101
|
Yuan H, Xi R, Chen C, Deng M. Differential network analysis via lasso penalized D-trace loss. Biometrika 2017. [DOI: 10.1093/biomet/asx049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
102
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
103
|
Yang Q, Feng M, Ma X, Li H, Xie W. Gene expression profile comparison between colorectal cancer and adjacent normal tissues. Oncol Lett 2017; 14:6071-6078. [PMID: 29113248 DOI: 10.3892/ol.2017.6915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/13/2016] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to compare gene expression profiles between colorectal cancer and adjacent normal tissues, and to perform a preliminarily analysis of the key genes and underlying molecular mechanisms implicated in colorectal cancer development. Gene expression microarray chips were used to screen genes that were differently expressed between colorectal cancer and adjacent normal tissues. Approximately 1,183 genes were differentially expressed in cancer tissues compared with adjacent normal tissues (P≤0.05; fold difference, >2.0), of which 570 genes were upregulated and 613 genes were downregulated. In total, 6 upregulated genes, including keratin 23, collagen type X α1, collagen type XI α1, cell migration-inducing hyaluronan-binding protein, transforming growth factor-β1 and V-Myc avian myelocytomatosis viral oncogene homolog, and 2 downregulated genes, including channel α subunit 7 and EPH receptor A7, were selected and validated using reverse transcription-quantitative polymerase chain reaction, which exhibited results that were consistent with the microarray analysis. These 1,183 differentially expressed genes were further classified into 71 groups based on their functions using gene ontology and pathway analyses. Kyoto Encyclopedia of Genes and Genomes analysis of these upregulated or downregulated genes suggested that 23 signaling pathways were involved. The present study preliminarily screened for and identified key genes and signaling pathways that may be closely associated with colorectal cancer development. However, subsequent gene function studies are required to verify these findings.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Hubei Cancer Hospital, Wuhan, Hubei 430071, P.R. China
| | - Maohui Feng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiang Ma
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huachi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Xie
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
104
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
105
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
106
|
Kitazawa M, Hatta T, Ogawa K, Fukuda E, Goshima N, Natsume T. Determination of Rate-Limiting Factor for Formation of Beta-Catenin Destruction Complexes Using Absolute Protein Quantification. J Proteome Res 2017; 16:3576-3584. [PMID: 28810742 DOI: 10.1021/acs.jproteome.7b00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wnt/β-catenin signaling plays important roles in both ontogenesis and development. In the absence of a Wnt stimulus, β-catenin is degraded by a multiprotein "destruction complex" that includes Axin, APC, GSK3B, and FBXW11. Although the key molecules required for transducing Wnt signals have been identified, a quantitative understanding of this pathway has been lacking. Here, we calculated the absolute number of β-catenin destruction complexes by absolute protein quantification using LC-MS/MS. Similar amounts of destruction complex-constituting proteins and β-catenin interacted, and the number of destruction complexes was calculated to be about 1468 molecules/cell. We demonstrated that the calculated number of destruction complexes was valid for control of the β-catenin destruction rate under steady-state conditions. Interestingly, APC had the minimum expression level among the destruction complex components at about 2233 molecules/cell, and this number approximately corresponded to the calculated number of destruction complexes. Decreased APC expression by siRNA transfection decreased the number of destruction complexes, resulting in β-catenin accumulation and stimulation of the transcriptional activity of T-cell factor. Taken together, our results suggest that the amount of APC expression is the rate-limiting factor for the constitution of β-catenin destruction complexes.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomohisa Hatta
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koji Ogawa
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Eriko Fukuda
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Naoki Goshima
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Reserch Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
107
|
DeRycke MS, Gunawardena S, Balcom JR, Pickart AM, Waltman LA, French AJ, McDonnell S, Riska SM, Fogarty ZC, Larson MC, Middha S, Eckloff BW, Asmann YW, Ferber MJ, Haile RW, Gallinger S, Clendenning M, Rosty C, Win AK, Buchanan DD, Hopper JL, Newcomb PA, Le Marchand L, Goode EL, Lindor NM, Thibodeau SN. Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Mol Genet Genomic Med 2017; 5:553-569. [PMID: 28944238 PMCID: PMC5606870 DOI: 10.1002/mgg3.317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mutations in several genes predispose to colorectal cancer. Genetic testing for hereditary colorectal cancer syndromes was previously limited to single gene tests; thus, only a very limited number of genes were tested, and rarely those infrequently mutated in colorectal cancer. Next-generation sequencing technologies have made it possible to sequencing panels of genes known and suspected to influence colorectal cancer susceptibility. METHODS Targeted sequencing of 36 known or putative CRC susceptibility genes was conducted for 1231 CRC cases from five subsets: (1) Familial Colorectal Cancer Type X (n = 153); (2) CRC unselected by tumor immunohistochemical or microsatellite stability testing (n = 548); (3) young onset (age <50 years) (n = 333); (4) proficient mismatch repair (MMR) in cases diagnosed at ≥50 years (n = 68); and (5) deficient MMR CRCs with no germline mutations in MLH1, MSH2, MSH6, or PMS2 (n = 129). Ninety-three unaffected controls were also sequenced. RESULTS Overall, 29 nonsense, 43 frame-shift, 13 splice site, six initiator codon variants, one stop codon, 12 exonic deletions, 658 missense, and 17 indels were identified. Missense variants were reviewed by genetic counselors to determine pathogenicity; 13 were pathogenic, 61 were not pathogenic, and 584 were variants of uncertain significance. Overall, we identified 92 cases with pathogenic mutations in APC,MLH1,MSH2,MSH6, or multiple pathogenic MUTYH mutations (7.5%). Four cases with intact MMR protein expression by immunohistochemistry carried pathogenic MMR mutations. CONCLUSIONS Results across case subsets may help prioritize genes for inclusion in clinical gene panel tests and underscore the issue of variants of uncertain significance both in well-characterized genes and those for which limited experience has accumulated.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Shanaka Gunawardena
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Jessica R. Balcom
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Angela M. Pickart
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Lindsey A. Waltman
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Amy J. French
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Shannon McDonnell
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Shaun M. Riska
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Zachary C. Fogarty
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Melissa C. Larson
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Sumit Middha
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | | | - Yan W. Asmann
- Department of Health Sciences ResearchMayo ClinicJacksonvilleFlorida
| | - Matthew J. Ferber
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Robert W. Haile
- Division of OncologyDepartment of MedicineStanford UniversityStanfordCalifornia
| | | | - Mark Clendenning
- Colorectal Oncogenomics GroupGenetic Epidemiology LaboratoryDepartment of PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Christophe Rosty
- Colorectal Oncogenomics GroupGenetic Epidemiology LaboratoryDepartment of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Envoi Specialist PathologistsHerstonQueenslandAustralia
- School of MedicineUniversity of QueenslandHerstonQueenslandAustralia
| | - Aung K. Win
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
- Genetic Medicine and Familial Cancer CentreThe Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics GroupGenetic Epidemiology LaboratoryDepartment of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
- Genetic Medicine and Familial Cancer CentreThe Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - John L. Hopper
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Polly A. Newcomb
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Loic Le Marchand
- Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHawaii
| | - Ellen L. Goode
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | | | | |
Collapse
|
108
|
Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169:985-999. [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016] [Citation(s) in RCA: 3054] [Impact Index Per Article: 381.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
Collapse
|
109
|
|
110
|
Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ. MYC Deregulation in Primary Human Cancers. Genes (Basel) 2017; 8:genes8060151. [PMID: 28587062 PMCID: PMC5485515 DOI: 10.3390/genes8060151] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Katherine Ashley Hickman
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Cornelia Redel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Diana Resetca
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Aaliya Tamachi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - William B Tu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
111
|
Kretzschmar K, Clevers H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev Biol 2017; 428:273-282. [PMID: 28526587 DOI: 10.1016/j.ydbio.2017.05.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult stem cells self-renew and replenish differentiated cells in various organs and tissues throughout a mammal's life. Over the last 25 years an ever-growing body of knowledge has unraveled the essential regulation of adult mammalian epithelia by the canonical Wnt signaling with its key intracellular effector β-catenin. In this review, we discuss the principles of the signaling pathway and its role in adult epithelial stem cells of the intestine and skin during homeostasis and tumorigenesis. We further highlight the research that led to the identification of new stem cell markers and methods to study adult stem cells ex vivo.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, UMC Utrecht, 3584 CG Utrecht, The Netherlands; Princess Máxima Centre for Pediatric Oncology, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
112
|
Kamps R, Brandão RD, Bosch BJVD, Paulussen ADC, Xanthoulea S, Blok MJ, Romano A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci 2017; 18:ijms18020308. [PMID: 28146134 PMCID: PMC5343844 DOI: 10.3390/ijms18020308] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Rita D Brandão
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Bianca J van den Bosch
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Aimee D C Paulussen
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Marinus J Blok
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| |
Collapse
|
113
|
Fang Z, Deng J, Zhang L, Xiang X, Yu F, Chen J, Feng M, Xiong J. TRIM24 promotes the aggression of gastric cancer via the Wnt/β-catenin signaling pathway. Oncol Lett 2017; 13:1797-1806. [PMID: 28454326 DOI: 10.3892/ol.2017.5604] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2016] [Indexed: 01/05/2023] Open
Abstract
Tripartite motif-containing 24 (TRIM24) is important in tumor development and progression. However, the role of TRIM24 in gastric cancer (GC) and the mechanisms underlying the dysregulated expression of TRIM24 remain to be fully elucidated. In the present study, it was found that TRIM24 was frequently overexpressed in GC cell lines and tissues compared with normal controls, as determined by western blotting and immunohistochemical staining. The high nuclear expression of TRIM24 was correlated with the depth of invasion (P=0.007), tumor-node-metastasis stage (P=0.005), and lymph node metastasis (P=0.027), and shorter overall survival rates (P=0.010) in patients with GC. Small interfering RNA-mediated knockdown of TRIM24 inhibited cell proliferation, colony formation, migration, invasion and the nuclear accumulation of β-catenin, and it delayed cell cycle progression and induced apoptosis. In addition, the expression of TRIM24 was positively correlated with that of β-catenin in GC tissues. TRIM24 knockdown decreased the expression of Wnt/β-catenin target genes, whereas the activation of Wnt/β-catenin signaling by lithium chloride reversed the effects of TRIM24 knockdown. Taken together, these data suggested that TRIM24 was a prognostic or potential therapeutic target for patients with GC and was important in the activation of the Wnt/β-catenin pathway during the progression of GC.
Collapse
Affiliation(s)
- Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
114
|
Bettington M, Walker N, Rosty C, Brown I, Clouston A, McKeone D, Pearson SA, Leggett B, Whitehall V. Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut 2017; 66:97-106. [PMID: 26475632 DOI: 10.1136/gutjnl-2015-310456] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sessile serrated adenomas (SSAs) are the precursors of at least 15% of colorectal carcinomas, but their biology is incompletely understood. We performed a clinicopathological and molecular analysis of a large number of the rarely observed SSAs with dysplasia/carcinoma to better define their features and the pathways by which they progress to carcinoma. DESIGN A cross-sectional analysis of 137 SSAs containing regions of dysplasia/carcinoma prospectively collected at a community GI pathology practice was conducted. Samples were examined for BRAF and KRAS mutations, the CpG island methylator phenotype (CIMP) and immunostained for MLH1, p53, p16, β-catenin and 0-6-methylguanine DNA methyltransferase (MGMT). RESULTS The median polyp size was 9 mm and 86.5% were proximal. Most were BRAF mutated (92.7%) and 94.0% showed CIMP. Mismatch repair deficiency, evidenced by loss of MLH1 (74.5%) is associated with older age (76.7 versus 71.0; p<0.0029), female gender (70% versus 36%; p<0.0008), proximal location (91% versus 72%; p<0.02), CIMP (98% versus 80%; p<0.02) and lack of aberrant p53 (7% versus 34%; p<0.001) when compared with the mismatch repair-proficient cases. Loss of p16 (43.1%) and gain of nuclear β-catenin (55.5%) were common in areas of dysplasia/cancer, irrespective of mismatch repair status. CONCLUSIONS SSAs containing dysplasia/carcinoma are predominantly small (<10 mm) and proximal. The mismatch repair status separates these lesions into distinct clinicopathological subgroups, although WNT activation and p16 silencing are common to both. Cases with dysplasia occur at a similar age to cases with carcinoma. This, together with the rarity of these 'caught in the act' lesions, suggests a rapid transition to malignancy following a long dwell time as an SSA without dysplasia.
Collapse
Affiliation(s)
- Mark Bettington
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Neal Walker
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Christophe Rosty
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Ian Brown
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Andrew Clouston
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Diane McKeone
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sally-Ann Pearson
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Barbara Leggett
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Vicki Whitehall
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
115
|
Coster AD, Thorne CA, Wu LF, Altschuler SJ. Examining Crosstalk among Transforming Growth Factor β, Bone Morphogenetic Protein, and Wnt Pathways. J Biol Chem 2016; 292:244-250. [PMID: 27895117 PMCID: PMC5217683 DOI: 10.1074/jbc.m116.759654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
The integration of morphogenic signals by cells is not well understood. A growing body of literature suggests increasingly complex coupling among classically defined pathways. Given this apparent complexity, it is difficult to predict where, when, or even whether crosstalk occurs. Here, we investigated pairs of morphogenic pathways, previously reported to have multiple points of crosstalk, which either do not share (TGFβ and Wnt/β-catenin) or share (TGFβ and bone morphogenetic protein (BMP)) core signaling components. Crosstalk was measured by the ability of one morphogenic pathway to cross-activate core transcription factors and/or target genes of another morphogenic pathway. In contrast to previous studies, we found a surprising absence of crosstalk between TGFβ and Wnt/β-catenin. Further, we did not observe expected cross-pathway inhibition in between TGFβ and BMP, despite the fact that both use (or could compete) for the shared component SMAD4. Critical to our assays was a separation of timescales, which helped separate crosstalk due to initial signal transduction from subsequent post-transcriptional feedback events. Our study revealed fewer (and different) inter-morphogenic pathway crosstalk connections than expected; even pathways that share components can be insulated from one another.
Collapse
Affiliation(s)
- Adam D Coster
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Curtis A Thorne
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Lani F Wu
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Steven J Altschuler
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
116
|
Ye X, Attaie AB. Genetic Basis of Nonsyndromic and Syndromic Tooth Agenesis. J Pediatr Genet 2016; 5:198-208. [PMID: 27895972 DOI: 10.1055/s-0036-1592421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Human dentition development is a long and complex process which involves a series of reciprocal and sequential interactions between the embryonic stomodeal epithelium and the underlying neural crest-derived mesenchyme. Despite environment disturbances, tooth development is predominantly genetically controlled. To date, more than 200 genes have been identified in tooth development. These genes implied in various signaling pathways such as the bone morphogenetic protein, fibroblast growth factor, sonic hedgehog homolog, ectodysplasin A, wingless-type MMTV integration site family (Wnt), and transform growth factor pathways. Mutations in any of these strictly balanced signaling cascades may cause arrested odontogenesis and/or other dental defects. This article aims to review current knowledge about the genetic mechanisms responsible for selective nonsyndromic tooth agenesis in humans and to present a detailed summary of syndromes with hypodontia as regular features and their causative genes.
Collapse
Affiliation(s)
- Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States; School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ali B Attaie
- Departments of Pediatrics and Dental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
117
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
118
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulation of CTNNB1 signaling in gastric cancer and stem cells. World J Gastrointest Oncol 2016; 8:592-598. [PMID: 27574551 PMCID: PMC4980649 DOI: 10.4251/wjgo.v8.i8.592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed. It may be possible that stem cells transform into gastric cancer cells, possibly through the involvement of a molecule alteration and signaling mechanism. In this review article, we focus on the role of catenin beta 1 (CTNNB1 or β-catenin) and describe the regulation of CTNNB1 signaling in gastric cancer and stem cells.
Collapse
|
119
|
Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: How they gut it out. Dev Biol 2016; 420:239-250. [PMID: 27521455 DOI: 10.1016/j.ydbio.2016.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract is characterized by a self-renewing epithelium fueled by adult stem cells residing at the bottom of the intestinal crypt and gastric glands. Their activity and proliferation is strongly dependent on complex signaling pathways involving other crypt/gland cells as well as surrounding stromal cells. In recent years organoids are becoming increasingly popular as a new and powerful tool to study developmental or other biological processes. Organoids retain morphological and molecular patterns of the tissue they are derived from, are self-organizing, relatively simple to handle and accessible to genetic engineering. This review focuses on the developmental processes and signaling molecules involved in epithelial homeostasis and how a profound knowledge of these mechanisms allowed the establishment of a three dimensional organoid culture derived from adult gastrointestinal stem cells.
Collapse
Affiliation(s)
- Sebastian R Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniel E Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
120
|
Sun X, Suo J, Yan J. Immunotherapy in human colorectal cancer: Challenges and prospective. World J Gastroenterol 2016; 22:6362-6372. [PMID: 27605872 PMCID: PMC4968118 DOI: 10.3748/wjg.v22.i28.6362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Human colorectal cancer (CRC) is the third most commonly diagnosed malignancies and the prognosis for patients with recurrent or metastatic disease is extremely poor. Although new chemotherapeutic regimen improves survival rates, therapy with better efficacy and less adverse effects is drastically needed. Immunotherapy has been investigated in human CRC for decades with limited success. However, recent developments of immunotherapy, particularly immune checkpoint inhibitor therapy, have achieved promising clinical benefits in many types of cancer and revived the hope for utilizing such therapy in human CRC. In this review, we will discuss important immunological landscape within the CRC microenvironment and introduce immunoscore system to better describe immunophenotyping in CRC. We will also discuss different immunotherapeutic approaches currently utilized in different phases of clinical trials. Some of those completed or ongoing trials are summarized. Finally, we provide a brief prospective on the future human CRC immunotherapy.
Collapse
|
121
|
Silva P, Albuquerque C, Lage P, Fontes V, Fonseca R, Vitoriano I, Filipe B, Rodrigues P, Moita S, Ferreira S, Sousa R, Claro I, Nobre Leitão C, Chaves P, Dias Pereira A. Serrated polyposis associated with a family history of colorectal cancer and/or polyps: The preferential location of polyps in the colon and rectum defines two molecular entities. Int J Mol Med 2016; 38:687-702. [PMID: 27430658 PMCID: PMC4990292 DOI: 10.3892/ijmm.2016.2666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Serrated polyposis (SPP) is characterized by the development of multiple serrated polyps and an increased predisposition to colorectal cancer (CRC). In the present study, we aimed to characterize, at a clinical and molecular level, a cohort of SPP patients with or without a family history of SPP and/or polyps/CRC (SPP-FHP/CRC). Sixty-two lesions from 12 patients with SPP-FHP/CRC and 6 patients with sporadic SPP were included. The patients with SPP-FHP/CRC presented with an older mean age at diagnosis (p=0.027) and a more heterogeneous histological pattern of lesions (p=0.032) than the patients with sporadic SPP. We identified two molecular forms of SPP-FHP/CRC, according to the preferential location of the lesions: proximal/whole-colon or distal colon. Mismatch repair (MMR) gene methylation [mutS homolog 6 (MSH6)/mutS homolog 3 (MSH3)] or loss of heterozygosity (LOH) of D2S123 (flanking MSH6) were detected exclusively in the former (p=3.0×10−7), in most early lesions. Proximal/whole-colon SPP-FHP/CRC presented a higher frequency of O-6-methylguanine-DNA methyltransferase (MGMT) methylation/LOH, microsatel-lite instability (MSI) and Wnt mutations (19/29 vs. 7/17; 16/23 vs. 1/14, p=2.2×10−4; 15/26 vs. 2/15, p=0.006; 14/26 vs. 4/20, p=0.02) but a lower frequency of B-raf proto-oncogene, serine/threonine kinase (BRAF) mutations (7/30 vs. 12/20, p=0.0089) than the distal form. CRC was more frequent in cases of Kirsten rat sarcoma viral oncogene homolog (KRAS)-associated proximal/whole-colon SPP-FHP/CRC than in the remaining cases (4/4 vs. 1/8, p=0.01). Thus, SPP-FHP/CRC appears to be a specific entity, presenting two forms, proximal/whole-colon and distal, which differ in the underlying tumor initiation pathways. Early MGMT and MMR gene deficiency in the former may underlie an inherited susceptibility to genotoxic stress.
Collapse
Affiliation(s)
- Patrícia Silva
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Pedro Lage
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Vanessa Fontes
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Ricardo Fonseca
- Pathology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Inês Vitoriano
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Bruno Filipe
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Paula Rodrigues
- Familial Cancer Risk Clinic, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Susana Moita
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Sara Ferreira
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Rita Sousa
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Isabel Claro
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Carlos Nobre Leitão
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Paula Chaves
- Pathology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - António Dias Pereira
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| |
Collapse
|
122
|
Fujiwara M, Kato S, Niwa Y, Suzuki T, Tsuchiya M, Sasazawa Y, Dohmae N, Simizu S. C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells. FEBS Lett 2016; 590:2639-49. [DOI: 10.1002/1873-3468.12274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Miho Fujiwara
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Shintaro Kato
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yuki Niwa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Miyu Tsuchiya
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yukiko Sasazawa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Siro Simizu
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| |
Collapse
|
123
|
Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 2016; 30:3271-3284. [PMID: 27335371 DOI: 10.1096/fj.201600502r] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.-Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
124
|
S100A4 in Cancer Metastasis: Wnt Signaling-Driven Interventions for Metastasis Restriction. Cancers (Basel) 2016; 8:cancers8060059. [PMID: 27331819 PMCID: PMC4931624 DOI: 10.3390/cancers8060059] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aberrant activity of Wnt signaling is an early step in the transformation of normal intestinal cells to malignant tissue, leading to more aggressive tumors, and eventually metastases. In colorectal cancer (CRC), metastasis accounts for about 90% of patient deaths, representing the most lethal event during the course of the disease and is directly linked to patient survival, critically limiting successful therapy. This review focuses on our studies of the metastasis-inducing gene S100A4, which we identified as transcriptional target of β-catenin. S100A4 increased migration and invasion in vitro and metastasis in mice. In patient CRC samples, high S100A4 levels predict metastasis and reduced patient survival. Our results link pathways important for tumor progression and metastasis: the Wnt signaling pathway and S100A4, which regulates motility and invasiveness. S100A4 suppression by interdicting Wnt signaling has potential for therapeutic intervention. As proof of principle, we applied S100A4 shRNA systemically and prevented metastasis in mice. Furthermore, we identified small molecule inhibitors from high-throughput screens of pharmacologically active compounds employing an S100A4 promoter-driven reporter. Best hits act, as least in part, via intervening in the Wnt pathway and restricted metastasis in mouse models. We currently translate our findings on restricting S100A4-driven metastasis into clinical practice. The repositioned FDA-approved drug niclosamide, targeting Wnt signaling, is being tested in a prospective phase II clinical trial for treatment of CRC patients. Our assay for circulating S100A4 transcripts in patient blood is used to monitor treatment success.
Collapse
|
125
|
Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling. PLoS One 2016; 11:e0155743. [PMID: 27218469 PMCID: PMC4878796 DOI: 10.1371/journal.pone.0155743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active) and pathophysiological (hyperactive) WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin) is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors), cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation) and hyperactive (GSK3 inhibition) signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development.
Collapse
|
126
|
Hu BR, Fairey AS, Madhav A, Yang D, Li M, Groshen S, Stephens C, Kim PH, Virk N, Wang L, Martin SE, Erho N, Davicioni E, Jenkins RB, Den RB, Xu T, Xu Y, Gill IS, Quinn DI, Goldkorn A. AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth. Prostate 2016; 76:597-608. [PMID: 26771938 PMCID: PMC7455032 DOI: 10.1002/pros.23151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 12/31/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence. METHODS Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth. RESULTS Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth. CONCLUSIONS Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies.
Collapse
Affiliation(s)
- Brian R. Hu
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Adrian S. Fairey
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Anisha Madhav
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Dongyun Yang
- Department of Preventive Medicine, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | - Meng Li
- Health Sciences Bioinformatics Core, USC Keck School of Medicine, Los Angeles, California
| | - Susan Groshen
- Department of Preventive Medicine, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | | | - Philip H. Kim
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Navneet Virk
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Lina Wang
- Department of Pathology, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | - Sue Ellen Martin
- Department of Pathology, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | | | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tong Xu
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Yucheng Xu
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Inderbir S. Gill
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David I. Quinn
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
127
|
Yue H, Liang J, Yang K, Hua B, Bian Z. Functional analysis of a novel missense mutation in AXIN2 associated with non-syndromic tooth agenesis. Eur J Oral Sci 2016; 124:228-33. [PMID: 27090353 DOI: 10.1111/eos.12273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
Tooth agenesis is a congenital anomaly frequently seen in humans. Several genes have been associated with non-syndromic tooth agenesis, including msh homeobox 1 (MSX1), paired box 9 (PAX9), axis inhibition protein 2 (AXIN2), ectodysplasin A (EDA), and wingless-type MMTV integration site family member 10A (WNT10A). In this study, we investigated a Chinese family with non-syndromic tooth agenesis. A novel missense mutation (c.C1978T) in AXIN2 was identified in affected members. The mutation results in a His660Tyr substitution located between the Axin beta-catenin binding domain and the DIX domain of the axis inhibition protein 2 (AXIN2). We analysed this novel AXIN2 mutant, together with two reported AXIN2 mutants [c.1966C>T (p.Arg656Stop) and c.1994delG (p.Leu688Stop)] that cause colorectal cancer with and without oligodontia, to study the effect of the mutant p.His660Tyr on the Wnt/β-catenin signaling pathway and to compare the molecular pathogenesis of different AXIN2 mutants in tooth agenesis and carcinogenesis. Further in vitro experiments indicated that the mutant p.His660Tyr caused inhibition of the Wnt/β-catenin pathway, and the mutants p.Arg656Stop and p.Leu688Stop resulted in over-activation of the Wnt/β-catenin pathway. In line with previous AXIN2 mutation studies, we suggest that AXIN2 mutations with different levels of severity may have distinct effects on the Wnt pathway and the phenotype of disease. Our study provides functional evidence supporting the notion that both inhibition and over-activation of the Wnt pathway may lead to tooth agenesis.
Collapse
Affiliation(s)
- Haitang Yue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, Hospital and School of Stomatology, Wuhan University, Wuhan, China
| | - Kai Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, Hospital and School of Stomatology, Wuhan University, Wuhan, China
| | - Bo Hua
- Department of Endodontics, Dental Centre in Hankou Outpatient Department, Hospital and School of Stomatology, Wuhan University, Wuhan, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
128
|
WU XUEFANG, LUO FENG, LI JINBANG, ZHONG XUEYUN, LIU KUNPING. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol 2016; 48:1333-40. [PMID: 26820603 PMCID: PMC4777596 DOI: 10.3892/ijo.2016.3360] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/01/2016] [Indexed: 12/27/2022] Open
Abstract
Aberrant Wnt signaling pathway is associated with a wide array of tumor types and plays an important role in the drug resistance of cancer stem cells (CSCs). To explore the effects and mechanism of WNT signaling pathway inhibitor XAV939 on drug resistance in colon cancer cells, the colon cancer cells SW480 and SW620 were treated with 5-fluorouracil (5-FU)/cisplatin (DDP) alone or combined with XAV939. Cell cycle distribution, apoptosis level and the percentage of CD133+ cells were detected by flow cytometry. The protein expression of Axin, β-catenin, EpCAM, TERT and DCAMKL-1 was detected by western blotting. XAV939 upregulated Axin , decreased the total and nuclei of β-catenin in SW480 and SW620 cells. Furthermore, XAV939 significantly downregulated the CSC markers EpCAM, TERT and DCAMKL-1 in SW480 cells, as well as EpCAM in SW620 cells. No significant difference was found in the apoptosis of SW480 and SW620 cells with XAV939 treatment, but XAV939 significantly increased apoptosis induced by 5-FU/DDP in SW480 cells, whereas, the effects were slight in SW620 cells. Collectively, we show for the first time that the WNT signaling pathway inhibitor XAV939 was able to significantly increase the apoptosis induced by 5-FU/DDP, accompanied by the protein expression level alternation of β-catenin, Axin and CSC markers in colon cancer cells. Axin, an important component of Wnt/β-catenin signaling pathway could be a potential molecular target for reversing multidrug resistance in colon cancer.
Collapse
Affiliation(s)
- XUEFANG WU
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - FENG LUO
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - JINBANG LI
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| | - XUEYUN ZHONG
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - KUNPING LIU
- Department of Pathology, Qingyuan People's Hospital, Jinan University, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
129
|
Abstract
AXIN2, an important regulator in Wnt/β-catenin signaling pathway, takes part in regulating cell proliferation, cytometaplasia, migration, apoptosis and other important functions, has showed close relations with the development of liver cancer, colon cancer, lung cancer, breast cancer and so on. The epigenetic regulation provides new insights for further exploring the pathogenesis of tumor. In this paper, the roles of AXIN2 in tumorigenesis, AXIN2 methylation, ubiquitination and siRNA/RNA regulation will be reviewed.
Collapse
|
130
|
Ginsenoside Rh2 inhibits hepatocellular carcinoma through β-catenin and autophagy. Sci Rep 2016; 6:19383. [PMID: 26783250 PMCID: PMC4725994 DOI: 10.1038/srep19383] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, with a very poor prognosis. There is an urgent need for an effective therapy for HCC. Ginsenoside Rh2 (GRh2) has been shown to significantly inhibit growth of some types of cancer, whereas its effects on HCC have not been examined. Here, we treated human HCC cells with different doses of GRh2, and found that GRh2 dose-dependently reduced HCC viability, in either CCK-8 assay or MTT assay. The effects of GRh2 on the cancer stem cells (CSCs)-like cells were determined by aldefluor flow cytometry and by tumor sphere formation, showing that GRh2 dose-dependently decreased the number of these CSCs-like cells in HCC. Autophagy-associated protein and β-catenin level were measured in GRh2-treated HCC cells by Western blot, showing that GRh2 increased autophagy and inhibited β-catenin signaling. Expression of short hairpin small interfering RNA (shRNA) for Atg7 in HCC cells completely abolished the effects of GRh2 on β-catenin and cell viability, while overexpression of β-catenin abolished the effects of GRh2 on autophagy and cell viability. Together, our data suggest that GRh2 may inhibit HCC cell growth, possibly through a coordinated autophagy and β-catenin signaling.
Collapse
|
131
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
132
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
133
|
Arafa MA, Farhat K. Colorectal Cancer in the Arab World - Screening Practices and Future Prospects. Asian Pac J Cancer Prev 2015; 16:7425-30. [DOI: 10.7314/apjcp.2015.16.17.7425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
134
|
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:303-13. [PMID: 26592459 DOI: 10.1016/j.bbamcr.2015.11.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.
Collapse
Affiliation(s)
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Franz Oswald
- University Medical Center Ulm, Department of Internal Medicine I, Ulm, Germany
| | | |
Collapse
|
135
|
Wemmert S, Willnecker V, Kulas P, Weber S, Lerner C, Berndt S, Wendler O, Schick B. Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas. Tumour Biol 2015; 37:5539-49. [PMID: 26572152 DOI: 10.1007/s13277-015-4422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
Juvenile angiofibromas (JAs) are benign fibro-vascular tumors occurring nearly exclusively in adolescent males. Even less is known about this rare tumor entity, alterations affecting the Wnt-pathway seem to play a pivotal role in tumor biology as activating CTNNB1 mutations have been detected. However, the knowledge of Wnt-pathway changes is still limited. Therefore, we aimed to determine in JAs further insight into Wnt/β-catenin pathway components. In our present study, genetic alterations of the Wnt-pathway members CTNNB1, APC, GSK3β, and Axin2 detected by metaphase comparative genomic hybridization (CGH) were shown to result in elevated transcript levels in the majority of JA samples compared to nasal mucosa stroma (p < 0.001, p = 0.001, p = 0.046, and p = 0.006, respectively). Additionally, amplifications of CTNNB1 were validated by fluorescence in situ hybridization (FISH) and genomic qPCR. Moreover, our mutation analysis detected already known mutations as well as, to the best of our knowledge, mutations and an interstitial deletion of CTNNB1 not described in JAs before. Additionally, a so far unknown transcribed Axin2 splice variant was found, but no further Axin2 mutations. Taken together, our current study supports the importance of aberrant Wnt-signaling as a common event in JAs, most likely by the observed genetic alterations driven by mutations, interstitial deletions but also amplifications of CTNNB1 contributing to the stabilization of β-catenin.
Collapse
Affiliation(s)
- Silke Wemmert
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.
| | - Vivienne Willnecker
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Philipp Kulas
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Stefanie Weber
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Cornelia Lerner
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Sabrina Berndt
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Olaf Wendler
- Experimental Otorhinolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Bernhard Schick
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| |
Collapse
|
136
|
Yun SI, Kim HH, Yoon JH, Park WS, Hahn MJ, Kim HC, Chung CH, Kim KK. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol Oncol 2015; 9:1834-1851. [PMID: 26189775 PMCID: PMC5528720 DOI: 10.1016/j.molonc.2015.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022] Open
Abstract
β-catenin is a key signal transducer in the canonical WNT pathway and is negatively regulated by ubiquitin-dependent proteolysis. Through screening of various deubiquitinating enzymes (DUBs), we identified ubiquitin specific protease 4 (USP4) as a candidate for β-catenin-specific DUB. The effects of USP4 overexpression or knockdown suggested that USP4 positively controls the stability of β-catenin and enhances β-catenin-regulated transcription. Domain mapping results revealed that the C-terminal catalytic domain is responsible for β-catenin binding and nuclear transport. Examination of colon cancer tissues from patients revealed a correlation between elevated expression levels of USP4 and β-catenin. Consistent with this correlation, USP4 knockdown in HCT116, a colon cancer cell line, reduced invasion and migration activity. These observations indicate that USP4 acts as a positive regulator of the WNT/β-catenin pathway by deubiquitination and facilitates nuclear localization of β-catenin. Therefore, we propose that USP4 is a potential target for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710, South Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | - Hee Cheol Kim
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710, South Korea.
| |
Collapse
|
137
|
Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA, Lieu CH. Targeting the WNT Signaling Pathway in Cancer Therapeutics. Oncologist 2015; 20:1189-98. [PMID: 26306903 PMCID: PMC4591954 DOI: 10.1634/theoncologist.2015-0057] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023] Open
Abstract
The WNT signaling cascade is integral in numerous biological processes including embryonic development, cell cycle regulation, inflammation, and cancer. Hyperactivation of WNT signaling secondary to alterations to varying nodes of the pathway have been identified in multiple tumor types. These alterations converge into increased tumorigenicity, sustained proliferation, and enhanced metastatic potential. This review seeks to evaluate the evidence supporting the WNT pathway in cancer, the therapeutic strategies in modulating this pathway, and potential challenges in drug development.
Collapse
Affiliation(s)
- David Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Keith Wells
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - John Arcaroli
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Chad Vanderbilt
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Dara L Aisner
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Wells A Messersmith
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Christopher H Lieu
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology and Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
138
|
Anwar M, Kochhar R, Singh R, Bhatia A, Vaiphei K, Mahmood A, Mahmood S. Frequent activation of the β-catenin gene in sporadic colorectal carcinomas: A mutational & expression analysis. Mol Carcinog 2015; 55:1627-1638. [PMID: 26373808 DOI: 10.1002/mc.22414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/02/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
β-catenin (CTNNB1), an oncogene/onco-protein and an adhesion molecule is a key effector in colorectal cancer (CRC). Its activation, and subsequent up-regulation of Wnt-signaling, is an important event in the development of certain human cancers including CRC. Mutations in the β-catenin gene in the region of serine-threonine glycogen kinase (GSK)-3β phosphorylation target sites have been identified in colorectal cancer in humans. In the current study, we investigated 60 sporadic colorectal adenocarcinomas along with adjoining and normal mucosa cases in humans for β-catenin mutations. Thirteen of sixty colorectal tumors from humans had point mutations with a frequency of 21.66% at codons 24, 26, 27, 32, 34, 35, 41, 42,43, 46, 49, 54, 55, or 67 sites which are mutated in colorectal cancer and some of these sites in other cancers. Thus, there appears to be a key involvement of β-catenin activation in human colorectal carcinogenesis. mRNA expression analysis using q-Real Time PCR showed 21.5-fold up-regulation of β-catenin mRNA in tumor tissue compared to normal and adjoining mucosa. Protein expression analysis using immunohistochemistry, confocal microscopy, and Western blot confirmed aberrant accumulation of β-catenin protein along the nucleus and cytoplasm following mutation. The observed mutations and up-regulation of mRNA in tumors, and the increased expression of β-catenin protein in CRC suggest that these alterations are early and prognostic events in sporadic colorectal carcinogenesis in humans. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.,Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajinder Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kim Vaiphei
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Safrun Mahmood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
139
|
Song L, Li Y, He B, Gong Y. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clin Colorectal Cancer 2015; 14:133-145. [PMID: 25799881 DOI: 10.1016/j.clcc.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) was ranked third in morbidity and mortality in the United States in 2013. Although substantial progress has been made in surgical techniques and postoperative chemotherapy in recent years, the prognosis for colon cancer is still not satisfactory, mainly because of cancer recurrence and metastasis. The latest studies have shown that cancer stem cells (CSCs) play important roles in cancer recurrence and metastasis. Drugs that target CSCs might therefore have great therapeutic potential in prevention of cancer recurrence and metastasis. The wingless-int (Wnt) signaling pathway in CSCs has been suggested to play crucial roles in colorectal carcinogenesis, and has become a popular target for anti-CRC therapy. Dysregulation of the Wnt signaling pathway, mostly by inactivating mutations of the adenomatous polyposis coli tumor suppressor or oncogenic mutations of β-catenin, has been implicated as a key factor in colorectal tumorigenesis. Abnormal increases of β-catenin levels represents a common pathway in Wnt signaling activation and is also observed in other human malignancies. These findings highlight the importance of developing small-molecule drugs that target the Wnt pathway. Herein we provide an overview on the current development of small molecules that target the Wnt pathway in colorectal CSCs and discuss future research directions.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China; BioChain (Beijing) Science and Technology, Inc, Beijing, China.
| | - Yuemin Li
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China.
| | - Baoming He
- Department of Nuclear Medicine, the PLA 309 Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, the PLA General Hospital, Beijing, China
| |
Collapse
|
140
|
Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer. Br J Cancer 2015; 113:979-88. [PMID: 26305864 PMCID: PMC4578087 DOI: 10.1038/bjc.2015.296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022] Open
Abstract
Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. Methods: APC prognostic value was evaluated in 746 stage I–IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Results: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). Conclusions: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.
Collapse
|
141
|
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309:C511-21. [PMID: 26289750 PMCID: PMC4609654 DOI: 10.1152/ajpcell.00117.2015] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.
Collapse
Affiliation(s)
| | - Pedro Antas
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Vivian S W Li
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
142
|
Zhong A, Pan X, Shi M, Xu H. -148 C/T polymorphism of Axin2 contributes to a decreased risk of cancer: evidence from a meta-analysis. Onco Targets Ther 2015; 8:1957-66. [PMID: 26251618 PMCID: PMC4524579 DOI: 10.2147/ott.s86738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several studies have reported an association between -148 C/T polymorphism of Axis inhibition protein 2 (Axin2) and cancer risk; however, the results are inconsistent. In this study, a meta-analysis was performed to assess the association between -148 C/T polymorphism of Axin2 and susceptibility to cancer. Published case-control and cohort-based studies from PubMed, Embase, Wanfang, and CNKI were retrieved, and data were manually extracted. The odds ratios (ORs) and 95% confidence intervals (CIs) of the included studies were pooled. Begg's and Egger's tests were used to evaluate publication bias. Cumulative and recursive cumulative meta-analyses (CMA) were performed as evidence accumulated to investigate the trends and stability of the effect size. Nine articles with 1,664 cases and 1,796 controls were included. The pooled effect size showed an association between -148 C/T polymorphism and the risk of cancer (dominant model, OR: 0.72, 95% CI: 0.63-0.83; allele model, OR: 0.81, 95% CI: 0.73-0.90). CMA showed an association trend, and the recursive CMA indicated that more evidence is needed to make conclusions about significance. In a subgroup analysis, a significant association between -148 C/T polymorphism and low cancer susceptibility was detected for lung cancer (dominant model, 0.69, 95% CI: 0.56-0.85; recessive model, OR: 0.75, 95% CI: 0.56-0.99; allele model, 0.76, 95% CI: 0.66-0.86). The -148 C/T polymorphism was also associated with low cancer susceptibility among Asians (dominant model, OR: 0.68, 95% CI: 0.57-0.81; recessive model, OR: 0.75, 95% CI: 0.56-0.99; allele model, OR: 0.76, 95% CI: 0.66-0.86). The Axin2 -148 C/T polymorphism was found to be significantly associated with a decreased risk of cancer, particularly lung cancer, in Asians and population-based controls. Thus, Axin2 should be considered as a potential therapeutic target for preventing tumor growth.
Collapse
Affiliation(s)
- AnYuan Zhong
- Department of Respiratory Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xue Pan
- Department of Respiratory Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - MinHua Shi
- Department of Respiratory Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - HuaJun Xu
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute, Shanghai, People’s Republic of China
| |
Collapse
|
143
|
Crago AM, Chmielecki J, Rosenberg M, O'Connor R, Byrne C, Wilder FG, Thorn K, Agius P, Kuk D, Socci ND, Qin LX, Meyerson M, Hameed M, Singer S. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer 2015; 54:606-15. [PMID: 26171757 DOI: 10.1002/gcc.22272] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Abstract
CTNNB1 mutations or APC abnormalities have been observed in ∼85% of desmoids examined by Sanger sequencing and are associated with Wnt/β-catenin activation. We sought to identify molecular aberrations in "wild-type" tumors (those without CTNNB1 or APC alteration) and to determine their prognostic relevance. CTNNB1 was examined by Sanger sequencing in 117 desmoids; a mutation was observed in 101 (86%) and 16 were wild type. Wild-type status did not associate with tumor recurrence. Moreover, in unsupervised clustering based on U133A-derived gene expression profiles, wild-type and mutated tumors clustered together. Whole-exome sequencing of eight of the wild-type desmoids revealed that three had a CTNNB1 mutation that had been undetected by Sanger sequencing. The mutation was found in a mean 16% of reads (vs. 37% for mutations identified by Sanger). Of the other five wild-type tumors sequenced, two had APC loss, two had chromosome 6 loss, and one had mutation of BMI1. The finding of low-frequency CTNNB1 mutation or APC loss in wild-type desmoids was validated in the remaining eight wild-type desmoids; directed miSeq identified low-frequency CTNNB1 mutation in four and comparative genomic hybridization identified APC loss in one. These results demonstrate that mutations affecting CTNNB1 or APC occur more frequently in desmoids than previously recognized (111 of 117; 95%), and designation of wild-type genotype is largely determined by sensitivity of detection methods. Even true CTNNB1 wild-type tumors (determined by next-generation sequencing) may have genomic alterations associated with Wnt activation (chromosome 6 loss/BMI1 mutation), supporting Wnt/β-catenin activation as the common pathway governing desmoid initiation.
Collapse
Affiliation(s)
- Aimee M Crago
- Sarcoma Biology Laboratory and Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Juliann Chmielecki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Mara Rosenberg
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Rachael O'Connor
- Sarcoma Biology Laboratory and Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caitlin Byrne
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fatima G Wilder
- Sarcoma Biology Laboratory and Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine Thorn
- Sarcoma Biology Laboratory and Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Phaedra Agius
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Deborah Kuk
- Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Li-Xuan Qin
- Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA.,Department of Pathology, Harvard Medical School, Boston, MA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel Singer
- Sarcoma Biology Laboratory and Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
144
|
Wu Z, Sun Y, Tang S, Liu C, Zhu S, Wei L, Xu H. AXIN2 rs2240308 polymorphism contributes to increased cancer risk: evidence based on a meta-analysis. Cancer Cell Int 2015; 15:68. [PMID: 26161041 PMCID: PMC4496878 DOI: 10.1186/s12935-015-0219-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variants in the axis inhibition 2 (AXIN2) gene might alter the protein's structure or function or create a multiprotein destruction complex in the Wnt signaling pathway and thus affect an individual's susceptibility to cancer. The objective of this study is to evaluate broadly the evidence available for the AXIN2 rs2240308 polymorphism and risk of cancer. METHODS A comprehensive literature search was undertaken for eligible studies in Embase, PubMed, and Cochrane Library up to Nov 30, 2014. Odds ratios (ORs) and the corresponding 95 % confidence intervals (CIs) were used to measure the strength of the models. RESULTS Eight articles (10 case-control studies with 1,502 cases and 1,590 controls) were included in this analysis. Overall, the AXIN2 rs2240308 polymorphism was associated with a significant increase in the risk of cancer (G allele vs. A allele: OR = 1.21, 95 % CI = 1.05-1.40, I (2) = 39.5 % and P Q = 0.094 for heterogeneity; GG vs. AA: OR = 1.30, 95 % CI = 1.04-1.63, I (2) = 35.9 % and P Q = 0.121 for heterogeneity; GG vs. GA + AA: OR = 1.36, 95 % CI = 1.17-1.58, I (2) = 19.5 % and P Q = 0.263 for heterogeneity). Asian populations showed similar results. Stratified analysis by cancer types indicated that the AXIN2 rs2240308 polymorphism increases the risk of lung cancer (G allele vs. A allele: OR = 1.36, 95 % CI = 1.17-1.59; GA vs. AA: OR = 1.43, 95 % CI = 1.01-2.02; GG vs. AA: OR = 1.93, 95 % CI = 1.36-2.75; GG + GA vs. AA: OR = 1.65, 95 % CI = 1.18-2.30; GG vs. GA + AA: OR = 1.45, 95 % CI = 1.18-1.79. All I (2) < 50 % and P Q > 0.100 for heterogeneity). CONCLUSIONS This study showed that the AXIN2 rs2240308 polymorphism contribute to increasing the risk of cancer, especially lung cancer in Asian populations.
Collapse
Affiliation(s)
- Zhitong Wu
- />Department of Clinical Laboratory, Guigang City People’s Hospital, 1 Zhongshan Middle Road, Guigang, 537100, Guangxi People’s Republic of China
| | - Yifan Sun
- />Department of Clinical Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| | - Shifu Tang
- />Department of Clinical Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| | - Chunming Liu
- />Department of Clinical Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| | - Shengbo Zhu
- />Department of Clinical Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| | - Lili Wei
- />Department of Science and Education, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| | - Hong Xu
- />Department of Science and Education, Liuzhou Hospital of Traditional Chinese Medicine, 32 Jiefang North Road, Liuzhou, 545001, Guangxi People’s Republic of China
| |
Collapse
|
145
|
Krishnadath KK, Wang KK. Molecular pathogenesis of Barrett esophagus: current evidence. Gastroenterol Clin North Am 2015; 44:233-47. [PMID: 26021192 DOI: 10.1016/j.gtc.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article focuses on recent findings on the molecular mechanisms involved in esophageal columnar metaplasia. Signaling pathways and their downstream targets activate specific transcription factors leading to the expression of columnar and the more specific intestinal-type of genes, which gives rise to Barrett metaplasia. Several animal models have been generated to validate and study these distinct molecular pathways but also to identify the Barrett progenitor cell. Currently, the many aspects involved in the development of esophageal metaplasia that have been elucidated can serve to develop novel molecular therapies to improve treatment or prevent metaplasia. Nevertheless, several key events are still poorly understood and require further investigation.
Collapse
Affiliation(s)
- Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
146
|
Singh S, Arcaroli J, Chen Y, Thompson DC, Messersmith W, Jimeno A, Vasiliou V. ALDH1B1 Is Crucial for Colon Tumorigenesis by Modulating Wnt/β-Catenin, Notch and PI3K/Akt Signaling Pathways. PLoS One 2015; 10:e0121648. [PMID: 25950950 PMCID: PMC4423958 DOI: 10.1371/journal.pone.0121648] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
In the normal human colon, aldehyde dehydrogenase 1B1 (ALDH1B1) is expressed only at the crypt base, along with stem cells. It is also highly expressed in the human colonic adenocarcinomas. This pattern of expression corresponds closely to that observed for Wnt/β-catenin signaling activity. The present study examines the role of ALDH1B1 in colon tumorigenesis and signalling pathways mediating its effects. In a 3-dimensional spheroid growth model and a nude mouse xenograft tumor model, shRNA-induced suppression of ALDH1B1 expression decreased the number and size of spheroids formed in vitro and the size of xenograft tumors formed in vivo by SW 480 cells. Six binding elements for Wnt/β-catenin signalling transcription factor binding elements (T-cell factor/lymphoid enhancing factor) were identified in the human ALDH1B1 gene promoter (3 kb) but shown by dual luciferase reporter assay to not be necessary for ALDH1B1 mRNA expression in colon adenocarcinoma cell lines. We examined Wnt-reporter activity and protein/mRNA expression for Wnt, Notch and PI3K/Akt signaling pathways. Wnt/β-catenin, Notch and PI3K/Akt-signaling pathways were down-regulated in SW 480 cells in which ALDH1B1 expression had been suppressed. In summary, our data demonstrate that ALDH1B1 may promote colon cancer tumorigenesis by modulating the Wnt/β-catenin, Notch and PI3K/Akt signaling pathways. Selective targeting of ALDH1B1 may represent a novel means to prevent or treat colon cancer.
Collapse
Affiliation(s)
- Surendra Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John Arcaroli
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Ying Chen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - David C. Thompson
- Department of Clinical Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wells Messersmith
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
147
|
Larraguibel J, Weiss ARE, Pasula DJ, Dhaliwal RS, Kondra R, Van Raay TJ. Wnt ligand-dependent activation of the negative feedback regulator Nkd1. Mol Biol Cell 2015; 26:2375-84. [PMID: 25904337 PMCID: PMC4462952 DOI: 10.1091/mbc.e14-12-1648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/16/2015] [Indexed: 02/02/2023] Open
Abstract
Nkd1, a negative feedback regulator of the Wnt pathway, localizes with Dvl2 to the putative Wnt signalosome, where it becomes activated by Wnt. Activated Nkd1 moves away from the membrane to become more cytosolic, where it interacts with β-catenin to prevent nuclear accumulation. Misregulation of Wnt signaling is at the root of many diseases, most notably colorectal cancer, and although we understand the activation of the pathway, we have a very poor understanding of the circumstances under which Wnt signaling turns itself off. There are numerous negative feedback regulators of Wnt signaling, but two stand out as constitutive and obligate Wnt-induced regulators: Axin2 and Nkd1. Whereas Axin2 behaves similarly to Axin in the destruction complex, Nkd1 is more enigmatic. Here we use zebrafish blastula cells that are responsive Wnt signaling to demonstrate that Nkd1 activity is specifically dependent on Wnt ligand activation of the receptor. Furthermore, our results support the hypothesis that Nkd1 is recruited to the Wnt signalosome with Dvl2, where it becomes activated to move into the cytoplasm to interact with β-catenin, inhibiting its nuclear accumulation. Comparison of these results with Nkd function in Drosophila generates a unified and conserved model for the role of this negative feedback regulator in the modulation of Wnt signaling.
Collapse
Affiliation(s)
- Jahdiel Larraguibel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander R E Weiss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel J Pasula
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rasmeet S Dhaliwal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roman Kondra
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
148
|
Figeac N, Zammit PS. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell Signal 2015; 27:1652-65. [PMID: 25866367 DOI: 10.1016/j.cellsig.2015.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/23/2015] [Indexed: 01/01/2023]
Abstract
The resident stem cells of skeletal muscle are satellite cells, which are regulated by both canonical and non-canonical Wnt pathways. Canonical Wnt signalling promotes differentiation, and is controlled at many levels, including via Axin1 and Axin2-mediated β-catenin degradation. Axin1 and Axin2 are thought equivalent suppressors of canonical Wnt signalling, although Axin2 is also a Wnt target gene. We show that Axin1 expression was higher in proliferating satellite cells, while Axin2 was up-regulated during differentiation. siRNA-mediated Axin1 knockdown changed cell morphology, suppressed proliferation and promoted myogenic differentiation. Simultaneous knockdown of both Axin1 and β-catenin rescued proliferation and partially, premature differentiation. Surprisingly, retroviral-mediated overexpression of Axin2 was unable to compensate for knockdown of Axin1 in satellite cells, indicating that Axin1 and Axin2 are not fully redundant. Isolated satellite cells from Axin2-null mice also had no major phenotype. However, siRNA-mediated knockdown of Axin1 in Axin2-null cells strongly inhibited proliferation, while inducing differentiation, clear nuclear localisation of β-catenin, up-regulation of canonical Wnt target genes (Axin2, Lef1, Tcf4, Pitx2c and Lgr5) and activation of a TCF reporter construct. Again, concomitant knockdown of Axin1 and β-catenin in Axin2-null satellite cells rescued morphology and proliferation, but only partially prevented precocious differentiation. Thus, Axin1 and Axin2 do not have equivalent functions in satellite cells, but are both involved in repression of Wnt/β-catenin signalling to maintain proliferation and contribute to controlling timely myogenic differentiation.
Collapse
Affiliation(s)
- Nicolas Figeac
- King's College London, Randall Division of Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, United Kingdom.
| | - Peter S Zammit
- King's College London, Randall Division of Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, United Kingdom.
| |
Collapse
|
149
|
Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. MOLECULAR AND CELLULAR THERAPIES 2015; 3:1. [PMID: 26056602 PMCID: PMC4452070 DOI: 10.1186/s40591-015-0038-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023]
Abstract
The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/β-catenin signaling. In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the β-catenin gene (CTNNB1). In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor. Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin.
Collapse
Affiliation(s)
- Maria Vittoria Enzo
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Marco Rastrelli
- Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
| | - Carlo Riccardo Rossi
- Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy ; Department of Surgical Oncological and Gastroenterological Science, University of Padua, Via Giustiniani, 2- 35124 Padua, Italy
| | - Uros Hladnik
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Daniela Segat
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| |
Collapse
|
150
|
Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. MOLECULAR AND CELLULAR THERAPIES 2015; 3:1. [PMID: 26056602 PMCID: PMC4452070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/04/2015] [Indexed: 11/21/2023]
Abstract
The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/β-catenin signaling. In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the β-catenin gene (CTNNB1). In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor. Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin.
Collapse
Affiliation(s)
- Maria Vittoria Enzo
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Marco Rastrelli
- />Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
| | - Carlo Riccardo Rossi
- />Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128 Padua, Italy
- />Department of Surgical Oncological and Gastroenterological Science, University of Padua, Via Giustiniani, 2- 35124 Padua, Italy
| | - Uros Hladnik
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| | - Daniela Segat
- />Genetics Unit, “Mauro Baschirotto” Institute for Rare Diseases, Via B. Bizio, 1- 36023 Vicenza, Italy
| |
Collapse
|