101
|
Osusky M, Osuska L, Kay W, Misra S. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:711-22. [PMID: 15947906 DOI: 10.1007/s00122-005-2056-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/25/2005] [Indexed: 05/02/2023]
Abstract
Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.
Collapse
Affiliation(s)
- Milan Osusky
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | |
Collapse
|
102
|
Radzishevsky IS, Rotem S, Zaknoon F, Gaidukov L, Dagan A, Mor A. Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Antimicrob Agents Chemother 2005; 49:2412-20. [PMID: 15917541 PMCID: PMC1140510 DOI: 10.1128/aac.49.6.2412-2420.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the importance of increased hydrophobicity at the amino end of antimicrobial peptides, a dermaseptin derivative was used as a template for a systematic acylation study. Through a gradual increase of the acyl moiety chain length, hydrophobicity was monitored and further modulated by acyl conversion to aminoacyl. The chain lengths of the acyl derivatives correlated with a gradual increase in the peptide's global hydrophobicity and stabilization of its helical structure. The effect on cytolytic properties, however, fluctuated for different cells. Whereas acylation gradually enhanced hemolysis of human red blood cells and antiprotozoan activity against Leishmania major, bacteria displayed a more complex behavior. The gram-positive organism Staphylococcus aureus was most sensitive to intermediate acyl chains, while longer acyls gradually led to a total loss of activity. All acyl derivatives were detrimental to activity against Escherichia coli, namely, but not solely, because of peptide aggregation. Although aminoacyl derivatives behaved essentially similarly to the nonaminated acyls, they displayed reduced hydrophobicity, and consequently, the long-chain acyls enhanced activity against all microorganisms (e.g., by up to 12-fold for the aminolauryl derivative) but were significantly less hemolytic than their acyl counterparts. Acylation also enhanced bactericidal kinetics and peptide resistance to plasma proteases. The similarities and differences upon acylation of MSI-78 and LL37 are presented and discussed. Overall, the data suggest an approach that can be used to enhance the potencies of acylated short antimicrobial peptides by preventing hydrophobic interactions that lead to self-assembly in solution and, thus, to inefficacy against cell wall-containing target cells.
Collapse
Affiliation(s)
- Inna S Radzishevsky
- Laboratory of Antimicrobial Investigation, Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
103
|
Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1685-95. [PMID: 15863447 DOI: 10.1093/jxb/eri165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Expression of defensive genes from a promoter that is specifically activated in response to pathogen invasion is highly desirable for engineering disease-resistant plants. A plant transformation vector was constructed with transcriptional fusion between the pathogen-responsive win3.12T promoter from poplar and the gene encoding the novel cecropin A-melittin hybrid peptide (CEMA) with strong antimicrobial activity. This promoter-transgene combination was evaluated in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) for enhanced plant resistance against a highly virulent pathogenic fungus Fusarium solani. Transgene expression in leaves was strongly increased after fungal infection or mechanical wounding, and the accumulation of CEMA transcripts was found to be systemic and positively correlated with the number of transgene insertions. A simple and efficient in vitro regeneration bioassay for preliminary screening of transgenic lines against pathogenic fungi was developed. CEMA had strong antifungal activity in vitro, inhibiting conidia germination at concentrations that were non-toxic to tobacco protoplasts. Most importantly, the expression level of the CEMA peptide in vivo, regulated by the win3.12T promoter, was sufficient to confer resistance against F. solani in transgenic tobacco. The antifungal resistance of plants with high CEMA expression was strong and reproducible. In addition, leaf tissue extracts from transgenic plants significantly reduced the number of fungal colonies arising from germinated conidia. Accumulation of CEMA peptide in transgenic tobacco had no deleterious effect on plant growth and development. This is the first report showing the application of a heterologous pathogen-inducible promoter to direct the expression of an antimicrobial peptide in plants, and the feasibility of this approach to provide disease resistance in tobacco and, possibly, other crops.
Collapse
Affiliation(s)
- Dmytro P Yevtushenko
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6 Canada
| | | | | | | | | | | |
Collapse
|
104
|
Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 2005; 23:275-82. [PMID: 15922079 DOI: 10.1016/j.tibtech.2005.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/16/2005] [Accepted: 04/06/2005] [Indexed: 01/15/2023]
Abstract
To engineer plants with increased and durable disease resistance using transgenic technologies we must address two questions. First, what gene or genes do we want to express to improve disease resistance, and second, how are we going to express these genes so that crop yields are actually increased? Emerging technologies are providing us with a plethora of candidate genes that might lead to enhanced crop protection through genetic engineering. These genes can come from plants, from pathogens or from other organisms and several strategies for their manipulation show promise. Here, we discuss recent advances and consider future perspectives for producing plants with durable disease resistance.
Collapse
Affiliation(s)
- Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
105
|
Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC. Human defensins. J Mol Med (Berl) 2005; 83:587-95. [PMID: 15821901 DOI: 10.1007/s00109-005-0657-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 02/02/2005] [Indexed: 01/30/2023]
Abstract
Antimicrobial peptides are small, cationic, amphiphilic peptides of 12-50 amino acids with microbicidal activity against both bacteria and fungi. The eukaryotic antimicrobial peptides may be divided into four distinct groups according to their structural features: cysteine-free alpha-helices, extended cysteine-free alpha-helices with a predominance of one or two amino acids, loop structures with one intramolecular disulfide bond, and beta-sheet structures which are stabilised by two or three intramolecular disulfide bonds. Mammalian defensins are part of the last-mentioned group. The mammalian defensins can be subdivided into three main classes according to their structural differences: the alpha-defensins, beta-defensins and the recently described theta-defensins. Mammalian alpha-defensins are predominantly found in neutrophils and in small intestinal Paneth cells, whereas mammalian beta-defensins have been isolated from both leukocytes and epithelial cells. Recently, two novel human beta-defensins, human beta-defensin-3 (HBD-3), and human beta-defensin-4 (HBD-4) have been discovered. Similar to HBD-1 and HBD-2, HBD-3 has microbicidal activity towards the Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and the yeasts Candida albicans and Malassezia furfur. In addition, HBD-3 kills Gram-positive bacteria such as Streptococcus pyogenes or Staphylococcus aureus, including multi-resistant S. aureus strains, and even vancomycin-resistant Enterococcus faecium. In contrast to HBD-1 and HBD-2, significant expression of HBD-3 has been demonstrated in non-epithelial tissues, such as leukocytes, heart and skeletal muscle. HBD-4 is expressed in certain epithelia and in neutrophils. Its bactericidal activity against P. aeruginosa is stronger than that of the other known beta-defensins. Here we present an overview of human antimicrobial peptides with some emphasis on their antifungal properties.
Collapse
Affiliation(s)
- Josef Johann Schneider
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität München, Frauenlobstrasse 9-11, 80337 Munich, Germany.
| | | | | | | | | |
Collapse
|
106
|
Takase K, Hagiwara K, Onodera H, Nishizawa Y, Ugaki M, Omura T, Numata S, Akutsu K, Kumura H, Shimazaki KI. Constitutive expression of human lactoferrin and its N-lobe in rice plants to confer disease resistance. Biochem Cell Biol 2005; 83:239-49. [PMID: 15864332 DOI: 10.1139/o05-022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The milk protein, lactoferrin, is known to have antibacterial, antiviral, and antifungal activities. To explore the possibility of conferring disease resistance in plants by expressing this protein, the gene for the full-length human lactoferrin (HLF), as well as the N-lobe, the N-terminal half molecule (HLFN), was introduced into rice plants and expressed constitutively under the control of the cauliflower mosaic virus 35S promotor. Western blot analysis of leaves from HLF-transgenic rice plants showed an 80 kDa-band, which was about 1–2 kDa less than human milk lactoferrin. HLFN was expressed as a 45-kDa protein and retained its heparin-binding property. Deglycosylation experiments suggested that both proteins produced by the plants had plant-type oligosaccharide chains. The transgenic rice plants were assessed for resistance against disease-causing bacteria, virus, and fungi. Of the pathogens tested, significant resistance against Burkholderia (Pseudomonas) plantarii, the causative agent of bacterial seedling blight disease, was observed in the transgenic plants expressing HLF or HLFN.Key words: expression of domains; glycosylation; lactoferrin; plant disease resistance; transgenic rice.
Collapse
MESH Headings
- Blotting, Western
- Burkholderia/drug effects
- Burkholderia/growth & development
- Caulimovirus/genetics
- Gene Expression Regulation, Plant
- Glycosylation
- Heparin/metabolism
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Lactoferrin/genetics
- Lactoferrin/metabolism
- Lactoferrin/pharmacology
- Oligosaccharides/metabolism
- Oryza/genetics
- Oryza/metabolism
- Oryza/microbiology
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/microbiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Promoter Regions, Genetic/genetics
- Protein Engineering
- Protein Structure, Tertiary
- Reoviridae/drug effects
- Reoviridae/growth & development
- Transfection
- Transformation, Genetic
- Xanthomonas/drug effects
- Xanthomonas/growth & development
Collapse
Affiliation(s)
- Kenji Takase
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D. Structural Dissection of a Highly Knotted Peptide Reveals Minimal Motif with Antimicrobial Activity. J Biol Chem 2005; 280:1661-8. [PMID: 15494403 DOI: 10.1074/jbc.m410577200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing occurrence of bacterial resistance to antibiotics is driving a renewed interest on antimicrobial peptides, in the hope that understanding the structural features responsible for their activity will provide leads into new anti-infective drug candidates. Most chemical studies in this field have focused on linear peptides of various eukaryotic origins, rather than on structures with complex folding patterns found also in nature. We have undertaken the structural dissection of a highly knotted, cysteine-rich plant thionin, with the aim of defining a minimal, synthetically accessible, structure that preserves the bioactive properties of the parent peptide. Using efficient strategies for directed disulfide bond formation, we have prepared a substantially simplified (45% size reduction) version with undiminished antimicrobial activity against a representative panel of pathogens. Analysis by circular dichroism shows that the downsized peptide preserves the central double alpha-helix of the parent form as an essential bioactive motif. Membrane permeability and surface plasmon resonance studies confirm that the mechanism of action remains unchanged.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader, 80, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
108
|
Song X, Wang J, Wu F, Li X, Teng M, Gong W. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. PLANT MOLECULAR BIOLOGY 2005; 57:13-20. [PMID: 15821865 DOI: 10.1007/s11103-004-6637-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 11/23/2004] [Indexed: 05/05/2023]
Abstract
SPE10 is an antifungal protein isolated from the seeds of Pachyrrhizus erosus. cDNA encoding a 47 amino acid peptide was cloned by RT-PCR and the gene sequence proved SPE10 to be a new member of plant defensin family. The synthetic cDNA with codons preferred in yeast was cloned into the pPIC9 plasmid directly in-frame with the secretion signal alpha-mating factor, and highly expressed in methylotrophic Pichia pastoris. Activity assays showed the recombinant SPE10 inhibited specifically the growth of several pathogenic fungi as native SPE10. Circular dichroism and fluorescence spectroscopy analysis indicated that the native and recombinant protein should have same folding, though there are eight cystein residues in the sequence. Several evidence suggested SPE10 should be the first dimeric plant defensin reported so far.
Collapse
Affiliation(s)
- Xiaomin Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Science and Technology of China, Key Laboratory of Structural Biology, Chinese Academy of Sciences, P.R. China
| | | | | | | | | | | |
Collapse
|
109
|
Zhao Y, Liu Q, Davis RE. Transgene expression in strawberries driven by a heterologous phloem-specific promoter. PLANT CELL REPORTS 2004; 23:224-230. [PMID: 15235813 DOI: 10.1007/s00299-004-0812-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 04/27/2004] [Accepted: 04/28/2004] [Indexed: 05/24/2023]
Abstract
Strawberry is susceptible to diseases caused by phytoplasmas, mycoplasma-like prokaryotes restricted to sieve elements in the phloem tissue of infected plants. One strategy to improve strawberry resistance to phytoplasmas involves transgenic expression of anti-microbial peptide genes in phloem. For targeted phloem-specific expression, we constructed a binary vector with an expression cassette bearing the beta-glucuronidase (GUS) reporter gene (uidA) under control of the Arabidopsis sucrose-H+ symporter gene (AtSUC2) promoter. Transgenic strawberry lines were generated with high efficiencies by a modified transformation protocol, which combines the adoption of a 3-day pre-selection period following transformation, and the addition of 10-microM thidiazuron to the regeneration medium. Histological GUS activity indicated that the reporter gene was expressed specifically in phloem of leaves, petioles, and roots of transgenic plants. The results suggest that the transformation protocol and the AtSUC2 promoter may be useful for engineering phytoplasma-resistant transgenic strawberries.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agriculture Research Service, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
110
|
Moreno AB, Del Pozo AM, Borja M, Segundo BS. Activity of the Antifungal Protein from Aspergillus giganteus Against Botrytis cinerea. PHYTOPATHOLOGY 2003; 93:1344-53. [PMID: 18944061 DOI: 10.1094/phyto.2003.93.11.1344] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACT Botrytis blight (gray mold), caused by Botrytis cinerea, is one of the most widely distributed diseases of ornamental plants. In geranium plants, gray mold is responsible for important losses in production. The mold Aspergillus giganteus is known to produce and secrete a basic low-molecular-weight protein, the antifungal protein (AFP). Here, the antifungal properties of the Aspergillus AFP against various B. cinerea isolates obtained from naturally infected geranium plants were investigated. AFP strongly inhibited mycelial growth as well as conidial germination of B. cinerea. Microscopic observations of fungal cultures treated with AFP revealed reduced hyphal elongation and swollen hyphal tips. Washout experiments in which B. cinerea was incubated with AFP for different periods of time and then washed away revealed a fungicidal activity of AFP. Application of AFP on geranium plants protected leaves against Botrytis infection. Cecropin A also was active against this pathogen. An additive effect against the fungus was observed when AFP was combined with cecropin A. These results are discussed in relation to the potential of the afp gene to enhance crop protection against B. cinerea diseases.
Collapse
|
111
|
Abstract
Medical or health-promoting products of marine origin are often regarded with skepticism--some, such as shark fins and cod liver oil, are frequently perceived as low-tech "alternative treatments" largely because they have not been exploited to their full potential. The marine environment is an enormous source of biodiversity--80% of all life is found under the oceans' surfaces--yet very little of this rich resource has been utilized. Furthermore, most marine organisms rely heavily on antimicrobial components of their innate immune defenses to combat pathogens. The past three years has seen a revolution in the methods used to identify novel antimicrobials from marine sources; among the most promising are marine cationic antimicrobial peptides (CAPs).
Collapse
Affiliation(s)
- Aleksander Patrzykat
- Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada B3H 3Z1
| | | |
Collapse
|
112
|
Ponti D, Mangoni ML, Mignogna G, Simmaco M, Barra D. An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem J 2003; 370:121-7. [PMID: 12435273 PMCID: PMC1223161 DOI: 10.1042/bj20021444] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 11/14/2002] [Accepted: 11/18/2002] [Indexed: 11/17/2022]
Abstract
Esculentin-1 is a 46-residue antimicrobial peptide present in skin secretions of Rana esculenta. It is effective against a wide variety of micro-organisms, including plant pathogens with negligible effects on eukaryotic cells. As a possible approach to enhance plant resistance, a DNA coding for esculentin-1, with the substitution Met-28Leu, was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein, under the control of the cauliflower mosaic virus 35S promoter region, and introduced into Nicotiana tabacum. The antimicrobial peptide was isolated from the intercellular fluids of healthy leaves of transgenic plants, suggesting that it was properly processed, secreted outside cells and accumulated in the intercellular spaces. The morphology of transgenic plants was unaffected. Challenging these plants with bacterial or fungal phytopathogens demonstrated enhanced resistance up to the second generation. Moreover, transgenic plants displayed insecticidal properties.
Collapse
Affiliation(s)
- Donatella Ponti
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli'; CNR, Centro di Biologia Molecolare, Università La Sapienza, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
113
|
Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. PLANTA 2003; 216:587-96. [PMID: 12569400 DOI: 10.1007/s00425-002-0918-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 09/11/2002] [Indexed: 05/24/2023]
Abstract
Magainin is one of the earliest reported antimicrobial peptides isolated from skin secretions of the African clawed frog Xenopus laevis. A synthetic substitution analogue of magainin, MSI-99, is employed in this study to impart disease resistance in transgenic tobacco ( Nicotiana tabacumL.) and banana [( Musaspp. cv. Rasthali (AAB)]. This peptide inhibited the growth and spore germination of Fusarium oxysporumf.sp. cubenseat 16 micro g/ml. MSI-99 has been subcloned into plant expression vectors pMSI164 and pMSI168, targeting the peptide into the cytoplasm and extracellular spaces, respectively. Tobacco plants transformed with pMSI168 showed enhanced resistance against Sclerotinia sclerotiorum, Alternaria alternataand Botrytis cinerea. Transgenic banana pants were obtained for both pMSI164 and pMSI168 transformations and showed resistance to F. oxysporumf.sp. cubenseand Mycosphaerella musicola. The transgenic nature of the transformants and expression of this peptide was confirmed through polymerase chain reaction (PCR) and reverse transcription (RT)-PCR. The results suggest that MSI-99 can be useful in imparting enhanced disease resistance in transgenic plants.
Collapse
Affiliation(s)
- A Chakrabarti
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research Centre, 400085, Trombay, Mumbai, India
| | | | | | | |
Collapse
|
114
|
Abstract
In the 20th century an increasing number of pesticides, based on biocidal molecules, were the means for a substantial increase in food and fibre production and quality. Because of health and environmental concerns continued extensive use of such molecules is intensively debated and substitutes are often urgently required. Beside crop plant resistance, various biological control methods based on natural pest suppressing organisms are regarded as main alternatives. Several approaches and concepts also have been tested and commercial organism-based preparations are steadily increasing. However, further biotechnological efforts are required to give them status of being practical substitutes to pesticides. At present they are not comparable to pesticides in meeting efficacy, market and other expectations, but they still have a promising future, especially where genetically modified organisms can be used.
Collapse
Affiliation(s)
- Berndt Gerhardson
- Plant Pathology & Biocontrol Unit, P.O. Box 7035, S-750 07 Uppsala, Sweden.
| |
Collapse
|
115
|
Alan AR, Earle ED. Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:701-708. [PMID: 12118886 DOI: 10.1094/mpmi.2002.15.7.701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vitro and leaf disk assays of bacterial and fungal plant pathogens were conducted using three cationic lytic peptides, MSI-99, magainin II (MII), and cecropin B (CB). Growth of bacterial organisms was retarded or completely inhibited by low concentrations of these lytic peptides. The peptides also significantly reduced germination of fungal spores and growth of mycelia; however, higher concentrations of peptides were needed to inhibit fungal growth compared with those needed to inhibit bacteria. The relative efficacy of the peptides depended on the microorganism tested, but CB was the most inhibitory to the majority of the bacteria and fungi assayed. MSI-99, a synthetic derivative of MII with increased positive charge, showed equal or two- to fivefold higher antibacterial activity compared to MII in the in vitro assays. MSI-99 was also superior to MII against the oomycete, Phytophthora infestans but was slightly inferior to MII in assays with the true fungi, Penicillium digitatum and Alternaria solani. In the leaf disk assays, pretreating spores of Alternaria solani and Phytophthora infestans with the peptides at concentrations as low as 10 microg per ml led to significant reductions in the size of early blight lesions and prevented development of any late blight lesions on tomato leaf disks. Our results from in vitro and leaf disk assays suggest that MSI-99 can be used as a transgene to generate tomato lines with enhanced resistance to bacterial and fungal diseases of this crop.
Collapse
Affiliation(s)
- Ali R Alan
- Department of Plant Breeding, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
116
|
Bishop-Hurley SL, Mounter SA, Laskey J, Morris RO, Elder J, Roop P, Rouse C, Schmidt FJ, English JT. Phage-displayed peptides as developmental agonists for Phytophthora capsici zoospores. Appl Environ Microbiol 2002; 68:3315-20. [PMID: 12089009 PMCID: PMC126814 DOI: 10.1128/aem.68.7.3315-3320.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of its pathogenic life cycle, Phytophthora capsici disperses to plants through a motile zoospore stage. Molecules on the zoospore surface are involved in reception of environmental signals that direct preinfection behavior. We developed a phage display protocol to identify peptides that bind to the surface molecules of P. capsici zoospores in vitro. The selected phage-displayed peptides contained an abundance of polar amino acids and proline but were otherwise not conserved. About half of the selected phage that were tested concomitantly induced zoospore encystment in the absence of other signaling agents. A display phage was shown to bind to the zoospore but not to the cyst form of P. capsici. Two free peptides corresponding to active phage were similarly able to induce encystment of zoospores, indicating that their ability to serve as signaling ligands did not depend on their exact molecular context. Isolation and subsequent expression of peptides that act on pathogens could allow the identification of receptor molecules on the zoospore surface, in addition to forming the basis for a novel plant disease resistance strategy.
Collapse
Affiliation(s)
- Sharon L Bishop-Hurley
- Department of Plant Microbiology and Patholog, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
López-García B, Pérez-Payá E, Marcos JF. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl Environ Microbiol 2002; 68:2453-60. [PMID: 11976121 PMCID: PMC127571 DOI: 10.1128/aem.68.5.2453-2460.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of the present study was to improve the antifungal activity against selected phytopathogenic fungi of the previously identified hexapeptide PAF19. We describe some properties of a set of novel synthetic hexapeptides whose D-amino acid sequences were obtained through screening of a synthetic peptide combinatorial library in a positional scanning format. As a result of the screening, 12 putative bioactive peptides were identified, synthesized, and assayed. The peptides PAF26 (Ac-rkkwfw-NH(2)), PAF32 (Ac-rkwhfw-NH(2)), and PAF34 (Ac-rkwlfw-NH(2)) showed stronger activity than PAF19 against isolates of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea. PAF26 and PAF32, but not PAF34, were also active against Fusarium oxysporum. Penicillium expansum was less susceptible to all four PAF peptides, and only PAF34 showed weak activity against it. Assays were also conducted on nontarget organisms, and PAF26 and PAF32 showed much-reduced toxicity to Escherichia coli and Saccharomyces cerevisiae, demonstrating selectivity towards certain filamentous fungi. Thus, the data showed distinct activity profiles for peptides differentiated by just one or two residue substitutions. Our conclusion from this observation is that a specificity factor is involved in the activity of these short peptides. Furthermore, PAF26 and PAF32 displayed activities against P. digitatum, P. italicum, and B. cinerea similar to that of the hemolytic 26-amino acid melittin, but they did not show the high toxicity of melittin towards bacteria and yeasts. The four peptides acted additively, with no synergistic interactions among them, and PAF26 was shown to have improved activity over PAF19 in in vivo orange fruit decay experiments.
Collapse
Affiliation(s)
- Belén López-García
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, E-46100 Valencia, Spain
| | | | | |
Collapse
|
118
|
Abstract
Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?
Collapse
Affiliation(s)
- Michael Zasloff
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059, USA.
| |
Collapse
|
119
|
Abstract
Genetic and biochemical dissection of signaling pathways regulating plant pathogen defense has revealed remarkable similarities with the innate immune system of mammals and Drosophila. Numerous plant proteins resembling eukaryotic receptors have been implicated in the perception of pathogen-derived signal molecules. Receptor-mediated changes in levels of free calcium in the cytoplasm and production of reactive oxygen species and nitric oxide constitute early events generally observed in plant-pathogen interactions. Positive and negative regulation of plant pathogen defense responses has been attributed to mitogen-activated protein kinase cascades. In addition, salicylic acid, jasmonic acid and ethylene are components of signaling networks that provide the molecular basis for specificity of plant defense responses. This article reviews recent advances in our understanding of early signaling events involved in the establishment of plant disease resistance.
Collapse
Affiliation(s)
- T Nürnberger
- Institute of Plant Biochemistry, Dept of Stress and Developmental Biology, Weinberg 3, D-06120 Saale, Halle, Germany
| | | |
Collapse
|
120
|
Rajasekaran K, Stromberg KD, Cary JW, Cleveland TE. Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:2799-2803. [PMID: 11409968 DOI: 10.1021/jf010154d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Broad-spectrum antimicrobial activity of a synthetic peptide, D4E1, is documented in this paper. D4E1 inhibited the growth of several fungal phytopathogens belonging to four classes-Ascomycetes, Basidiomycetes, Deuteromycetes, and Oomycetes, and two bacterial pathogens, Pseudomonas syringae pv. tabaci and Xanthomonas campestris pv. malvacearum race 18. The minimum inhibitory concentration (MIC) of D4E1 required to completely inhibit the growth of all fungi studied ranged from 4.67 to 25 microM. Fungal pathogens highly sensitive to D4E1 include Thielaviopsis basicola, Verticillium dahliae, Fusarium moniliforme, Phytophthora cinnamomi, and Phytophthora parasitica. Comparatively, the least sensitive fungal pathogens were Alternaria alternata, Colletotrichum destructivum, and Rhizoctonia solani. The two bacterial pathogens, P. syringae pv. tabaci and X. campestris pv. malvacearum race 18, were most sensitive to D4E1 with MIC values of 2.25 and 1.25 microM, respectively. Microscopic analysis of D4E1 effects on fungal morphology of Aspergillus flavus and R. solani revealed abnormal hyphal growth and discontinuous cytoplasm. After 8 h of exposure to 25 microM D4E1, A. flavus spore germination was reduced by 75%. The suitability of peptide D4E1 to enhance disease resistance in transgenic crop plants is discussed.
Collapse
Affiliation(s)
- K Rajasekaran
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| | | | | | | |
Collapse
|
121
|
van der Biezen EA. Quest for antimicrobial genes to engineer disease-resistant crops. TRENDS IN PLANT SCIENCE 2001; 6:89-91. [PMID: 11239592 DOI: 10.1016/s1360-1385(01)01870-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antimicrobial peptides are ancient mediators of the innate defenses of all species of life. These small lytic peptides are being exploited to genetically engineer disease-resistant crop plants. It is anticipated that certain (combinations of) potent antimicrobial peptides will provide agronomically relevant levels of disease control and should contribute to more sustainable agricultural practices.
Collapse
|