101
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
102
|
Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A. Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa. Crit Care Med 2014; 42:48-56. [PMID: 23963124 DOI: 10.1097/ccm.0b013e318298a86f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the differential association of host characteristics, antimicrobial resistance, and type III secretion system virulence of Pseudomonas aeruginosa isolates with respiratory syndromes in hospitalized adult patients. DESIGN Retrospective, cohort study. SETTING Community teaching hospital. PATIENTS Two hundred eighteen consecutive adult patients with respiratory culture positive for P. aeruginosa between January 2005 to January 2010. INTERVENTIONS Medical charts were reviewed to obtain demographic, laboratory, radiographic, and clinical information. Isolates were assayed by polymerase chain reaction for genes encoding the type III secretion system effectors (ExoU, ExoS, and PcrV) and for strain relatedness using randomly amplified polymorphic DNA analysis. Levofloxacin susceptibility was determined by broth microdilution. Patients were grouped by colonization, bronchitis, or pneumonia and were compared for differential risk of developing the clinical syndrome with respect to host and microbial characteristics. MEASUREMENTS AND MAIN RESULTS Half of the study cohort (54%, 117 of 218) had pneumonia, 32% (70 of 218) had bronchitis, and 14% (31 of 218) had colonization; in-hospital mortality was 35%, 11%, and 0%, respectively. Host factors strongly associated with pneumonia development were residence in long-term care facility, healthcare-associated acquisition of P. aeruginosa, higher Acute Physiology and Chronic Health Evaluation II score, presence of enteral feeding tube, mechanical ventilation, and recent history of pneumonia. Fluoroquinolone-resistant (57% vs 34%, 16%; p < 0.0001) and multidrug-resistant (36% vs 26%, 7%; p = 0.0045) strains were more likely to cause pneumonia than bronchitis or colonization, respectively. Analysis of host and microbial factors in a multivariate regression model yielded the combined traits of fluoroquinolone resistance and gene encoding the type III secretion system ExoU effector in P. aeruginosa as the single most significant predictor of pneumonia development. CONCLUSIONS These results suggest that fluoroquinolone-resistant phenotype in a type III secretion system exoU strain background contributes toward the pathogenesis of P. aeruginosa in pneumonia.
Collapse
Affiliation(s)
- Eva Sullivan
- 1Huntington Hospital, Pasadena, CA. 2University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
103
|
The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2014; 2:10. [PMID: 25520826 PMCID: PMC4267601 DOI: 10.1186/2052-0492-2-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/28/2014] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found to contribute to acute lung injury. P. aeruginosa secretes these toxins through the recently defined type III secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins, and regulatory components. In the P. aeruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins, namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S, a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis, the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation. ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the potential to decrease acute lung injury and improve clinical outcome.
Collapse
|
104
|
Toska J, Sun Y, Carbonell DA, Foster ANS, Jacobs MR, Pearlman E, Rietsch A. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates. PLoS One 2014; 9:e86829. [PMID: 24466261 PMCID: PMC3900666 DOI: 10.1371/journal.pone.0086829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/14/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of acute infections. The primary virulence factor that has been linked to clinical disease is the type III secretion system, a molecular syringe that delivers effector proteins directly into host cells. Despite the importance of type III secretion in dictating clinical outcomes and promoting disease in animal models of infections, clinical isolates often do not express the type III secretion system in vitro. Here we screened 81 clinical P. aeruginosa isolates for secretion of type III secretion system substrates by western blot. Non-expressing strains were also subjected to a functional test assaying the ability to intoxicate epithelial cells in vitro, and to survive and cause disease in a murine model of corneal infection. 26 of 81 clinical isolates were found to be type III secretion negative by western blot. 17 of these 26 non-expressing strains were tested for their ability to cause epithelial cell rounding. Of these, three isolates caused epithelial cell rounding in a type III secretion system dependent manner, and one strain was cytotoxic in a T3SS-independent manner. Five T3SS-negative isolates were also tested for their ability to cause disease in a murine model of corneal infection. Of these isolates, two strains caused severe corneal disease in a T3SS-independent manner. Interestingly, one of these strains caused significant disease (inflammation) despite being cleared. Our data therefore show that P. aeruginosa clinical isolates can cause disease in a T3SS-independent manner, demonstrating the existence of novel modifiers of clinical disease.
Collapse
Affiliation(s)
- Jonida Toska
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dalina Alvarez Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Altreisha N. -S. Foster
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
105
|
Rolsma SL, Frank DW. In vitro assays to monitor the activity of Pseudomonas aeruginosa Type III secreted proteins. Methods Mol Biol 2014; 1149:171-84. [PMID: 24818904 PMCID: PMC5860653 DOI: 10.1007/978-1-4939-0473-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa secretes numerous toxins and destructive enzymes that play distinct roles in pathogenesis. The Type III secretion system (T3SS) of Pseudomonas is a system that delivers a subset of toxins directly into the cytoplasm of eukaryotic cells. The secreted effectors include ExoS, ExoT, ExoU, and ExoY. In this chapter, we describe methods to induce T3S expression and measure the enzymatic activities of each effector in in vitro assays. ExoU is a phospholipase and its activity can be measured in a fluorescence-based assay monitoring the cleavage of the fluorogenic substrate, PED6. ExoS and ExoT both possess ADP-ribosyltransferase (ADPRT) and GTPase-activating protein (GAP) activity. ADPRT activity can be assessed by using radiolabeled nicotinamide adenine dinucleotide (NAD(+)) and measuring the covalent incorporation of ADP-ribose into a target protein. GAP activity is measured by the release of radiolabeled phosphate from [γ-(32)P]GTP-bound target proteins. In accordance with recent trends towards reducing the use of radioactivity in the laboratory, alternative assays using fluorescent or biotin-labeled reagents are described. ExoY is a nucleotidyl cyclase; cAMP production stimulated by ExoY can be monitored using reverse-phase HPLC or with commercially available immunological assays.
Collapse
Affiliation(s)
- Stephanie L Rolsma
- Department of Microbiology and Molecular Genetics, Center of Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
106
|
Marshall NC, Finlay BB. Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 2013; 18:137-52. [DOI: 10.1517/14728222.2014.855199] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
107
|
Audia JP, Lindsey AS, Housley NA, Ochoa CR, Zhou C, Toba M, Oka M, Annamdevula NS, Fitzgerald MS, Frank DW, Alvarez DF. In the absence of effector proteins, the Pseudomonas aeruginosa type three secretion system needle tip complex contributes to lung injury and systemic inflammatory responses. PLoS One 2013; 8:e81792. [PMID: 24312357 PMCID: PMC3842252 DOI: 10.1371/journal.pone.0081792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| | - Ashley S. Lindsey
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nicole A. Housley
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Courtney R. Ochoa
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Michie Toba
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Masahiko Oka
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Naga S. Annamdevula
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, United States of America
| | - Meshann S. Fitzgerald
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Diego F. Alvarez
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| |
Collapse
|
108
|
Novotny MJ, Bridge DR, Martin KH, Weed SA, Wysolmerski RB, Olson JC. Metastatic MTLn3 and non-metastatic MTC adenocarcinoma cells can be differentiated by Pseudomonas aeruginosa. Biol Open 2013; 2:891-900. [PMID: 24143275 PMCID: PMC3773335 DOI: 10.1242/bio.20133632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Cancer patients are known to be highly susceptible to Pseudomonas aeruginosa (Pa) infection, but it remains unknown whether alterations at the tumor cell level can contribute to infection. This study explored how cellular changes associated with tumor metastasis influence Pa infection using highly metastatic MTLn3 cells and non-metastatic MTC cells as cell culture models. MTLn3 cells were found to be more sensitive to Pa infection than MTC cells based on increased translocation of the type III secretion effector, ExoS, into MTLn3 cells. Subsequent studies found that higher levels of ExoS translocation into MTLn3 cells related to Pa entry and secretion of ExoS within MTLn3 cells, rather than conventional ExoS translocation by external Pa. ExoS includes both Rho GTPase activating protein (GAP) and ADP-ribosyltransferase (ADPRT) enzyme activities, and differences in MTLn3 and MTC cell responsiveness to ExoS were found to relate to the targeting of ExoS-GAP activity to Rho GTPases. MTLn3 cell migration is mediated by RhoA activation at the leading edge, and inhibition of RhoA activity decreased ExoS translocation into MTLn3 cells to levels similar to those of MTC cells. The ability of Pa to be internalized and transfer ExoS more efficiently in association with Rho activation during tumor metastasis confirms that alterations in cell migration that occur in conjunction with tumor metastasis contribute to Pa infection in cancer patients. This study also raises the possibility that Pa might serve as a biological tool for dissecting or detecting cellular alterations associated with tumor metastasis.
Collapse
Affiliation(s)
- Matthew J Novotny
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center , Morgantown, WV 26506-9177 , USA
| | | | | | | | | | | |
Collapse
|
109
|
Evaluation of the Pathogenesis of Pseudomonas aeruginosa's Flagellum Before and After Flagellar Gene Knockdown by Small Interfering RNAs(siRNA). Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.5401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
110
|
Roux D, Ricard JD. Nouveautés et perspectives thérapeutiques des pneumonies acquises sous ventilation mécanique à Pseudomonas aeruginosa. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-013-0679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
111
|
Schiavolin L, Meghraoui A, Cherradi Y, Biskri L, Botteaux A, Allaoui A. Functional insights into theShigellatype III needle tip IpaD in secretion control and cell contact. Mol Microbiol 2013; 88:268-82. [DOI: 10.1111/mmi.12185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Lionel Schiavolin
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Alaeddine Meghraoui
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Youness Cherradi
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Latéfa Biskri
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Anne Botteaux
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Abdelmounaaïm Allaoui
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| |
Collapse
|
112
|
Ledizet M, Murray TS, Puttagunta S, Slade MD, Quagliarello VJ, Kazmierczak BI. The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients. PLoS One 2012; 7:e49578. [PMID: 23152923 PMCID: PMC3495863 DOI: 10.1371/journal.pone.0049578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that frequently causes hospital acquired colonization and infection. Accurate identification of host and bacterial factors associated with infection could aid treatment decisions for patients with P. aeruginosa cultured from clinical sites. METHODS We identified a prospective cohort of 248 hospitalized patients with positive P. aeruginosa cultures. Clinical data were analyzed to determine whether an individual met predefined criteria for infection versus colonization. P. aeruginosa isolates were tested for the expression of multiple phenotypes previously associated with virulence in animal models and humans. Logistic regression models were constructed to determine the degree of association between host and bacterial factors with P. aeruginosa infection of the bloodstream, lung, soft tissue and urinary tract. RESULTS One host factor (i.e. diabetes mellitus), and one bacterial factor, a Type 3 secretion system positive phenotype, were significantly associated with P. aeruginosa infection in our cohort. Subgroup analysis of patients with P. aeruginosa isolated from the urinary tract revealed that the presence of a urinary tract catheter or stent was an additional factor for P. aeruginosa infection. CONCLUSIONS Among hospitalized patients with culture-documented P. aeruginosa, infection is more likely to be present in those with diabetes mellitus and those harboring a Type 3 secretion positive bacterial strain.
Collapse
Affiliation(s)
- Michel Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Thomas S. Murray
- Department of Pediatrics (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sailaja Puttagunta
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Martin D. Slade
- Department of Occupational & Environmental Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Quagliarello
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
113
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
114
|
Abstract
The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 μM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 μM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.
Collapse
|
115
|
|
116
|
Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med 2012; 38:2007-16. [DOI: 10.1007/s00134-012-2699-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
|
117
|
François B, Luyt CE, Dugard A, Wolff M, Diehl JL, Jaber S, Forel JM, Garot D, Kipnis E, Mebazaa A, Misset B, Andremont A, Ploy MC, Jacobs A, Yarranton G, Pearce T, Fagon JY, Chastre J. Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa. Crit Care Med 2012; 40:2320-6. [DOI: 10.1097/ccm.0b013e31825334f6] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
118
|
DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R, Camara MM, Venkatraman V, Macgill RS, Lin J, Wang Q, Keller AE, Bonnell JC, Tomich M, Jermutus L, McCarthy MP, Melnick DA, Suzich JA, Stover CK. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. ACTA ACUST UNITED AC 2012; 209:1273-87. [PMID: 22734046 PMCID: PMC3405507 DOI: 10.1084/jem.20120033] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A human antibody facilitates opsonophagocytic killing, inhibits attachment of Pseudomonas aeruginosa, and exerts protective effects in several animal models of P. aeruginosa infection. Pseudomonas aeruginosa is a leading cause of hospital-associated infections in the seriously ill, and the primary agent of chronic lung infections in cystic fibrosis patients. A major obstacle to effective control of P. aeruginosa infections is its intrinsic resistance to most antibiotic classes, which results from chromosomally encoded drug-efflux systems and multiple acquired resistance mechanisms selected by years of aggressive antibiotic therapy. These factors demand new strategies and drugs to prevent and treat P. aeruginosa infections. Herein, we describe a monoclonal antibody (mAb) selection strategy on whole P. aeruginosa cells using single-chain variable fragment phage libraries derived from healthy individuals and patients convalescing from P. aeruginosa infections. This approach enabled identification of mAbs that bind three distinct epitopes on the product of the Psl. This exopolysaccharide is important for P. aeruginosa attachment to mammalian cells, and for the formation and maintenance of biofilms produced by nonmucoid and mucoid P. aeruginosa isolates. Functional screens revealed that mAbs to one epitope exhibit superior activity in opsonophagocytic killing and cell attachment assays, and confer significant protection in multiple animal models. Our results indicate that Psl is an accessible serotype-independent surface feature and promising novel protective antigen for preventing P. aeruginosa infections. Furthermore, our mAb discovery strategy holds promise for application to other bacterial pathogens.
Collapse
|
119
|
Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, Lory S, Priebe GP. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186:420-7. [PMID: 22723292 DOI: 10.1164/rccm.201202-0182oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine candidates. OBJECTIVES We describe a strategy to identify Th17-stimulating protein antigens of Pseudomonas aeruginosa to assess their efficacy as vaccines against pneumonia. METHODS Using a library of in vitro transcribed and translated P. aeruginosa proteins, we screened for Th17-stimulating antigens by coculturing the library proteins with splenocytes from mice immunized with a live-attenuated P. aeruginosa vaccine that is protective via Th17-based immunity. We measured antibody and Th17 responses after intranasal immunization of mice with the purified proteins mixed with the Th17 adjuvant curdlan, and we tested the protective efficacy of vaccination in a murine model of acute pneumonia. MEASUREMENTS AND MAIN RESULTS The proteins PopB, FpvA, FptA, OprL, and PilQ elicited strong IL-17 secretion in the screen, and purified versions of PopB, FpvA, and OprL stimulated high IL-17 production from immune splenocytes. Immunization with PopB, which is a highly conserved component of the type III secretion system and a known virulence factor, elicited Th17 responses and also enhanced clearance of P. aeruginosa from the lung and spleen after challenge. PopB-immunized mice were protected from lethal pneumonia in an antibody-independent, IL-17-dependent manner. CONCLUSIONS Screening for Th17-stimulating protein antigens identified PopB as a novel and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Weihui Wu
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Examining the role of actin-plasma membrane association in Pseudomonas aeruginosa infection and type III secretion translocation in migratory T24 epithelial cells. Infect Immun 2012; 80:3049-64. [PMID: 22689823 DOI: 10.1128/iai.00231-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa targets wounded epithelial barriers, but the cellular alteration that increases susceptibility to P. aeruginosa infection remains unclear. This study examined how cell migration contributes to the establishment of P. aeruginosa infections using (i) highly migratory T24 epithelial cells as a cell culture model, (ii) mutations in the type III secretion (T3S) effector ExoS to manipulate P. aeruginosa infection, and (iii) high-resolution immunofluorescent microscopy to monitor ExoS translocation. ExoS includes both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities, and P. aeruginosa cells expressing wild-type ExoS preferentially bound to the leading edge of T24 cells, where ExoS altered leading-edge architecture and actin anchoring in conjunction with interrupting T3S translocation. Inactivation of ExoS GAP activity allowed P. aeruginosa to be internalized and secrete ExoS within T24 cells, but as with wild-type ExoS, translocation was limited in association with disruption of actin anchoring. Inactivation of ExoS ADPRT activity resulted in significantly enhanced T3S translocation by P. aeruginosa cells that remained extracellular and in conjunction with maintenance of actin-plasma membrane association. Infection with P. aeruginosa expressing ExoS lacking both GAP and ADPRT activities resulted in the highest level of T3S translocation, and this occurred in conjunction with the entry and alignment of P. aeruginosa and ExoS along actin filaments. Collectively, in using ExoS mutants to modulate and visualize T3S translocation, we were able to (i) confirm effector secretion by internalized P. aeruginosa, (ii) differentiate the mechanisms underlying the effects of ExoS GAP and ADPRT activities on P. aeruginosa internalization and T3S translocation, (iii) confirm that ExoS ADPRT activity targeted a cellular substrate that interrupted T3S translocation, (iv) visualize the ability of P. aeruginosa and ExoS to align with actin filaments, and (v) demonstrate an association between actin anchoring at the leading edge of T24 cells and the establishment of P. aeruginosa infection. Our studies also highlight the contribution of ExoS to the opportunistic nature of P. aeruginosa infection through its ability to exert cytotoxic effects that interrupt T3S translocation and P. aeruginosa internalization, which in turn limit the P. aeruginosa infectious process.
Collapse
|
121
|
|
122
|
|
123
|
Pseudomonas aeruginosa bacteremia. Crit Care Med 2012; 40:1354-5. [DOI: 10.1097/ccm.0b013e31823c8b55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
124
|
Orientation of Pseudomonas aeruginosa ExsA monomers bound to promoter DNA and base-specific contacts with the P(exoT) promoter. J Bacteriol 2012; 194:2573-85. [PMID: 22408167 DOI: 10.1128/jb.00107-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExsA is a transcriptional activator of the Pseudomonas aeruginosa type III secretion system (T3SS) and a member of the AraC/XylS protein family. Each of the 10 ExsA-dependent promoter regions that define the T3SS regulon has two adjacent binding sites for monomeric ExsA. Whereas the promoter-proximal sites (binding site 1) contain highly conserved GnC and TGnnA sequences that are separated by ∼10 bp, the promoter-distal sites (binding site 2) share no obvious sequence similarity to each other or to the binding site 1 consensus. In the present study, we used footprinting with Fe-BABE (a protein-labeling reagent that can be conjugated to cysteine residues) to demonstrate that the two ExsA monomers bind to the P(exsC), P(exsD), P(exoT), and P(pcrG) promoters in a head-to-tail orientation. The footprinting data further indicate that the conserved GnC and TGnnA sequences constitute binding site 1. When bound to site 1, the first helix-turn-helix (HTH) motif of ExsA interacts with the conserved GnC sequence, and the second HTH interacts at or near the TGnnA sequences. Genetic data using the P(exoT) promoter indicate that residues L198 and T199 in the first HTH motif of ExsA contact the guanine in the GnC sequence and that residue K202, also in the first HTH motif, contacts the cytosine. Likewise, evidence is presented that residues Q248, Y250, T252, and R257 located in the second HTH motif contribute to the recognition of the TGnnA sequence. These combined data define interactions of ExsA with site 1 on the P(exoT) promoter and provide insight into the nature of the interactions involved in recognition of binding site 2.
Collapse
|
125
|
Cruz AC, Neves BC, Higa LYS, Folescu T, Marques EA, Milagres LG. Type III apparatus of Pseudomonas aeruginosa as a tool to diagnose pulmonary infection in cystic fibrosis patients. APMIS 2012; 120:622-7. [DOI: 10.1111/j.1600-0463.2012.02888.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/10/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Aline C. Cruz
- Department of Microbiology, Immunology and Parasitology; State University of Rio de Janeiro; Rio de Janeiro; RJ; Brazil
| | - Bianca C. Neves
- Department of Biochemistry; Institute of Chemistry; Federal University of Rio de Janeiro; Rio de Janeiro; RJ; Brazil
| | - Laurinda Y. S. Higa
- Department of Pulmonology; Fernandes Figueira Institute - FIOCRUZ; Rio de Janeiro; RJ; Brazil
| | - Tânia Folescu
- Department of Pulmonology; Fernandes Figueira Institute - FIOCRUZ; Rio de Janeiro; RJ; Brazil
| | - Elizabeth A. Marques
- Department of Microbiology, Immunology and Parasitology; State University of Rio de Janeiro; Rio de Janeiro; RJ; Brazil
| | - Lucimar G. Milagres
- Department of Microbiology, Immunology and Parasitology; State University of Rio de Janeiro; Rio de Janeiro; RJ; Brazil
| |
Collapse
|
126
|
PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis 2011; 31:1837-45. [PMID: 22187351 DOI: 10.1007/s10096-011-1509-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
The type III secretion system (TTSS) of Pseudomonas aeruginosa, associated with acute infection, facilitates the direct injection of cytotoxins into the host cell cytoplasm. Mab166, a murine monoclonal antibody against PcrV, a protein located at the tip of the injectisome, has demonstrated efficacy against P. aeruginosa infection, resulting in reduced lung injury and increased survival in murine models of infection. We hypothesised that the administration of Mab166 in combination with an antibiotic would further improve the survival of P. aeruginosa-infected mice. A murine model of P. aeruginosa acute infection, three clinically relevant antibiotics (ciprofloxacin, tobramycin and ceftazidime) and the Mab166 antibody were used for this study. Consistently, compared to other treatment groups (antibiotic or antibody administered in isolation), the combination of Mab166 and antibiotic significantly improved the survival of mice infected with three times the lethal dose (LD(90)) of the highly cytotoxic ExoU-secreting strain, PA103. This synergistic effect was primarily due to enhanced bactericidal effect and protection against lung injury, which prevented bacterial dissemination to other organs. Hence, the combination of Mab166 with antibiotic administration provides a new, more effective strategy against P. aeruginosa airway infection, especially when large numbers of highly virulent strains are present.
Collapse
|
127
|
Sharma A, Krause A, Worgall S. Recent developments for Pseudomonas vaccines. HUMAN VACCINES 2011; 7:999-1011. [PMID: 21941090 DOI: 10.4161/hv.7.10.16369] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with Pseudomonas aeruginosa are a major health problem for immune-compromised patients and individuals with cystic fibrosis. A vaccine against: P. aeruginosa has long been sought after, but is so far not available. Several vaccine candidates have been assessed in experimental animals and humans, which include sub-cellular fractions, capsule components, purified and recombinant proteins. Unique characteristics of the host and the pathogen have complicated the vaccine development. This review summarizes the current state of vaccine development for this ubiquitous pathogen, in particular to provide mucosal immunity against infections of the respiratory tract in susceptible individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | |
Collapse
|
128
|
Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Quenee L, Ader F, Lancel S, Courcol R, Guery BP, Faure K. Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia*. Crit Care Med 2011; 39:2113-20. [DOI: 10.1097/ccm.0b013e31821e899f] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
129
|
Romano FB, Rossi KC, Sava CG, Holzenburg A, Clerico EM, Heuck AP. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes. Biochemistry 2011; 50:7117-31. [PMID: 21770428 PMCID: PMC3171962 DOI: 10.1021/bi200905x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Translocation of bacterial toxins or effectors into host cells using the type III secretion (T3S) system is a conserved mechanism shared by many Gram-negative pathogens. Pseudomonas aeruginosa injects different proteins across the plasma membrane of target cells, altering the normal metabolism of the host. Protein translocation presumably occurs through a proteinaceous transmembrane pore formed by two T3S secreted protein translocators, PopB and PopD. Unfolded translocators are secreted through the T3S needle prior to insertion into the target membrane. Purified PopB and PopD form pores in model membranes. However, their tendency to form heterogeneous aggregates in solution had hampered the analysis of how these proteins undergo the transition from a denatured state to a membrane-inserted state. Translocators were purified as stable complexes with the cognate chaperone PcrH and isolated from the chaperone using 6 M urea. We report here the assembly of stable transmembrane pores by dilution of urea-denatured translocators in the presence of membranes. PopB and PopD spontaneously bound liposomes containing anionic phospholipids and cholesterol in a pH-dependent manner as observed by two independent assays, time-resolved Förster resonance energy transfer and sucrose-step gradient ultracentrifugation. Using Bodipy-labeled proteins, we found that PopB interacts with PopD on the membrane surface as determined by excitation energy migration and fluorescence quenching. Stable transmembrane pores are more efficiently assembled at pH <5.0, suggesting that acidic residues might be involved in the initial membrane binding and/or insertion. Altogether, the experimental setup described here represents an efficient method for the reconstitution and analysis of membrane-inserted translocators.
Collapse
Affiliation(s)
- Fabian B. Romano
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kyle C. Rossi
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Christos G. Sava
- Microscopy and Imaging Center, Texas A&M University, College Station, TX 77843, USA
| | - Andreas Holzenburg
- Microscopy and Imaging Center, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alejandro P. Heuck
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
130
|
Filloux A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol 2011; 2:155. [PMID: 21811488 PMCID: PMC3140646 DOI: 10.3389/fmicb.2011.00155] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022] Open
Abstract
Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements.
Collapse
Affiliation(s)
- Alain Filloux
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London London, UK
| |
Collapse
|
131
|
Sato H, Frank DW. Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011; 2:142. [PMID: 21772833 PMCID: PMC3131520 DOI: 10.3389/fmicb.2011.00142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa possesses a type III secretion system (T3SS) to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells. P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia spp. The needle-tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas), IpaD (Shigella), SipD (Salmonella), BipD (Burkholderia), EspA (EPEC, EHEC), Bsp22 (Bordetella), with additional proteins identified from various Gram-negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multi-functional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin Milwaukee, WI, USA
| | | |
Collapse
|
132
|
Jyot J, Balloy V, Jouvion G, Verma A, Touqui L, Huerre M, Chignard M, Ramphal R. Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J Infect Dis 2011; 203:1369-77. [PMID: 21502078 DOI: 10.1093/infdis/jir045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of toxins secreted by the type II secretion system (T2SS) of Pseudomonas aeruginosa during lung infection has been uncertain despite decades of research. METHODS Using a model of pneumonia in Toll-like receptor (TLR) 2,4(-/-) mice, we reexamined the role of the T2SS system. Flagellin-deficient mutants of P. aeruginosa, with mutations in the T2SS and/or T3SS, were used to infect mice. Mice were followed up for survival, with some killed at different intervals to study bacterial clearance, inflammatory responses, and lung pathology. RESULTS Strains carrying either secretion system were lethal for mice. Double mutants were avirulent. The T3SS(+) strains killed mice within a day, and the T2SS(+) strains killed them later. Mice infected with a strain that had only the T2SS were unable to eradicate the organism from the lungs, whereas those infected with a T2SS-T3SS double deletion were able to clear this mutant. Death caused by the T2SS(+) strain was accompanied by a >50-fold increase in bacterial counts and higher numbers of viable intracellular bacteria. CONCLUSIONS The T2SS of P. aeruginosa may play a role in death from pneumonia, but its action is delayed. These data suggest that antitoxin strategies against this organism will require measures against the toxins secreted by both T2SS and T3SS.
Collapse
Affiliation(s)
- Jeevan Jyot
- Department of Medicine, University of Florida, Gainesville, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR. Pertussis: a matter of immune modulation. FEMS Microbiol Rev 2011; 35:441-74. [DOI: 10.1111/j.1574-6976.2010.00257.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
134
|
Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa. PLoS One 2011; 6:e18356. [PMID: 21479247 PMCID: PMC3066235 DOI: 10.1371/journal.pone.0018356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/27/2011] [Indexed: 12/14/2022] Open
Abstract
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication.
Collapse
|
135
|
Lindestam Arlehamn CS, Evans TJ. Pseudomonas aeruginosa pilin activates the inflammasome. Cell Microbiol 2011; 13:388-401. [PMID: 20955240 PMCID: PMC3429865 DOI: 10.1111/j.1462-5822.2010.01541.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 01/14/2023]
Abstract
IL-1β is produced from inactive pro-IL-1β by activation of caspase-1 brought about by a multi-subunit protein platform called the inflammasome. Many bacteria can trigger inflammasome activity through flagellin activation of the host protein NLRC4. However, strains of the common human pathogen Pseudomonas aeruginosa lacking flagellin can still activate the inflammasome. We set out to identify what non-flagellin components could produce this activation. Using mass spectroscopy, we identified an inflammasome-activating factor from P. aeruginosa as pilin, the major component of the type IV bacterial pilus. Purified pilin introduced into mouse macrophages by liposomal delivery activated caspase-1 and led to secretion of mature IL-1β, as did recombinant pilin purified from Escherichia coli. This was dependent on caspase-1 but not on the host inflammasome proteins NLRC4, NLRP3 or ASC. Mutants of P. aeruginosa strain PA103 lacking pilin did not activate the inflammasome following infection of macrophages with live bacteria. Type III secretion remained intact in the absence of pili, showing this was not due to a lack of effector delivery. Our observations show pilin is a novel activator of the inflammasome in addition to flagellin and the recently described PrgJ protein family, the basal body rod component of the type III apparatus.
Collapse
Affiliation(s)
- Cecilia S Lindestam Arlehamn
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK.
| | - Tom J Evans
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK.
| |
Collapse
|
136
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
137
|
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2010; 278:414-26. [PMID: 21182592 DOI: 10.1111/j.1742-4658.2010.07974.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.
Collapse
Affiliation(s)
- Pierre-Jean Matteï
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075 (CNRS/CEA/UJF), Grenoble, France
| | | | | | | | | | | |
Collapse
|
138
|
Gendrin C, Sarrazin S, Bonnaffé D, Jault JM, Lortat-Jacob H, Dessen A. Hijacking of the pleiotropic cytokine interferon-γ by the type III secretion system of Yersinia pestis. PLoS One 2010; 5:e15242. [PMID: 21179438 PMCID: PMC3001473 DOI: 10.1371/journal.pone.0015242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague.
Collapse
Affiliation(s)
- Claire Gendrin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Stéphane Sarrazin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - David Bonnaffé
- Laboratoire de Chimie Organique Multifonctionnelle, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud 11, Orsay, France
| | - Jean-Michel Jault
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
- * E-mail:
| |
Collapse
|
139
|
Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010; 192:5709-17. [PMID: 20817772 DOI: 10.1128/jb.00526-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute, invasive infections in immunocompromised individuals and chronic, persistent respiratory infections in individuals with cystic fibrosis (CF). The differential progression of acute or chronic infections involves the production of distinct sets of virulence factors. P. aeruginosa strains isolated from patients with acute respiratory infection are generally nonencapsulated and express a variety of invasive virulence factors, including flagella, the type III secretion system (T3SS), type IV pili (TFP), and multiple secreted toxins and degradative enzymes. Strains isolated from chronically infected CF patients, however, typically lack expression of invasive virulence factors and have a mucoid phenotype due to the production of an alginate capsule. The mucoid phenotype results from loss-of-function mutations in mucA, which encodes an anti-sigma factor that normally prevents alginate synthesis. Here, we report that the cyclic AMP/Vfr-dependent signaling (CVS) pathway is defective in mucA mutants and that the defect occurs at the level of vfr expression. The CVS pathway regulates the expression of multiple invasive virulence factors, including T3SS, exotoxin A, protease IV, and TFP. We further demonstrate that mucA-dependent CVS inhibition involves the alternative sigma factor AlgU (AlgT) and the response regulator AlgR but does not depend on alginate production. Our findings show that a single naturally occurring mutation leads to inverse regulation of virulence factors involved in acute and persistent infections. These results suggest that mucoid conversion and inhibition of invasive virulence determinants may both confer a selective advantage to mucA mutant strains of P. aeruginosa in the CF lung.
Collapse
|
140
|
Vogelaar NJ, Jing X, Robinson HH, Schubot FD. Analysis of the crystal structure of the ExsC.ExsE complex reveals distinctive binding interactions of the Pseudomonas aeruginosa type III secretion chaperone ExsC with ExsE and ExsD. Biochemistry 2010; 49:5870-9. [PMID: 20536183 DOI: 10.1021/bi100432e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa, like many Gram-negative bacterial pathogens, requires its type III secretion system (T3SS) to facilitate acute infections. In P. aeruginosa, the expression of all T3SS-related genes is regulated by the transcriptional activator ExsA. A signaling cascade involving ExsA and three additional proteins, ExsC, ExsD, and ExsE, directly ties the upregulation of ExsA-mediated transcription to the activation of the type III secretion apparatus. In order to characterize the events underlying the signaling process, the crystal structure of the T3SS chaperone ExsC in complex with its cognate effector ExsE has been determined. The structure reveals critical contacts that mediate the interactions between these two proteins. Particularly striking is the presence of two Arg-X-Val-X-Arg motifs in ExsE that form identical interactions along opposite sides of an ExsC dimer. The structure also provides insights into the interactions of ExsC with the antiactivator protein ExsD. It was shown that the amino-terminal 46 residues of ExsD are sufficient for ExsC binding. On the basis of these findings, a new model for the ExsC.ExsD complex is proposed to explain its distinctive 2:2 stoichiometry and why ExsC displays a weaker affinity for ExsD than for ExsE.
Collapse
Affiliation(s)
- Nancy J Vogelaar
- Department of Biological Sciences, Life Science I, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, Virginia 24060, USA
| | | | | | | |
Collapse
|
141
|
Lee PC, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol 2010; 75:924-41. [PMID: 20487288 DOI: 10.1111/j.1365-2958.2009.07027.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa uses a type III secretion system to inject protein effectors into a targeted host cell. Effector secretion is triggered by host cell contact. How effector secretion is prevented prior to cell contact is not well understood. In all secretion systems studied to date, the needle tip protein is required for controlling effector secretion, but the mechanism by which needle tip proteins control effector secretion is unclear. Here we present data that the P. aeruginosa needle tip protein, PcrV, controls effector secretion by assembling into a functional needle tip complex. PcrV likely does not simply obstruct the secretion channel because the pore-forming translocator proteins can still be secreted while effector secretion is repressed. This finding suggests that PcrV controls effector secretion by affecting the conformation of the apparatus, shifting it from the default, effector secretion 'on' conformation, to the effector secretion 'off' conformation. We also present evidence that PcrG, which can bind to PcrV and is also involved in controlling effector export, is cytoplasmic and that the interaction between PcrG and PcrV is not required for effector secretion control by either protein. Taken together, these data allow us to propose a working model for control of effector secretion by PcrG and PcrV.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
142
|
Abstract
OBJECTIVE Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. DESIGN Prospective, randomized, controlled study. SETTING Research laboratory. SUBJECTS One hundred twenty male CD40 rats. INTERVENTIONS To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. MEASUREMENTS Static and dynamic lung mechanics and hemodynamics were measured continuously. MAIN RESULTS Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. CONCLUSIONS Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.
Collapse
|
143
|
Lynch SV, Flanagan JL, Sawa T, Fang A, Baek MS, Rubio-Mills A, Ajayi T, Yanagihara K, Hirakata Y, Kohno S, Misset B, Nguyen JC, Wiener-Kronish JP. Polymorphisms in the Pseudomonas aeruginosa type III secretion protein, PcrV - implications for anti-PcrV immunotherapy. Microb Pathog 2010; 48:197-204. [PMID: 20211240 DOI: 10.1016/j.micpath.2010.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
The type III secretion system of Pseudomonas aeruginosa, responsible for acute infection, is composed of over twenty proteins that facilitate cytotoxin injection directly into host cells. Integral to this process is production and secretion of PcrV. Administration of a recently developed, anti-PcrV immunoglobulin, either as a therapeutic or prophylactic has previously demonstrated efficacy against laboratory strains of P. aeruginosa in a murine model. To determine if this therapy is universally applicable to a variety of P. aeruginosa clinical isolates, genetic heterogeneity of pcrV was analyzed among strains collected from three geographically distinct regions; United States, France and Japan. Sequence analysis of PcrV demonstrated limited variation among the clinical isolates examined. Strains were grouped according to the presence of non-synonymous single nucleotide polymorphisms. Representative isolates from each mutant group were examined for the ability of anti-PcrV to bind the protein secreted by these strains. The protective effect of anti-PcrV IgG against each strain was determined using an epithelial cell line cytotoxicity assay. The majority of strains tested demonstrated reduced cytotoxicity in the presence of anti-PcrV IgG. This study provides insights into the natural sequence variability of PcrV and an initial indication of the amino acid residues that appear to be conserved across strains. It also demonstrates the protective effect of anti-PcrV immunotherapy against a multitude of P. aeruginosa strains from diverse global regions with a variety of mutations in PcrV.
Collapse
Affiliation(s)
- Susan V Lynch
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Activation of ExoU phospholipase activity requires specific C-terminal regions. J Bacteriol 2010; 192:1801-12. [PMID: 20097856 DOI: 10.1128/jb.00904-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that utilizes a type III secretion system to subvert host innate immunity. Of the 4 known effector proteins injected into eukaryotic cells, ExoS and ExoU are cytotoxic. The cytotoxic phenotype of ExoU depends on the enzymatic activity of the patatin-like phospholipase A(2) domain localized to the N-terminal half of the protein. Amino acid residues located within the C-terminal region of ExoU are postulated to be required for trafficking or localization to the plasma membrane of eukaryotic cells. This report describes the characterization of a transposon-based linker insertion library in ExoU. Utilizing an unbiased screening approach and sensitive methods for measuring enzymatic activity, we identified regions of ExoU that are critical for activation of the phospholipase activity by the only known cofactor, SOD1. Insertions at D572 and L618 reduced the rate of substrate cleavage. Enzymatic activity could be restored to almost parental levels when SOD1 concentrations were increased, suggesting that the linker insertion disrupted the interaction between ExoU and SOD1. An enzyme-linked immunosorbent assay (ELISA)-based binding test was developed to measure ExoU-SOD1 binding. These experiments suggest that ExoU activation by SOD1 is hampered by linker insertion. ExoU derivatives harboring minimal phospholipase activity retained biological activity in tissue culture assays. These proteins affected primarily cellular architecture in a manner similar to that of ExoT. Our studies suggest that conformational changes in ExoU are facilitated by SOD1. Importantly, the level of phospholipase activity influences the biological outcome of ExoU intoxication.
Collapse
|
145
|
Bridge DR, Novotny MJ, Moore ER, Olson JC. Role of host cell polarity and leading edge properties in Pseudomonas type III secretion. MICROBIOLOGY-SGM 2009; 156:356-373. [PMID: 19910414 DOI: 10.1099/mic.0.033241-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type III secretion (T3S) functions in establishing infections in a large number of Gram-negative bacteria, yet little is known about how host cell properties might function in this process. We used the opportunistic pathogen Pseudomonas aeruginosa and the ability to alter host cell sensitivity to Pseudomonas T3S to explore this problem. HT-29 epithelial cells were used to study cellular changes associated with loss of T3S sensitivity, which could be induced by treatment with methyl-beta-cyclodextrin or perfringolysin O. HL-60 promyelocytic cells are innately resistant to Pseudomonas T3S and were used to study cellular changes occurring in response to induction of T3S sensitivity, which occurred following treatment with phorbol esters. Using both cell models, a positive correlation was observed between eukaryotic cell adherence to tissue culture wells and T3S sensitivity. In examining the type of adhesion process linked to T3S sensitivity in HT-29 cells, a hierarchical order of protein involvement was identified that paralleled the architecture of leading edge (LE) focal complexes. Conversely, in HL-60 cells, induction of T3S sensitivity coincided with the onset of LE properties and the development of actin-rich projections associated with polarized cell migration. When LE architecture was examined by immunofluorescent staining for actin, Rac1, IQ-motif-containing GTPase-activating protein 1 (IQGAP1) and phosphatidylinositol 3 kinase (PI3 kinase), intact LE structure was found to closely correlate with host cell sensitivity to P. aeruginosa T3S. Our model for host cell involvement in Pseudomonas T3S proposes that cortical actin polymerization at the LE alters membrane properties to favour T3S translocon function and the establishment of infections, which is consistent with Pseudomonas infections targeting wounded epithelial barriers undergoing cell migration.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| | - Matthew J Novotny
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| | - Elizabeth R Moore
- Laboratory of Intracellular Parasites, NIAID, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Joan C Olson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| |
Collapse
|
146
|
Moriyama K, Wiener-Kronish JP, Sawa T. Protective effects of affinity-purified antibody and truncated vaccines againstPseudomonas aeruginosaV-antigen in neutropenic mice. Microbiol Immunol 2009; 53:587-94. [DOI: 10.1111/j.1348-0421.2009.00165.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
147
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
148
|
El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2009; 64:229-238. [DOI: 10.1093/jac/dkp201] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
149
|
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
|
150
|
Functional domains of ExsA, the transcriptional activator of the Pseudomonas aeruginosa type III secretion system. J Bacteriol 2009; 191:3811-21. [PMID: 19376850 DOI: 10.1128/jb.00002-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to evade phagocytosis and damage eukaryotic cells. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. These family members generally consist of an approximately 100-amino acid carboxy-terminal domain (CTD) with two helix-turn-helix DNA binding motifs and an approximately 200-amino acid amino-terminal domain (NTD) with known functions including oligomerization and ligand binding. In the present study, we show that the CTD of ExsA binds to ExsA-dependent promoters in vitro and activates transcription from ExsA-dependent promoters both in vitro and in vivo. Despite possessing these activities, the CTD lacks the cooperative binding properties observed for full-length ExsA at the P(exsC) promoter. In addition, the CTD is unaffected by the negative regulatory activity of ExsD, an inhibitor of ExsA activity. Binding studies confirm that ExsD interacts directly with the NTD of ExsA. Our data are consistent with a model in which a single ExsA molecule first binds to a high-affinity site on the P(exsC) promoter. Protein-protein interactions mediated by the NTD then recruit an additional ExsA molecule to a second site on the promoter to form a complex capable of stimulating wild-type levels of transcription. These findings provide important insight into the mechanisms of transcriptional activation by ExsA and inhibition of ExsA activity by ExsD.
Collapse
|