101
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
102
|
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat Commun 2019; 10:5116. [PMID: 31712577 PMCID: PMC6848188 DOI: 10.1038/s41467-019-13060-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Collapse
|
103
|
Rodríguez Gutiérrez D, Biason-Lauber A. Pluripotent Cell Models for Gonadal Research. Int J Mol Sci 2019; 20:ijms20215495. [PMID: 31690065 PMCID: PMC6862629 DOI: 10.3390/ijms20215495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development is a complex process involving many genes and hormones. Defects in this process lead to Differences of Sex Development (DSD), a group of heterogeneous conditions not as rare as previously thought. Part of the obstacles in proper management of these patients is due to an incomplete understanding of the genetics programs and molecular pathways involved in sex development and DSD. Several challenges delay progress and the lack of a proper model system for the single patient severely hinders advances in understanding these diseases. The revolutionary techniques of cellular reprogramming and guided in vitro differentiation allow us now to exploit the versatility of induced pluripotent stem cells to create alternatives models for DSD, ideally on a patient-specific personalized basis.
Collapse
Affiliation(s)
- Daniel Rodríguez Gutiérrez
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Anna Biason-Lauber
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
104
|
Wu J, Miao C, Lv X, Zhang Y, Li Y, Wang D. Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J Steroid Biochem Mol Biol 2019; 194:105418. [PMID: 31376461 DOI: 10.1016/j.jsbmb.2019.105418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 02/03/2023]
Abstract
Granulosa cell tumors of the ovary (GCTs) are the predominant form of ovarian stromal tumors and can lead to abnormally secreted estrogen hormones. Studies have reported that forkhead transcription factor 2 (FOXL2) inhibits estrogen synthesis and its gene mutation can lead to GCTs. We unexpected found that estrogen also regulates the expression level of FOXL2. High-dose estrogen increased the expression of FOXL2 in ovarian-like granulosa (KGN) cells at both the mRNA and protein levels. However, no research has reported on the molecular regulatory mechanism and function between estrogen and FOXL2 in the development of GCTs. In this research, FOXL2 was highly expressed in KGN cells and ovarian stromal tumor tissues. Deletion of FOXL2 increased the estrogen secretion in KGN cells. In turn, high-dose estrogen increased the FOXL2 expression levels. FOXL2 was phosphorylated by GPR30 (G protein coupled receptor)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Estrogen inhibited cell migration and proliferation, while promoting cell apoptosis. Deletion of FOXL2 inhibited the influence of estrogen on cell proliferation, migration, and apoptosis. Results suggest that estrogen via regulating FOXL2 suppresses cell proliferation and induces cell apoptosis.
Collapse
Affiliation(s)
- Jun Wu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yujie Zhang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yanyan Li
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
105
|
Huang J, Shen G, Ren H, Zhang Z, Yu X, Zhao W, Shang Q, Cui J, Yu P, Peng J, Liang D, Yang Z, Jiang X. Role of forkhead box gene family in bone metabolism. J Cell Physiol 2019; 235:1986-1994. [DOI: 10.1002/jcp.29178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinjing Huang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Qi Shang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianchao Cui
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiancheng Peng
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - De Liang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhidong Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
106
|
Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci 2019; 20:ijms20194720. [PMID: 31548505 PMCID: PMC6801789 DOI: 10.3390/ijms20194720] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Ovarian follicle pool depletion, infertility, and premature menopause are all known sequelae of cancer treatment that negatively impact the quality of life of young cancer survivors. The mechanisms involved in this undesired iatrogenic ovarian damage have been intensively studied, but many of them remain unclear. Several chemotherapeutic drugs have been shown to induce direct and indirect DNA-damage and/or cellular stress, which are often followed by apoptosis and/or autophagy. Damage to the ovarian micro-vessel network induced by chemotherapeutic agents also seems to contribute to ovarian dysfunction. Another proposed mechanism behind ovarian follicle pool depletion is the overactivation of primordial follicles from the quiescent pool; however, current experimental data are inconsistent regarding these effects. There is great interest in characterizing the mechanisms involved in ovarian damage because this might lead to the identification of potentially protective substances as possible future therapeutics. Research in this field is still at an experimental stage, and further investigations are needed to develop effective and individualized treatments for clinical application. This review provides an overview of the current knowledge and the proposed hypothesis behind chemotherapy-induced ovarian damage, as well as current knowledge on possible co-treatments that might protect the ovary and the follicles from such damages.
Collapse
|
107
|
Hall SE, Upton RMO, McLaughlin EA, Sutherland JM. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary. Reprod Fertil Dev 2019; 30:624-633. [PMID: 28945982 DOI: 10.1071/rd17024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.
Collapse
Affiliation(s)
- Sally E Hall
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rose M O Upton
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
108
|
Belli M, Secchi C, Stupack D, Shimasaki S. FOXO1 Negates the Cooperative Action of FOXL2 C134W and SMAD3 in CYP19 Expression in HGrC1 Cells by Sequestering SMAD3. J Endocr Soc 2019; 3:2064-2081. [PMID: 31701078 PMCID: PMC6797057 DOI: 10.1210/js.2019-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Adult granulosa cell tumor (aGCT) is a rare type of ovarian cancer characterized by estrogen excess. Interestingly, only the single somatic mutation FOXL2 C134W was found across virtually all aGCTs. We previously reported that FOXL2C134W stimulates CYP19 transcription synergistically with SMAD3, leading to elevated estradiol synthesis in a human granulosa cell line (HGrC1). This finding suggested a key role for FOXL2C134W in causing the typical estrogen overload in patients with aGCTs. We have now investigated the effect of FOXO1, a tumor suppressor, on CYP19 activation by FOXL2C134W in the presence of SMAD3. Intriguingly, FOXO1 antagonized the positive, synergistic effect of FOXL2C134W and SMAD3 on CYP19 transcription. Similar to FOXL2C134W, FOXO1 binds SMAD3 but not the proximal FOXL2C134W binding site (-199 bp) of the CYP19 promoter identified in our earlier studies. The results of a competitive binding assay suggested a possible underlying mechanism in which FOXO1 sequesters SMAD3 away from FOXL2C134W, thereby negating the cooperative action of FOXL2C134W and SMAD3 in inducing CYP19 expression. To our knowledge, this study is the first to demonstrate the ability of FOXO1 to restore an altered CYP19 expression by FOXL2C134W and SMAD3 and provides insight as to why FOXO1 deficiency promotes GCT development in mice.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Christian Secchi
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
109
|
Grzechocińska B, Warzecha D, Wypchło M, Ploski R, Wielgoś M. Premature ovarian insufficiency as a variable feature of blepharophimosis, ptosis, and epicanthus inversus syndrome associated with c.223C > T p.(Leu75Phe) FOXL2 mutation: a case report. BMC MEDICAL GENETICS 2019; 20:132. [PMID: 31366388 PMCID: PMC6670140 DOI: 10.1186/s12881-019-0865-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/24/2019] [Indexed: 03/20/2023]
Abstract
BACKGROUND FOXL2 gene mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and may be associated with premature ovarian insufficiency (POI). Two types of BPES were described in the literature. BPES type 2 is a simple association of inherited developmental defects of the eyelid area, while in type 1 female patients additionally suffer from POI. The following case study is the first report of endocrine impairments typical for menopausal transition in young female with NG_012454.1:g.138665342G > A, c.223C > T p.(Leu75Phe), mutation in FOXL2 gene. This mutation has been reported in the literature before, however until now, it was never linked to BPES type 1. CASE PRESENTATION An 18-year-old nulliparous woman suspected of secondary amenorrhea was referred to our Endocrinology Outpatient Clinic. Blood tests revealed decreased levels of AMH (anti-Mullerian hormone) and increased levels of gonadotropins, suggesting menopausal transition. Her past medical history was remarkable for several ophthalmic defects that has required surgical interventions. BPES syndrome had not been suspected before, although the patient had reported a similar phenotype occurring in her father, sister and half-sister. Venous blood samples were collected from the female proband and from her three family members. Whole-exome sequencing and deep amplicon sequencing were performed. A potential pathogenic variant in the FOXL2 gene was revealed. Namely, the c.223C > T p.(Leu75Phe) missense variant was detected. CONCLUSIONS The authors found mutations, c.223C > T p.(Leu75Phe) in the FOXL2 gene in a young woman with hormonal disorders suggesting menopausal transition. These results indicate that the possibility of different phenotypes should be considered in patients with a similar genetic mutation.
Collapse
Affiliation(s)
- Barbara Grzechocińska
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Pl. Starynkiewicza 1/3, 02-015, Warsaw, Poland
| | - Damian Warzecha
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Pl. Starynkiewicza 1/3, 02-015, Warsaw, Poland.
| | - Maria Wypchło
- Department of Medical Genetics, Medical University of Warsaw, ul Pawinskiego 3c, 02-106, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, ul Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Mirosław Wielgoś
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Pl. Starynkiewicza 1/3, 02-015, Warsaw, Poland
| |
Collapse
|
110
|
Niu BB, Tang N, Xu Q, Chai PW. Genomic Disruption of FOXL2 in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Type 2: A Novel Deletion-Insertion Compound Mutation. Chin Med J (Engl) 2019; 131:2380-2383. [PMID: 30246734 PMCID: PMC6166469 DOI: 10.4103/0366-6999.241818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bei-Bei Niu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ning Tang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Wei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
111
|
Bademci G, Abad C, Incesulu A, Elian F, Reyahi A, Diaz-Horta O, Cengiz FB, Sineni CJ, Seyhan S, Atli EI, Basmak H, Demir S, Nik AM, Footz T, Guo S, Duman D, Fitoz S, Gurkan H, Blanton SH, Walter MA, Carlsson P, Walz K, Tekin M. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet 2019; 28:1286-1297. [PMID: 30561639 DOI: 10.1093/hmg/ddy431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/14/2022] Open
Abstract
Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.
Collapse
Affiliation(s)
- Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Armagan Incesulu
- Department of Otolaryngology-Head and Neck Surgery, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fahed Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Filiz B Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claire J Sineni
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medical Genetics, Bakirkoy Dr Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hikmet Basmak
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Suat Fitoz
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
112
|
León NY, Reyes AP, Harley VR. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol 2019; 7:560-574. [PMID: 30803928 DOI: 10.1016/s2213-8587(18)30339-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
The diagnosis and management of children born with ambiguous genitalia is challenging for clinicians. Such differences of sex development (DSDs) are congenital conditions in which chromosomal, gonadal, or anatomical sex is atypical. The aetiology of DSDs is very heterogenous and a precise diagnosis is essential for management of genetic, endocrine, surgical, reproductive, and psychosocial issues. In this Review, we outline a step-by-step approach, compiled in a diagnostic algorithm, for the clinical assessment and molecular diagnosis of a patient with ambiguity of the external genitalia on initial presentation. We appraise established and emerging technologies and their effect on diagnosis, and discuss current controversies.
Collapse
Affiliation(s)
- Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Genetics Department, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
113
|
Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex development (DSD). Best Pract Res Clin Endocrinol Metab 2019; 33:101271. [PMID: 31005504 DOI: 10.1016/j.beem.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human gonadal development is regulated by the temporospatial expression of many different genes with critical dosage effects. Subsequent sex steroid hormone production requires several consecutive enzymatic steps and functional hormone receptors. Disruption of this complex process can result in atypical sex development and lead to conditions referred to as differences (disorders) of sex development (DSD). With the advent of massively parallel sequencing technologies, in silico protein modeling and innovative tools for the generation of animal models, new genes and pathways have been implicated in the pathogenesis of these conditions. Here, we provide an overview of the currently known DSD genes and mechanisms involved in the process of gonadal and phenotypical sex development and highlight phenotypic findings that may trigger further diagnostic investigations.
Collapse
Affiliation(s)
- Dorien Baetens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium; Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Martine Cools
- Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium.
| |
Collapse
|
114
|
Bunyan DJ, Thomas NS. Screening of a large cohort of blepharophimosis, ptosis, and epicanthus inversus syndrome patients reveals a very strong paternal inheritance bias and a wide spectrum of novel FOXL2 mutations. Eur J Med Genet 2019; 62:103668. [PMID: 31077882 DOI: 10.1016/j.ejmg.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022]
Abstract
Blepharophimosis, Ptosis, and Epicanthus inversus Syndrome (BPES) is caused by autosomal dominant mutations in FOXL2. There are two forms of BPES: type I (with primary ovarian insufficiency (POI)) and type II (without POI). Data are presented from a large cohort of 177 BPES probands. Diagnostic testing identified a wide range of mutations in 119 mutation-positive patients (including 38 novel mutations). Although FOXL2 mutations are distributed throughout the gene, over 50% were frameshift mutations within a hotspot region of the gene that can be detected using a single primer pair to provide a cost-effective and rapid screening method. There was a significant proportion of de novo cases in this study, although in 7% there may be undetected parental mosaicism. There was an excess of female compared to male probands and a highly significant bias in the parental original of inherited mutations, with 20/21 found to be paternal in origin (95%). This could be because BPES in a female is more likely to come to clinical attention and because there is a generalised and more widespread clinical effect on fertility, in addition to the established association with POI. This study demonstrates the importance of cascade screening and provides new information on inheritance and parental mosaicism in BPES which will aid genetic counselling and accurate risk management.
Collapse
Affiliation(s)
- David J Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire, SP2 8BJ, UK; Faculty of Medicine, University of Southampton, Southampton, Hampshire, SO16 6YD, UK.
| | - N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire, SP2 8BJ, UK; Faculty of Medicine, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| |
Collapse
|
115
|
Nicol B, Grimm SA, Gruzdev A, Scott GJ, Ray MK, Yao HHC. Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Hum Mol Genet 2019; 27:4273-4287. [PMID: 30212841 DOI: 10.1093/hmg/ddy312] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Greg J Scott
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Manas K Ray
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
116
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
117
|
Chacón-Camacho OF, Salgado-Medina A, Alcaraz-Lares N, López-Moreno D, Barragán-Arévalo T, Nava-Castañeda A, Rodríguez-Uribe G, Lieberman E, Rodríguez-Cabrera L, González-Del Angel A, Borbolla AM, Fernández-Hernández L, Graue-Hernández EO, Zenteno JC. Clinical characterization and identification of five novel FOXL2 pathogenic variants in a cohort of 12 Mexican subjects with the syndrome of blepharophimosis-ptosis-epicanthus inversus. Gene 2019; 706:62-68. [PMID: 31048069 DOI: 10.1016/j.gene.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant entity characterized by eyelid malformations and caused by mutations in the forkhead box L2 (FOXL2) gene. Clinical and genetic analyses of large cohorts of BPES patients from different ethnic origins are important for a better characterization of FOXL2 mutational landscape. The purpose of this study is to describe the phenotypic features and the causal FOXL2 variants in a Mexican cohort of BPES patients. A total of 12 individuals with typical facial findings were included. Clinical evaluation included palpebral measurements and levator function assessment. The complete coding sequence of FOXL2 was amplified by PCR and subsequently analyzed by Sanger sequencing. A total of 11 distinct FOXL2 pathogenic variants were identified in our cohort (molecular diagnostic rate of 92%), including 5 novel mutations. Our results broaden the BPES-related mutational spectrum and supports considerable FOXL2 allelic heterogeneity in our population.
Collapse
Affiliation(s)
- Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Acatzin Salgado-Medina
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Nayeli Alcaraz-Lares
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Daniel López-Moreno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Angel Nava-Castañeda
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Genaro Rodríguez-Uribe
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Esther Lieberman
- Department of Genetics, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Lourdes Rodríguez-Cabrera
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Ariadna González-Del Angel
- Molecular Biology Laboratory, Department of Genetics, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ana María Borbolla
- Department of Ophthalmology, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
118
|
Lyu Q, Hu J, Yang X, Liu X, Chen Y, Xiao L, Liu Y, Wang Q, Chen J, Huang M, Yu Z, Yang H, Shi H, Zhang Y, Zhao H. Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. Gen Comp Endocrinol 2019; 274:26-36. [PMID: 30594589 DOI: 10.1016/j.ygcen.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The orange-spotted grouper, Epinephelus coioides, is a marine protogynous hermaphrodite fish of commercial importance. There are many examples of sex change species among marine fish, but the molecular basis for the sex change is still unknown. Gonadal expression patterns of the dmrts and foxls genes in E. coioides have pointed to sexual dimorphism in this species and it has been shown that mRNA levels of dmrts and foxls to vary significantly during reproduction cycles. The steroid 17α-methyltestosterone was used to induce sex reversal in these fish, during which dmrts and foxls levels changed significantly and subsequently reverted to normal when 17α-methyltestosterone was withdrawn. Interestingly, the expression of dmrt2b and dmrt3 was not affected by this steroid. We speculate that the role of foxl2 in reproduction may be conserved via regulation of early differentiation of the ovary by the hypothalamus-pituitary-gonad axis, and dmrt2 may have a significant role in premature ovarian differentiation and maintenance in E. coioides. dmrt1 and foxl3 played a role in the development of the testes and are believed to be potential male regulatory genes.
Collapse
Affiliation(s)
- Qingji Lyu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Juan Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XianKuan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XiaoChun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - YiBin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - YaLi Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - JiaXing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - MinWei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - ZeShu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - HuiRong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - HeRong Shi
- Guangdong Marine Fishery Experiment Center, Huizhou 516081, Guangdong, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China.
| | - HuiHong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
119
|
Bertini V, Valetto A, Baldinotti F, Azzarà A, Cambi F, Toschi B, Giacomina A, Gatti GL, Gana S, Caligo MA, Bertelloni S. Blepharophimosis, Ptosis, Epicanthus Inversus Syndrome: New Report with a 197-kb Deletion Upstream of FOXL2 and Review of the Literature. Mol Syndromol 2019; 10:147-153. [PMID: 31191203 DOI: 10.1159/000497092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is due to heterozygous FOXL2 intragenic mutations in about 70% of the patients, whereas total or partial gene deletions account for a minority of cases. Alteration of FOXL2 regulatory elements has been rarely described in patients with BPES. In this study, a prepubertal girl with BPES due to a 197-kb de novo deletion of the regulatory elements upstream of FOXL2 is reported. This girl presented with additional clinical features such as a soft cleft palate and microcephaly; thus, this copy number variant might have other somatic effects. The present deletion encompasses 2 coding genes (MRPS22 and COPB2), whose homozygous mutations have been associated with microcephaly. In our case, the sequences of the non-deleted allele were normal, ruling out a compound genetic defect. Normal levels of new biomarkers of ovarian reserve (anti-müllerian hormone, inhibin B) likely indicate an early diagnosis of type 2 BPES, but an evolutive gonadal damage will be excluded only by long-term follow-up. Additional reports of microdeletions upstream of FOXL2 are needed to better define the underlying genetic mechanism and the related phenotypic spectrum; the ability of the new hormonal markers to predict ovarian function in adolescence and adulthood should be confirmed.
Collapse
Affiliation(s)
- Veronica Bertini
- SOD Citogenetica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Angelo Valetto
- SOD Citogenetica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Fulvia Baldinotti
- SOD Genetica Molecolare, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessia Azzarà
- SOD Citogenetica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Cambi
- SOD Citogenetica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Benedetta Toschi
- Sezione Genetica Medica, Medicina Interna 1, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | - Gian L Gatti
- U.O. Chirurgia Plastica, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Simone Gana
- Sezione Genetica Medica, Medicina Interna 1, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Silvano Bertelloni
- Pediatric Division, Department of Obstetrics, Gynecology and Pediatrics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
120
|
Genome-wide analysis of Chongqing native intersexual goats using next-generation sequencing. 3 Biotech 2019; 9:99. [PMID: 30800610 DOI: 10.1007/s13205-019-1612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
Sex reversal has been studied extensively in vertebrate species, particularly in domestic goats, because polled intersex syndrome (PIS) has seriously affected their production efficiency. In the present study, we used histopathologically diagnosed cases of PIS to identify correlated genomic regions and variants using representative selection signatures and performed GWAS using Restriction-Site Associated Resequencing DNA. We identified 171 single-nucleotide polymorphisms (SNPs) that may have contributed to this phenotype, and 53 SNPs were determined to be located in coding regions using a general linear model. The transcriptome data sets of differentially expressed genes (DEGs) in the pituitary tissues of intersexual and nonintersexual goats were examined using high-throughput technology. A total of 10,063 DEGs and 337 long noncoding RNAs were identified. The DEGs were clustered into 56 GO categories and determined to be significantly enriched in 53 signaling pathways by KEGG analysis. In addition, according to qPCR results, PSPO2 and FSH were significantly more highly expressed in sexually mature pituitary tissues of intersexual goats compared to healthy controls (nonintersexual). These results demonstrate that certain novel potential genomic regions may be responsible for intersexual goats, and the transcriptome data indicate that the regulation of various physiological systems is involved in intersexual goat development. Therefore, these results provide helpful data for understanding the molecular mechanisms of intersex syndrome in goats.
Collapse
|
121
|
|
122
|
Nagai T, Trakanant S, Kawasaki M, Kawasaki K, Yamada Y, Watanabe M, Blackburn J, Otsuka-Tanaka Y, Hishinuma M, Kitatmura A, Meguro F, Yamada A, Kodama Y, Maeda T, Zhou Q, Saijo Y, Yasue A, Sharpe PT, Hindges R, Takagi R, Ohazama A. MicroRNAs control eyelid development through regulating Wnt signaling. Dev Dyn 2019; 248:201-210. [PMID: 30653268 DOI: 10.1002/dvdy.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The timing, location, and level of gene expression are crucial for normal organ development, because morphogenesis requires strict genetic control. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating gene expression level. Although miRNAs are known to be involved in many biological events, the role of miRNAs in organogenesis is not fully understood. Mammalian eyelids fuse and separate during development and growth. In mice, failure of this process results in the eye-open at birth (EOB) phenotype. RESULTS It has been shown that conditional deletion of mesenchymal Dicer (an essential protein for miRNA processing; Dicer fl/fl ;Wnt1Cre) leads to the EOB phenotype with full penetrance. Here, we identified that the up-regulation of Wnt signaling resulted in the EOB phenotype in Dicer mutants. Down-regulation of Fgf signaling observed in Dicer mutants was caused by an inverse relationship between Fgf and Wnt signaling. Shh and Bmp signaling were down-regulated as the secondary effects in Dicer fl/fl ;Wnt1Cre mice. Wnt, Shh, and Fgf signaling were also found to mediate the epithelial-mesenchymal interactions in eyelid development. CONCLUSIONS miRNAs control eyelid development through Wnt. Developmental Dynamics 248:201-210, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom.,Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yurie Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - James Blackburn
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Yoko Otsuka-Tanaka
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom.,Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Mitsue Hishinuma
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Atsushi Kitatmura
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeyasu Maeda
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| |
Collapse
|
123
|
Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod 2019; 33:666-679. [PMID: 29506120 DOI: 10.1093/humrep/dey011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can novel genetic candidates involved in follicle dormancy, activation and integrity be identified from transcriptomic profiles of isolated granulosa cells from human primordial and primary follicles? SUMMARY ANSWER The granulosa cell compartment of the human primordial and primary follicle was extensively enriched in signal transducer and activator of transcription 3 (STAT3) and cAMP-response element binding protein (CREB) signalling, and several other putative signalling pathways that may also be mediators of follicle growth and development were identified. WHAT IS KNOWN ALREADY Mechanistic target of rapamycin kinase (mTOR) signalling and the factors Forkhead Box L2 (FOXL2) and KIT proto-oncogene receptor tyrosine kinase (KITL) may be involved in defining the early steps of mammalian follicular recruitment through complex bidirectional signalling between the oocyte and granulosa cells. cAMP/protein kinase K (PKA)/CREB signalling is a feature of FSH-induced regulation of granulosa cell steroidogenesis that is essential to normal human fertility. STUDY DESIGN, SIZE, DURATION A class comparison study was carried out on primordial follicles (n = 539 follicles) and primary follicles (n = 261) follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA samples from isolates of laser capture micro-dissected oocytes and follicles from the primordial and primary stage, respectively, were sequenced on the HiSeq Illumina platform. Data mapping, quality control, filtering, FPKM (fragments per kilobase of exon per million) normalization and comparisons were performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modelling of complex biological systems was performed using Ingenuity Pathway Analysis (IPA). For validation of transcriptomic findings, we performed quantitative RT-PCR of selected candidate genes. Furthermore, we interrogated the in situ localization of selected corresponding proteins using immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Our differentially expressed gene analysis revealed a number of transcripts in the granulosa cells to be significantly down- (736 genes) or up- (294 genes) regulated during the human primordial-to-primary follicle transition. The IPA analysis revealed enriched canonical signalling pathways not previously associated with granulosa cells from human primordial and primary follicles. Immunofluorescent staining of human ovarian tissue explored the intra-ovarian localization of FOG2, and FOXL2, which revealed the presence of forkhead box L2 (FOXL2) in both oocytes and granulosa cells in primary follicles, with a more enriched staining in the granulosa cells in primary follicles. Friend of GATA 2 (FOG2) stained strongly in oocytes in primordial follicles, with a shift towards granulosa cell as follicle stage advanced. LARGE SCALE DATA http://users-birc.au.dk/biopv/published_data/ernst_et_al_GC_2017/. LIMITATIONS REASONS FOR CAUTION This is a descriptive study, and no functional assays were employed. The study was based on a limited number of patients, and it is acknowledged that natural biological variance exists in human samples. Strict filters were applied to accommodate the in silico extraction of the granulosa cell contribution. In support of this, quantitative RT-PCR was used to confirm selected candidate genes, and immunofluorescent staining was employed to interrogate the intra-ovarian distribution of selected corresponding proteins. Moreover, it is unknown whether the primordial follicles analysed represent those still in the resting pool, or those from the cohort that have entered the growing pool. WIDER IMPLICATIONS OF THE FINDINGS We present, for the first time, a detailed description of global gene activity in the human granulosa cell compartment of primordial and primary follicles. These results may be utilized in the development of novel clinical treatment strategies aimed at improving granulosa cell function. STUDY FUNDING/COMPETING INTEREST(S) E.H.E. was supported by the Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.L.H. was supported by a grant from Fondens til Lægevidenskabens Fremme and Kong Christian Den Tiendes Fond. No authors have competing interests to declare.
Collapse
Affiliation(s)
- E H Ernst
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - P Villesen
- Bioinformatic Research Centre (BiRC), Aarhus University, C.F. Møllers Allé 8, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
| |
Collapse
|
124
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
125
|
Tang B, Zhang Y, Zhang W, Zhu Y, Yuan S. Deletion of FOXL2 by CRISPR promotes cell cycle G0/G1 restriction in KGN cells. Int J Mol Med 2019; 43:567-574. [PMID: 30365048 DOI: 10.3892/ijmm.2018.3956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Forkhead box L2 (FOXL2), a member of the forkhead family of transcription factors, is important in eyelid and ovary differentiation. Although the function of FOXL2 in organogenesis has been investigated, the detailed mechanisms by which FOXL2 mediates cellular process remain to be fully elucidated. Few FOXL2‑knockout cell lines have been reported, which has limited molecular mechanism investigations. CRISPR is a novel gene editing technique that has been widely used in human genetic diseases. In the present study, FOXL2 was disrupted using clustered regularly interspaced short palindromic repeats (CRISPR), and screening of a stable knockout cell line was performed in human ovarian granulosa KGN cells. Three sites (F404, F425 and F446) around the ATG start codon on the FOXL2 DNA sequence were constructed in a guide RNA lentivirus. Targeting F425 was most efficient, and western blot analysis and DNA sequencing of the resulting cells suggested that both FOXL2 alleles were fully disrupted. In addition, flow cytometry results indicated that the knockout of FOXL2 restricted cell cycle progression at the G0/G1 phase. In addition, the expression levels of cell cycle mediators cyclin D1 and cyclin‑dependent kinase 4 were reduced. These results confirmed that FOXL2 disruption in KGN cells is associated with the cell cycle attenuation.
Collapse
Affiliation(s)
- Bin Tang
- Department of International Medicine, China Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yujie Zhang
- Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 461042, P.R. China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 461042, P.R. China
| | - Yuqing Zhu
- Department of International Medicine, China Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shaopeng Yuan
- Beijing Ruijian Technology Co., Ltd., Beijing 100086, P.R. China
| |
Collapse
|
126
|
Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet 2018; 35:2121-2128. [PMID: 30219969 PMCID: PMC6289926 DOI: 10.1007/s10815-018-1305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Approximately 1-2% of the women faces three or more successive spontaneous miscarriages termed as recurrent miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic factors that may have role in incidence of recurrent miscarriages. METHOD Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic RM, which are the two extreme ends of female reproductive pathology. CONCLUSION In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening our understanding of RM pathophysiology.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Poonam Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| |
Collapse
|
127
|
Ye YX, Pan PL, Xu JY, Shen ZF, Kang D, Lu JB, Hu QL, Huang HJ, Lou YH, Zhou NM, Zhang CX. Forkhead box transcription factor L2 activates Fcp3C to regulate insect chorion formation. Open Biol 2018; 7:rsob.170061. [PMID: 28615473 PMCID: PMC5493777 DOI: 10.1098/rsob.170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022] Open
Abstract
Most animals are oviparous. However, the genes regulating egg shell formation remain not very clear. In this study, we found that Nilaparvata lugens Forkhead box transcription factor L2 (NlFoxL2) directly activated follicle cell protein 3C (NlFcp3C) to regulate chorion formation. NlFoxL2 and NlFcp3C had a similar expression pattern, both highly expressed in the follicular cells of female adults. Knockdown of NlFoxL2 or NlFcp3C also resulted in the same phenotypes: obesity and female infertility. RNA interference (RNAi) results suggested that NlFcp3C is a downstream gene of NlFoxL2. Furthermore, transient expression showed that NlFoxL2 could directly activate the NlFcp3C promoter. These results suggest that NlFcp3C is a direct target gene of NlFoxL2. Depletion of NlFoxL2 or NlFcp3C prevented normal chorion formation. Our results first revealed the functions of Fcp3C and FoxL2 in regulation of oocyte maturation in an oviparous animal.
Collapse
Affiliation(s)
- Yu-Xuan Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peng-Lu Pan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ji-Yu Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhang-Fei Shen
- College of life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dong Kang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jia-Bao Lu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing-Lin Hu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yi-Han Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Nai-Ming Zhou
- College of life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
128
|
Genetische Ursachen der prämaturen Ovarialinsuffizienz. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
129
|
Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: A histopathological study. PLoS One 2018; 13:e0205494. [PMID: 30304016 PMCID: PMC6179287 DOI: 10.1371/journal.pone.0205494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 01/29/2023] Open
Abstract
Fibroblasts are a major component of cancer tissue and known to contribute to cancer progression. However, it remains unknown whether they are derived from local fibroblasts or of other origin. This study was designed to identify the contribution of local stromal cells to cancer stroma in human epithelial ovarian cancer. Seventy-six cases of surgically resected primary ovarian carcinoma (48 cases confined to the ovaries and 28 cases with distant metastases) and 17 cases of secondary ovarian tumor (e.g. colon cancer metastasized to the ovary) were enrolled in this study. The tissues were immunostained for forkhead box protein L2 (FOXL2), a transcription factor crucial for ovarian development and function, and markers for cancer-associated fibroblasts (CAFs) and inflammatory cells. Under normal condition, FOXL2 expression was restricted to ovarian stromal cells and some other types of cells in female genital tracts and never found in other sites of the body. FOXL2-positive cells were found in all primary and secondary tumors in the ovary, and were the dominant stromal cells in most cases. In contrast, only a few FOXL2-positive cells were found in peritoneal seeding sites of four serous carcinoma cases, and all the other tumors at extraovarian sites had no FOXL2-positive cells. FOXL2-positive cells in the ovarian lesion variably expressed CAFs markers, such as alpha-smooth muscle actin and fibroblast activating protein, as determined by double immunostaining. Background inflammation, but not histological subtype or origin of the neoplasm seemed to correlate with the proportion of FOXL2-positive cells. These results suggest that ovarian stromal cells are the main source of cancer stroma in the ovary but do not seem to move to distant sites via circulation together with tumor cells. Our results also support the hypothesis that cancer-associated fibroblasts may originate locally, which was previously demonstrated using animal models.
Collapse
|
130
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
131
|
Li H, Gu Y. Genetic and Functional Analyses of Two Missense Mutations in the Transcription Factor FOXL2 in Two Chinese Families with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome. Genet Test Mol Biomarkers 2018; 22:585-592. [PMID: 30234390 DOI: 10.1089/gtmb.2018.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal-dominant inherited disease. This study was carried out to investigate the genetic and functional changes within the FOXL2 gene in two Chinese families with BPES. MATERIALS AND METHODS DNA was extracted from the peripheral blood of 26 persons from two different Chinese BPES families (13 of which were affected), as well as 200 cataract patients to act as normal controls. FOXL2 gene mutations were detected using polymerase chain reaction (PCR) and DNA sequencing techniques. Bioinformatic analyses were performed to analyze the structures and functions of the mutant proteins. Wild-type and mutant FOXL2 genes were subcloned into pEGFP-N1 and pCDB vectors and then transfected into COS7 and HEK293T cell lines. We observed protein subcellular localization, and used quantitative real-time (qRT)-PCR and western blots to assess regulation of the target OSR2 gene. RESULTS We detected two novel missense mutations, c.162G>T (p.Lys54Asn) and c.308G>A (p.Arg103His), in the FOXL2 gene; one in each of the study families. Bioinformatic analyses indicated no obvious differences between the wild-type and mutant protein structures. However, they did predict that the two mutations were likely damaging to protein function. We found that the two mutated proteins were both largely distributed within the nucleus and that there was little found in the cytoplasm. The OSR2 mRNA content decreased significantly when the plasmids carrying the c.162G>T and c.308G>A were transfected into COS7 and HEK293 cell lines, when compared to the empty and the wild-type FOXL2 carrier. Western blot analyses indicated, that after transfecting the c.162G>T mutation, the OSR2 protein level was relatively similar to the wild-type, but that the cells transfected with the c.308G>A mutation showed significantly decreased levels of the OSR2 protein. CONCLUSIONS Our study broadens the BPES gene mutation spectrum and suggests a possible mechanism of action. It also provides reference data for the further studies of BPES.
Collapse
Affiliation(s)
- Huiyan Li
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Yangshun Gu
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
132
|
Blepharophimosis-ptosis-epicanthus inversus syndrome caused by a 54-kb microdeletion in a FOXL2 cis-regulatory element. Clin Dysmorphol 2018; 27:58-62. [PMID: 29481440 DOI: 10.1097/mcd.0000000000000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
133
|
Pavone P, Cho SY, Praticò A, Falsaperla R, Ruggieri M, Jin DK. Ptosis in childhood: A clinical sign of several disorders: Case series reports and literature review. Medicine (Baltimore) 2018; 97:e12124. [PMID: 30200099 PMCID: PMC6133583 DOI: 10.1097/md.0000000000012124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Blepharoptosis (ptosis) is a common but often overlooked sign that may serve as a sign/manifestation of other conditions, ranging from a mild and purely cosmetic presentation to a severe and occasionally progressive disorder. Ptosis may show an acute onset or may manifest as a chronic disorder. Its presentation may vary: unilateral versus bilateral, progressive versus non-progressive, isolated versus complex which occurs in association with other symptoms, and congenital versus acquired (often concomitant with neuromuscular disorders).Congenital ptosis includes the isolated type-the congenital cranial dysinnervation disorders, which are further, distinguished into different subtypes such as Horner syndrome (HS), and ptosis as a sign/manifestation of various congenital malformation syndromes.In this article, we review the primary causes of ptosis occurring in childhood, and its various clinical presentations, including a short report on selected cases observed in our institution: a classical isolated familial ptosis comprising 14 members over 5 generations, 3 sibling with isolated congenital ptosis who in addition suffered by episodes of febrile seizures, a patient with Duane retraction syndrome who presented congenital skin and hair anomalies, and a girl with HS who showed a history of congenital imperforate hymen. A flowchart outlining the congenital and acquired type of ptosis and the clinical approach to the management and treatment of children with this anomaly is reported.
Collapse
Affiliation(s)
- P. Pavone
- University-Hospital Policlinico-Vittorio Emanuele
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - A.D. Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Italy
| | | | - M. Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Italy
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
134
|
Zhou L, Wang J, Wang T. Functional study on new FOXL2 mutations found in Chinese patients with blepharophimosis, ptosis, epicanthus inversus syndrome. BMC MEDICAL GENETICS 2018; 19:121. [PMID: 30029625 PMCID: PMC6053710 DOI: 10.1186/s12881-018-0631-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/21/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Blepharophimosis, ptosis, epicanthus inversus syndrome (BPES) is a rare inheritable disease that mainly affects eyelid development associated with (type I) or without (type II) ovarian dysfunction, resulting in premature ovarian failure (POF). Mutations in the gene forkhead box L2 (FOXL2) have been shown to be responsible for BPES. The aim of this study was to determine and functionally validate the FOXL2 mutation in a Chinese BPES family. METHODS Twelve individuals including five BPES patients from a Chinese family were enrolled. Genomic DNA was extracted from peripheral blood of enrolled subjects. The coding region of the FOXL2 gene was amplified and mutations were determined by sequencing analyses. Functional analysis was carried out to study changes in expression and transcriptional activity of the mutant FOXL2 protein. RESULTS A novel mutation in the FOXL2 gene (c.931C > T) was detected in all five BPES patients, which converts a histidine residue into a tyrosine (p.H311Y) in the FOXL2 protein. Functional analysis revealed that this point mutation reduces FOXL2 protein expression, concomitant with decreased transcriptional activity on the steroidogenic acute regulatory (StAR) gene promotor. CONCLUSIONS Our results expand the mutational spectrum of the FOXL2 gene and provide additional insights to the research on the molecular pathogenesis of FOXL2 in BPES.
Collapse
Affiliation(s)
- Lu Zhou
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China
| | - Jiaqi Wang
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China
| | - Tailing Wang
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China.
| |
Collapse
|
135
|
Cools M, Nordenström A, Robeva R, Hall J, Westerveld P, Flück C, Köhler B, Berra M, Springer A, Schweizer K, Pasterski V. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat Rev Endocrinol 2018; 14:415-429. [PMID: 29769693 PMCID: PMC7136158 DOI: 10.1038/s41574-018-0010-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The term differences of sex development (DSDs; also known as disorders of sex development) refers to a heterogeneous group of congenital conditions affecting human sex determination and differentiation. Several reports highlighting suboptimal physical and psychosexual outcomes in individuals who have a DSD led to a radical revision of nomenclature and management a decade ago. Whereas the resulting recommendations for holistic, multidisciplinary care seem to have been implemented rapidly in specialized paediatric services around the world, adolescents often experience difficulties in finding access to expert adult care and gradually or abruptly cease medical follow-up. Many adults with a DSD have health-related questions that remain unanswered owing to a lack of evidence pertaining to the natural evolution of the various conditions in later life stages. This Consensus Statement, developed by a European multidisciplinary group of experts, including patient representatives, summarizes evidence-based and experience-based recommendations for lifelong care and data collection in individuals with a DSD across ages and highlights clinical research priorities. By doing so, we hope to contribute to improving understanding and management of these conditions by involved medical professionals. In addition, we hope to give impetus to multicentre studies that will shed light on outcomes and comorbidities of DSD conditions across the lifespan.
Collapse
Affiliation(s)
- Martine Cools
- Department of Paediatric Endocrinology, Ghent University Hospital, University of Ghent, Ghent, Belgium.
| | - Anna Nordenström
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ralitsa Robeva
- Clinical Center of Endocrinology and Gerontology, Medical University-Sofia, Medical Faculty, Sofia, Bulgaria
| | | | | | - Christa Flück
- Paediatric Endocrinology and Diabetology, Department of Paediatrics and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Birgit Köhler
- Department of Paediatric Endocrinology, Charité University Medicine, Humboldt University Berlin, Berlin, Germany
| | - Marta Berra
- Department of Obstetrics and Gynaecology, Ramazzini Hospital, AUSL Modena, Modena, Italy
| | - Alexander Springer
- Department of Paediatric Surgery, Medical University Vienna, Vienna, Austria
| | - Katinka Schweizer
- Institute for Sex Research and Forensic Psychiatry, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Vickie Pasterski
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
136
|
Pascolini G, Agolini E, Majore S, Novelli A, Grammatico P, Digilio MC. Helsmoortel-Van der Aa Syndrome as emerging clinical diagnosis in intellectually disabled children with autistic traits and ocular involvement. Eur J Paediatr Neurol 2018; 22:552-557. [PMID: 29475819 DOI: 10.1016/j.ejpn.2018.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/25/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
A recent syndromic condition with craniofacial dysmorphisms, comprising congenital ocular defect and neurodevelopmental delay named Helsmoortel-Van der Aa Syndrome (HVDAS) (OMIM#615873), has been described and molecularly defined, identifying pathogenic mutations in the ADNP gene (OMIM#611386) as biological cause. We report on two children, displaying intellectual disability (ID) and peculiar congenital eyes anomalies, both carrying a de novo nonsense mutation in the ADNP gene. The review of present and literature reports, suggests that the diagnosis of HVDAS should be suspected in patients with ID accompanied by behavioral features in the Autism Spectrum Disorder and distinctive craniofacial phenotype. Among dysmorphisms due to malformation of the periorbital region, ptosis appears to be particularly recurrent in HVDAS. Furthermore, the present patients could support the inclusion of the HVDAS associated with specific mutations clustering within a small ADNP genomic region among clinical conditions reminiscent of the blepharophimosis/mental retardation syndromes (BMRS).
Collapse
Affiliation(s)
- Giulia Pascolini
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Emanuele Agolini
- Medical Genetics Laboratory, Bambino Gesù Paediatric Hospital, IRCCS, Rome, Italy
| | - Silvia Majore
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Laboratory, Bambino Gesù Paediatric Hospital, IRCCS, Rome, Italy
| | - Paola Grammatico
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | | |
Collapse
|
137
|
Belli M, Iwata N, Nakamura T, Iwase A, Stupack D, Shimasaki S. FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 2018; 159:1690-1703. [PMID: 29471425 PMCID: PMC6238151 DOI: 10.1210/en.2017-03207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Germline knockout studies in female mice demonstrated an essential role for forkhead box L2 (FOXL2) in early follicle development, whereas an inducible granulosa cell (GC)-specific deletion of Foxl2 in adults has shown ovary-to-testis somatic sex reprogramming. In women, over 120 different germline mutations in the FOXL2 gene have been shown to cause blepharophimosis/ptosis/epicantus inversus syndrome associated with or without primary ovarian insufficiency. By contrast, a single somatic mutation (FOXL2C134W) accounts for almost all adult-type GC tumors (aGCTs). To test the hypothesis that FOXL2C134W differentially regulates the expression of aGCT markers, we investigated the effect of FOXL2C134W on inhibin B and P450 aromatase expression using a recently established human GC line (HGrC1), which we now show to bear two normal alleles of FOXL2. Neither FOXL2wt nor FOXL2C134W regulate INHBB messenger RNA (mRNA) expression. However, FOXL2C134W selectively displays a 50-fold induction of CYP19 mRNA expression dependent upon activin A. Mechanistically, the CYP19 promoter is activated in a similar way by FOXL2C134W interaction with SMAD3, but not by FOXL2wt. SMAD2 had no effect. Moreover, FOXL2C134W interactions with SMAD3 and with the FOX binding element located at -199 bp upstream of the ATG initiation codon of CYP19 are more sustainable than FOXL2wt. Thus, FOXL2C134W potentiates CYP19 expression in HGrC1 cells via enhanced recruitment of SMAD3 to a proximal FOX binding element. These findings may explain the pathophysiology of estrogen excess in patients with aGCT.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Nahoko Iwata
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Tomoko Nakamura
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akira Iwase
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Shunichi Shimasaki, PhD, Department of Reproductive Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
138
|
Bildik G, Akin N, Senbabaoglu F, Esmalian Y, Sahin GN, Urman D, Karahuseyinoglu S, Ince U, Palaoglu E, Taskiran C, Arvas M, Guzel Y, Yakin K, Oktem O. Endogenous c-Jun N-terminal kinase (JNK) activity marks the boundary between normal and malignant granulosa cells. Cell Death Dis 2018; 9:421. [PMID: 29549247 PMCID: PMC5856777 DOI: 10.1038/s41419-018-0459-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Granulosa cell tumor of the ovary (GCT) is a very rare tumor, accounting for only 2% of all ovarian tumors. It originates from sex cords in the ovary and can be divided into adult (95%) and juvenile (5%) types based on histologic findings. To date, no clear etiologic process has been identified other than a missense point mutation in the FOXL2 gene. Our previous works showed that c-Jun N-terminal kinase (JNK) pathway plays critical role in cell cycle progression and mitosis of normal and immortalized granulosa cells and follicle growth in rodent ovaries. These findings led us to investigate the role of JNK pathway in the granulosa cell tumor of the ovary. We used two different GCT cell lines (COV434 and KGN) and fresh GCT samples of adult and juvenile types obtained from the patients during surgery. We have discovered that endogenous kinase activity of JNK is markedly enhanced in the GCT samples and cell lines, whereas it was almost undetectable in mitotic non-malignant human granulosa cells. The inhibition of JNK pathway in GCT cell lines with two different pharmacologic inhibitors (SP600125 and AS601245) or siRNA resulted in a dose-dependent reduction in in vitro cell growth, increased apoptosis and diminished estradiol and AMH productions. JNK inhibition was also associated with a decrease in the number of cells positive for mitosis marker phospho-histone H3Ser 10 in the asynchronous cells; and diminished EdU uptake during S phase and cell cycle arrest at G2/M-phase transition in the synchronized cells. Ex vivo treatment of patient-derived GCT samples with JNK inhibitors for 24 h significantly decreased their in vitro growth and estradiol and AMH productions. Furthermore, in human GCT xenograft model, in vivo tumor growth was significantly reduced and plasma AMH levels were significantly decreased in SCID mice after administration of JNK inhibitors and siRNA. These findings suggest that targeting JNK pathway may provide therapeutic benefit in the treatment of granulosa cell tumors for which currently no curative therapy exists beyond surgery.
Collapse
Affiliation(s)
- Gamze Bildik
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Nazli Akin
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Filiz Senbabaoglu
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Yashar Esmalian
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Gizem Nur Sahin
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Defne Urman
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Sercin Karahuseyinoglu
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey
| | - Umit Ince
- Department of Pathology, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Erhan Palaoglu
- American Hospital Clinical Biochemistry Laboratories, Istanbul, Turkey
| | - Cagatay Taskiran
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, School of Medicine, Koc University, Istanbul, Turkey
| | - Macit Arvas
- Women's Health Center, American Hospital, Istanbul, Turkey
| | - Yilmaz Guzel
- Women's Health Center, American Hospital, Istanbul, Turkey
| | - Kayhan Yakin
- Department of Obstetrics and Gynecology, The Division of Reproductive Endocrinology and Infertility, Translational Research Laboratories, School of Medicine, Koc University, Istanbul, Turkey
| | - Ozgur Oktem
- Department of Obstetrics and Gynecology, The Division of Reproductive Endocrinology and Infertility, Translational Research Laboratories, School of Medicine, Koc University, Istanbul, Turkey.
| |
Collapse
|
139
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
140
|
Yang XW, He WB, Gong F, Li W, Li XR, Zhong CG, Lu GX, Lin G, Du J, Tan YQ. Novel FOXL2 mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome with premature ovarian insufficiency. Mol Genet Genomic Med 2018; 6:261-267. [PMID: 29378385 PMCID: PMC5902393 DOI: 10.1002/mgg3.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/02/2023] Open
Abstract
Background Blepharophimosis‐ptosis‐epicanthus inversus syndrome (BPES) is a malformation of the eyelids. Forkhead Box L2 (FOXL2) is the only gene known to be associated with BPES. Methods We identified two Han Chinese BPES families with premature ovarian insufficiency (POI). Sanger sequencing and in vitro functional analysis were performed to identify the genetic cause. Results Sanger sequencing identified two novel mutations (c.462_468del, c.988_989insG) in FOXL2, one in each family. The in vitro functional analysis confirmed that both novel mutations were associated with impaired transactivation of downstream genes. Specifically, the single‐base insertion, c.988_989insG, led to subcellular mislocalization and aggregation of the encoded protein, which validated the hypothesis that the two novel FOXL2 mutations are deleterious and associated with POI in the two BPES families. Conclusion The novel mutations identified in the present study will enhance the present knowledge of the mutation spectrum of FOXL2. The in vitro experiments provide further insights into the molecular mechanism by which the two new variants mediate disease pathogenesis and may contribute to elucidating the genotype‐phenotype correlation between the two novel FOXL2 mutations and POI.
Collapse
Affiliation(s)
- Xiao-Wen Yang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Xiu-Rong Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Chang-Gao Zhong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| |
Collapse
|
141
|
Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol 2018; 460:170-180. [PMID: 28743519 DOI: 10.1016/j.mce.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Abstract
Primary ovarian insufficiency (POI) is a frequently occurring pathology, leading to infertility. Genetic anomalies have been described in POI and mutations in numerous genes have been definitively related to the pathogenesis of the disease. Some studies based on next generation sequencing (NGS) have been successfully undertaken as they have led to identify new mutations associated with POI aetiology. The purpose of this review is to present the most relevant molecules involved in diverse complex pathways, which may contribute towards POI. The main genes participating in bipotential gonad formation, sex determination, meiosis, folliculogenesis and ovulation are described to enable understanding how they may be considered putative candidates involved in POI. Considerations regarding NGS technical aspects such as design and data interpretation are mentioned. Successful NGS initiatives used for POI studying and future challenges are also discussed.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
142
|
Lim D, Oliva E. Ovarian sex cord-stromal tumours: an update in recent molecular advances. Pathology 2017; 50:178-189. [PMID: 29275930 DOI: 10.1016/j.pathol.2017.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Sex cord-stromal tumours (SCSTs) consist of a heterogeneous group of neoplasms with diverse clinicopathological features and biological behaviour. They often present as a diagnostic challenge as they have varied and occasionally overlapping histomorphology and some may even mimic non-SCSTs. An accurate diagnosis is important for therapeutic and prognostic purposes. The use of a panel of immunohistochemical markers which are sensitive and specific for sex cord-stromal differentiation such as α-inhibin, calretinin, SF-1 and FOXL2, may be helpful in confirming the cellular lineage of these tumours, but is of limited utility in distinguishing between the different tumour types within this category. Additionally, the development of new therapeutic strategies in patients with SCSTs is also hampered by the infrequent occurrence of these neoplasms. Recent molecular analyses of some SCSTs has led to the discovery of novel molecular events, which may have important diagnostic, prognostic and therapeutic implications. The salient pathological features, management issues and recently described genetic aberrations in adult and juvenile granulosa cell tumours as well as Sertoli-Leydig cell tumours are discussed in this review, with particular emphasis on the clinical significance of FOXL2 and DICER1 mutations. An in-depth understanding of the molecular pathogenesis underlying SCSTs may aid in improving tumour classification and disease prognostication and also potentially lead to the discovery of more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Lim
- Department of Pathology, National University Hospital, Singapore; Translational Centre for Development and Research, National University Health System, Singapore.
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
143
|
Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus. Gene 2017; 637:203-210. [DOI: 10.1016/j.gene.2017.09.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
|
144
|
Trofimova T, Lizneva D, Suturina L, Walker W, Chen YH, Azziz R, Layman LC. Genetic basis of eugonadal and hypogonadal female reproductive disorders. Best Pract Res Clin Obstet Gynaecol 2017; 44:3-14. [DOI: 10.1016/j.bpobgyn.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
|
145
|
Guo L, Rhen T. Characterization of the FoxL2 proximal promoter and coding sequence from the common snapping turtle (Chelydra serpentina). Comp Biochem Physiol A Mol Integr Physiol 2017; 212:45-55. [DOI: 10.1016/j.cbpa.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
146
|
Eid W, Biason-Lauber A. Why boys will be boys and girls will be girls: Human sex development and its defects. ACTA ACUST UNITED AC 2017; 108:365-379. [PMID: 28033664 DOI: 10.1002/bdrc.21143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, "sex determination," which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and "sex differentiation," which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the "prismatic" clinical cases are given. Birth Defects Research (Part C) 108:365-379, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wassim Eid
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
147
|
Yang L, Li T, Xing Y. Identification of a novel FOXL2 mutation in a single family with both types of blepharophimosis‑-ptosis-epicanthus inversus syndrome. Mol Med Rep 2017; 16:5529-5532. [PMID: 28849110 DOI: 10.3892/mmr.2017.7226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disease, which has been divided into two types according to whether it involves premature ovarian failure (POF). Mutations in forkhead box L2 (FOXL2) have been identified in the majority of patients with BPES. The present study aimed to identify the causative mutation in FOXL2 in a Chinese family with both types of BPES. Clinical data and genomic DNA were collected from a single Chinese family with BPES. All the coding exons and adjacent regions of FOXL2 were screened in one affected member to detect the causative mutation using Sanger sequencing. The detected mutation was also screened in available family members and in 100 normal control chromosomes. In total, seven family members were recruited in the present study, including four affected and three unaffected members. The patient (II:5) exhibited typical features of type II BPES, characterized by a narrowed horizontal palpehral aperture, ptosis, epicanthus inversus and telecanthus without POF, whereas the patient's three daughters (III:1, III:2 and III:3) were diagnosed with type I BPES, in which a complex eyelid malformation was accompanied with POF. A novel heterozygous mutation in FOXL2 (c.844_860dup17, p.His291Argfs*71) was found in the four affected members, which was absent in the remaining three unaffected members and in the 100 control chromosomes. This novel duplicate mutation (c.844_860dup17, p.His291Argfs*71) in FOXL2 was identified in a Chinese family with both types of BPES. These findings expand current knowledge of the mutation spectrum of the FOXL2 gene and confirmed the intra‑family phenotypic heterogeneity of BPES.
Collapse
Affiliation(s)
- Lin Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tuo Li
- Department of Ophthalmology, Enshi Medical College of Wuhan University, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
148
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
149
|
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13:400-414. [PMID: 28450750 DOI: 10.1038/nrendo.2017.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
150
|
Guzel Y, Oktem O. Understanding follicle growth in vitro: Are we getting closer to obtaining mature oocytes from in vitro-grown follicles in human? Mol Reprod Dev 2017; 84:544-559. [PMID: 28452156 DOI: 10.1002/mrd.22822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Obtaining and fertilizing mature oocytes from immature follicles that were grown outside the body has conceptually attracted scientists for centuries, with initial attempts first documented in the 19th century. Significant progress has been made since then, due in part to a better understanding of folliculogenesis and improved techniques of in vitro follicle growth. Indeed, in vitro growth is now considered a reasonable approach to preserve or restore fertility when immature follicles and their oocytes need to be grown and matured outside the body. Certain patients would benefit from in vitro follicle growth, particularly those who carry a risk of cancer re-seeding after grafting of frozen-thawed ovarian tissue or who are at the risk of premature ovarian failure due to several intrinsic ovarian defects and genetic mutations that lead to accelerated follicle atresia and early exhaustion of the ovarian reserve. This review provides an update on the current status of in vitro growth of preantral human follicles, from initial efforts to the most recent achievements.
Collapse
Affiliation(s)
- Yilmaz Guzel
- Department of Obstetrics and Gynecology, Istanbul Aydin University School of Medicine, Istanbul, Turkey
| | - Ozgur Oktem
- Division Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey.,Women's Health Center, Assisted Reproduction Unit, American Hospital, Istanbul, Turkey
| |
Collapse
|