.
Collapse
Affiliation(s)
| | - Deepika Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Harshvardhan
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
138
|
Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021; 42:813-826. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to Bacillus subtilis in 2016 and has been intensely upgraded since then. Many tools have been successfully developed to build a CRISPR toolbox for this Gram-positive model and important industrial chassis. The toolbox includes tools, such as double-strand and single-strand cutting CRISPR for point mutation, gene insertion, and gene deletion up to 38 kb. Moreover, catalytic dead Cas proteins have been used for base editing, as well as for the control of gene expression (CRISPRi and CRISPRa). Many of these tools have been used for multiplex CRISPR with the most successful one targeting up to six loci simultaneously for point mutation. However, tools for efficient multiplex CRISPR for other functionalities are still missing in the toolbox. CRISPR engineering has already resulted in efficient protein and metabolite-producing strains, demonstrating its great potential. In this review, we cover all the important additions made to the B. subtilis CRISPR toolbox since 2016, and strain developments fomented by the technology.
Collapse
Affiliation(s)
- Vitoria Fernanda Bertolazzi Zocca
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Milca Rachel da Costa Ribeiro Lins
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Victor Nunes de Jesus
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Leonardo Ferro Tavares
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Guilherme Engelberto Kundlatsch
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
139
|
Wu X, Wu H, Wang R, Wang Z, Zhang Y, Gu Q, Farzand A, Yang X, Semenov M, Borriss R, Xie Y, Gao X. Genomic Features and Molecular Function of a Novel Stress-Tolerant Bacillus halotolerans Strain Isolated from an Extreme Environment. BIOLOGY 2021; 10:biology10101030. [PMID: 34681129 PMCID: PMC8533444 DOI: 10.3390/biology10101030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The Qinghai–Tibet Plateau is known as the “third pole of the world”. Due to the extreme geographical location, Qinghai–Tibet Plateau has unique ecosystems characterized by oxygen deficiency, low temperature, high salinity and alkalinity. We carried out the current study to explore the excellent extremophilic Bacillus strains via potential stress resistance as well as biocontrol properties in the Qinghai–Tibet Plateau. We found a Bacillus halotolerans strain with a promising ability to withstand harsh environments and which also exhibits an optimistic biocontrol activity against plant pathogens. We revealed the whole genome sequencing and its taxonomic position and elucidated its molecular functions that were responsible for enhancing stress tolerance as well as suppressing plant pathogens at the genetic level. Lastly, we identified this strain harbored the specific genes associated with stresses resistance, biocontrol function, and can be used as a biological agent in the agriculture field. Abstract Due to its topographical position and climatic conditions, the Qinghai–Tibet Plateau possesses abundant microorganism resources. The extremophilic strain KKD1 isolated from Hoh Xil possesses strong stress tolerance, enabling it to propagate under high salinity (13%) and alkalinity (pH 10.0) conditions. In addition, KKD1 exhibits promising biocontrol activity against plant pathogens. To further explore these traits at the genomic level, we performed whole-genome sequencing and analysis. The taxonomic identification according to the average nucleotide identity based on BLAST revealed that KKD1 belongs to Bacillus halotolerans. Genetic screening of KKD1 revealed that its stress resistance mechanism depends on osmotic equilibrium, membrane transportation, and the regulation of ion balance under salt and alkaline stress. The expression of genes involved in these pathways was analyzed using real-time quantitative PCR. The presence of different gene clusters encoding antimicrobial secondary metabolites indicated the various pathways by which KKD1 suppresses phytopathogenic growth. Moreover, the lipopeptides surfactin and fengycin were identified as being significant antifungal components of KKD1. Through comparative genomics analysis, we noticed that KKD1 harbored specific genes involved in stress resistance and biocontrol, thus providing a new perspective on the genomic features of the extremophilic Bacillus species.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
- Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Zhengqi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Yaming Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Ayaz Farzand
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
| | - Xue Yang
- Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Mikhail Semenov
- Department of Soil Biology and Biochemistry, Dokuchaev Soil Science Institute, 119017 Moscow, Russia;
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, 10115 Berlin, Germany
- Nord Reet UG, Marienstr. 27a, 17489 Greifswald, Germany
- Correspondence: (R.B.); (Y.X.); (X.G.)
| | - Yongli Xie
- Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (R.B.); (Y.X.); (X.G.)
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.W.); (R.W.); (Z.W.); (Y.Z.); (Q.G.); (A.F.)
- Correspondence: (R.B.); (Y.X.); (X.G.)
| |
Collapse
|
140
|
Kashiwagi FM, Wendler Miranda B, de Oliveira Pedrosa F, de Souza EM, Müller-Santos M. Control of Gene Expression With Quercetin-Responsive Modular Circuits. Front Bioeng Biotechnol 2021; 9:730967. [PMID: 34604189 PMCID: PMC8481877 DOI: 10.3389/fbioe.2021.730967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Control of gene expression is crucial for several biotechnological applications, especially for implementing predictable and controllable genetic circuits. Such circuits are often implemented with a transcriptional regulator activated by a specific signal. These regulators should work independently of the host machinery, with low gratuitous induction or crosstalk with host components. Moreover, the signal should also be orthogonal, recognized only by the regulator with minimal interference with the host operation. In this context, transcriptional regulators activated by plant metabolites as flavonoids emerge as candidates to control gene expression in bacteria. However, engineering novel circuits requires the characterization of the genetic parts (e.g., genes, promoters, ribosome binding sites, and terminators) in the host of interest. Therefore, we decomposed the QdoR regulatory system of B. subtilis, responsive to the flavonoid quercetin, and reassembled its parts into genetic circuits programmed to have different levels of gene expression and noise dependent on the concentration of quercetin. We showed that only one of the promoters regulated by QdoR worked well in E. coli, enabling the construction of other circuits induced by quercetin. The QdoR expression was modulated with constitutive promoters of different transcriptional strengths, leading to low expression levels when QdoR was highly expressed and vice versa. E. coli strains expressing high and low levels of QdoR were mixed and induced with the same quercetin concentration, resulting in two stable populations expressing different levels of their gene reporters. Besides, we demonstrated that the level of QdoR repression generated different noise levels in gene expression dependent on the concentration of quercetin. The circuits presented here can be exploited in applications requiring adjustment of gene expression and noise using a highly available and natural inducer as quercetin.
Collapse
Affiliation(s)
- Fernanda Miyuki Kashiwagi
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Brenno Wendler Miranda
- Biological Sciences Undergraduate Course, Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
141
|
Lilge L, Vahidinasab M, Adiek I, Becker P, Kuppusamy Nesamani C, Treinen C, Hoffmann M, Morabbi Heravi K, Henkel M, Hausmann R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Microbiologyopen 2021; 10:e1241. [PMID: 34713601 PMCID: PMC8515880 DOI: 10.1002/mbo3.1241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/12/2022] Open
Abstract
Bacillus subtilis is described as a promising production strain for lipopeptides. In the case of B. subtilis strains JABs24 and DSM10T , surfactin and plipastatin are produced. Lipopeptide formation is controlled, among others, by the DegU response regulator. The activating phospho-transfer by the DegS sensor kinase is stimulated by the pleiotropic regulator DegQ, resulting in enhanced DegU activation. In B. subtilis 168, a point mutation in the degQ promoter region leads to a reduction in gene expression. Corresponding reporter strains showed a 14-fold reduced expression. This effect on degQ expression and the associated impact on lipopeptide formation was examined for B. subtilis JABs24, a lipopeptide-producing derivative of strain 168, and B. subtilis wild-type strain DSM10T , which has a native degQ expression. Based on the stimulatory effects of the DegU regulator on secretory protease formation, the impact of degQ expression on extracellular protease activity was additionally investigated. To follow the impact of degQ, a deletion mutant was constructed for DSM10T , while a natively expressed degQ version was integrated into strain JABs24. This allowed strain-specific quantification of the stimulatory effect of degQ expression on plipastatin and the negative effect on surfactin production in strains JABs24 and DSM10T . While an unaffected degQ expression reduced surfactin production in JABs24 by about 25%, a sixfold increase in plipastatin was observed. In contrast, degQ deletion in DSM10T increased surfactin titer by threefold but decreased plipastatin production by fivefold. In addition, although significant differences in extracellular protease activity were detected, no decrease in plipastatin and surfactin produced during cultivation was observed.
Collapse
Affiliation(s)
- Lars Lilge
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Philipp Becker
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chanthiya Kuppusamy Nesamani
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chantal Treinen
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Marius Henkel
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| |
Collapse
|
142
|
He M, Wen J, Yin Y, Wang P. Metabolic engineering of Bacillus subtilis based on genome-scale metabolic model to promote fengycin production. 3 Biotech 2021; 11:448. [PMID: 34631349 DOI: 10.1007/s13205-021-02990-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Fengycin is an important lipopeptide antibiotic that can be produced by Bacillus subtilis. However, the production capacity of the unmodified wild strain is very low. Therefore, a computationally guided engineering method was proposed to improve the fengycin production capacity. First, based on the annotated genome and biochemical information, a genome-scale metabolic model of Bacillus subtilis 168 was constructed. Subsequently, several potential genetic targets were identified through the flux balance analysis and minimization of metabolic adjustment algorithm that can ensure an increase in the production of fengycin. In addition, according to the results predicted by the model, the target genes accA (encoding acetyl-CoA carboxylase), cypC (encoding fatty acid beta-hydroxylating cytochrome P450) and gapA (encoding glyceraldehyde-3-phosphate dehydrogenase) were overexpressed in the parent strain Bacillus subtilis 168. The yield of fengycin was increased by 56.4, 46.6, and 20.5% by means of the overexpression of accA, cypC, and gapA, respectively, compared with the yield from the parent strain. The relationship between the model prediction and experimental results proves the effectiveness and rationality of this method for target recognition and improving fengycin production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02990-7.
Collapse
Affiliation(s)
- Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Ying Yin
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Pan Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
| |
Collapse
|
143
|
The spatial position effect: synthetic biology enters the era of 3D genomics. Trends Biotechnol 2021; 40:539-548. [PMID: 34607694 DOI: 10.1016/j.tibtech.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Microbial cell factories are critical to achieving green biomanufacturing. A position effect occurs when a synthetic gene circuit is expressed from different positions in the chassis strain genome. Here, we propose the concept of the 'spatial position effect,' which uses technologies in 3D genomics to reveal the spatial structure characteristics of the 3D genome of the chassis. On this basis, we propose to rationally design the integration sites of synthetic gene circuits, use reporter genes for preliminary screening, and integrate synthetic gene circuits into promising sites for further experiments. This approach can produce stable and efficient chassis strains for green biomanufacturing. The proposed spatial position effect brings synthetic biology into the era of 3D genomics.
Collapse
|
144
|
Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. A Leap Forward Towards Unraveling Newer Anti-infective Agents from an Unconventional Source: a Draft Genome Sequence Illuminating the Future Promise of Marine Heterotrophic Bacillus sp. Against Drug-Resistant Pathogens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:790-808. [PMID: 34523054 DOI: 10.1007/s10126-021-10064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
During the previous decade, genome-built researches on marine heterotrophic microorganisms displayed the chemical heterogeneity of natural product resources coupled with the efficacies of harnessing the genetic divergence in various strains. Herein, we describe the whole genome data of heterotrophic Bacillus amyloliquefaciens MB6 (MTCC 12,716), isolated from a marine macroalga Hypnea valentiae, a 4,107,511-bp circular chromosome comprising 186 contigs, with 4154 protein-coding DNA sequences and a coding ratio of 86%. Simultaneously, bioactivity-guided purification of the bacterial extract resulted in six polyketide classes of compounds with promising antibacterial activity. Draft genome sequence of B. amyloliquefaciens MB6 unveiled biosynthetic gene clusters (BGCs) engaged in the biosynthesis of polyketide-originated macrolactones with prospective antagonistic activity (MIC ≤ 5 µg/mL) against nosocomial pathogens. Genome analysis manifested 34 putative BGCs necessitated to synthesize biologically active polyketide-originated frameworks or their derivatives. These results provide insights into the genetic basis of heterotrophic B. amyloliquefaciens MTCC 12,716 as a prospective lead for biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Kerala State, Cochin, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India
| | - Rekha Devi Chakraborty
- Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
145
|
Cherepanova EA, Galyautdinov IV, Burkhanova GF, Maksimov IV. Isolation and Identification of Lipopeptides of Bacillus subtilis 26D. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Anast JM, Schmitz-Esser S. Certain Listeria monocytogenes plasmids contribute to increased UVC ultraviolet light stress. FEMS Microbiol Lett 2021; 368:6367057. [PMID: 34498664 PMCID: PMC8457643 DOI: 10.1093/femsle/fnab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Listeria monocytogenes is the causative agent of the highly fatal foodborne disease listeriosis and can persist in food production environments. Recent research highlights the involvement of L. monocytogenes plasmids in different stress response mechanisms, which contribute to its survival in food production facilities. Ultraviolet (UV) light in the UVC spectrum (200–280 nm) is used in food production to control microbial contamination. Although plasmid-encoded UV resistance mechanisms have been described in other bacteria, no research indicates that L. monocytogenes plasmids contribute to the UV stress response. The plasmids of L. monocytogenes strains 6179, 4KSM and R479a are genetically distinct and were utilized to study the roles of plasmids in the UV response. Wild-type and plasmid-cured variant cells were grown to logarithmic or late-stationary phase, plated on agar plates and exposed to UVC for 60 or 90 s, and colony-forming units (CFUs) were determined. CFUs of 6179 and 4KSM, bearing pLM6179 and p4KSM, respectively, were significantly (P-value < 0.05) higher than those of the plasmid-cured strains in both logarithmic and stationary phases. No difference in survival was observed for the R479a strain. Our data show for the first time that certain L. monocytogenes plasmids contribute to the survival of UVC light stress.
Collapse
Affiliation(s)
- Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
147
|
Ouyang X, Hoeksma J, van der Velden G, Beenker WAG, van Triest MH, Burgering BMT, den Hertog J. Berkchaetoazaphilone B has antimicrobial activity and affects energy metabolism. Sci Rep 2021; 11:18774. [PMID: 34548600 PMCID: PMC8455593 DOI: 10.1038/s41598-021-98252-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/01/2021] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial resistance has become one of the major threats to human health. Therefore, there is a strong need for novel antimicrobials with new mechanisms of action. The kingdom of fungi is an excellent source of antimicrobials for this purpose because it encompasses countless fungal species that harbor unusual metabolic pathways. Previously, we have established a library of secondary metabolites from 10,207 strains of fungi. Here, we screened for antimicrobial activity of the library against seven pathogenic bacterial strains and investigated the identity of the active compounds using ethyl acetate extraction, activity-directed purification using HPLC fractionation and chemical analyses. We initially found 280 antimicrobial strains and subsequently identified 17 structurally distinct compounds from 26 strains upon further analysis. All but one of these compounds, berkchaetoazaphilone B (BAB), were known to have antimicrobial activity. Here, we studied the antimicrobial properties of BAB, and found that BAB affected energy metabolism in both prokaryotic and eukaryotic cells. We conclude that fungi are a rich source of chemically diverse secondary metabolites with antimicrobial activity.
Collapse
Affiliation(s)
- Xudong Ouyang
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gisela van der Velden
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter A G Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria H van Triest
- Oncode Institute and Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Oncode Institute and Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands. .,Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
148
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
149
|
From Strain Characterization to Field Authorization: Highlights on Bacillus velezensis Strain B25 Beneficial Properties for Plants and Its Activities on Phytopathogenic Fungi. Microorganisms 2021; 9:microorganisms9091924. [PMID: 34576819 PMCID: PMC8472612 DOI: 10.3390/microorganisms9091924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Agriculture is in need of alternative products to conventional phytopharmaceutical treatments from chemical industry. One solution is the use of natural microorganisms with beneficial properties to ensure crop yields and plant health. In the present study, we focused our analyses on a bacterium referred as strain B25 and belonging to the species Bacillus velezensis (synonym B. amyloliquefaciens subsp. plantarum or B. methylotrophicus), a promising plant growth promoting rhizobacterium (PGPR) and an inhibitor of pathogenic fungi inducing crops diseases. B25 strain activities were investigated. Its genes are well preserved, with their majority being common with other Bacillus spp. strains and responsible for the biosynthesis of secondary metabolites known to be involved in biocontrol and plant growth-promoting activities. No antibiotic resistance genes were found in the B25 strain plasmid. In vitro and in planta tests were conducted to confirm these PGPR and biocontrol properties, showing its efficiency against 13 different pathogenic fungi through antibiosis mechanism. B25 strain also showed good capacities to quickly colonize its environment, to solubilize phosphorus and to produce siderophores and little amounts of auxin-type phytohormones (around 13,051 µg/mL after 32 h). All these findings combined to the fact that B25 demonstrated good properties for industrialization of the production and an environmental-friendly profile, led to its commercialization under market authorization since 2018 in several biostimulant preparations and opened its potential use as a biocontrol agent.
Collapse
|
150
|
Kizhakkekalam VK, Chakraborty K. Marine Macroalga-associated Bacillus amyloliquefaciens as Prospective Probiotic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| | - Kajal Chakraborty
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| |
Collapse
|